2025-03-14T04:12:09.5227295Z Current runner version: '2.322.0' 2025-03-14T04:12:09.5233136Z Runner name: 'i-047a1559c2de50868' 2025-03-14T04:12:09.5233788Z Runner group name: 'Default' 2025-03-14T04:12:09.5234668Z Machine name: 'ip-10-0-71-89' 2025-03-14T04:12:09.5237960Z ##[group]GITHUB_TOKEN Permissions 2025-03-14T04:12:09.5240489Z Actions: read 2025-03-14T04:12:09.5241118Z Attestations: read 2025-03-14T04:12:09.5241606Z Checks: read 2025-03-14T04:12:09.5242071Z Contents: read 2025-03-14T04:12:09.5242563Z Deployments: read 2025-03-14T04:12:09.5243039Z Discussions: read 2025-03-14T04:12:09.5243488Z Issues: read 2025-03-14T04:12:09.5243970Z Metadata: read 2025-03-14T04:12:09.5244432Z Packages: read 2025-03-14T04:12:09.5244896Z Pages: read 2025-03-14T04:12:09.5245385Z PullRequests: read 2025-03-14T04:12:09.5245966Z RepositoryProjects: read 2025-03-14T04:12:09.5246537Z SecurityEvents: read 2025-03-14T04:12:09.5246997Z Statuses: read 2025-03-14T04:12:09.5247462Z ##[endgroup] 2025-03-14T04:12:09.5250614Z Secret source: Actions 2025-03-14T04:12:09.5251519Z Prepare workflow directory 2025-03-14T04:12:09.8816766Z Prepare all required actions 2025-03-14T04:12:09.8855297Z Getting action download info 2025-03-14T04:12:10.0502311Z Download action repository 'pytorch/test-infra@main' (SHA:de00dac6adc071cb2f9861380a0ed3947b93e5cc) 2025-03-14T04:12:10.9214735Z Download action repository 'pytorch/pytorch@main' (SHA:e5679009988279a3059f398ed2077a0477099ba6) 2025-03-14T04:12:24.2523613Z Download action repository 'aws-actions/configure-aws-credentials@v3' (SHA:50ac8dd1e1b10d09dac7b8727528b91bed831ac0) 2025-03-14T04:12:24.4988140Z Download action repository 'seemethere/upload-artifact-s3@v5' (SHA:baba72d0712b404f646cebe0730933554ebce96a) 2025-03-14T04:12:24.8227762Z Getting action download info 2025-03-14T04:12:24.9225867Z Download action repository 'actions/checkout@v4' (SHA:11bd71901bbe5b1630ceea73d27597364c9af683) 2025-03-14T04:12:25.1493778Z Getting action download info 2025-03-14T04:12:25.2383363Z Download action repository 'nick-fields/retry@v3.0.0' (SHA:7152eba30c6575329ac0576536151aca5a72780e) 2025-03-14T04:12:25.4090244Z Getting action download info 2025-03-14T04:12:25.4922135Z Download action repository 'nick-fields/retry@3e91a01664abd3c5cd539100d10d33b9c5b68482' (SHA:3e91a01664abd3c5cd539100d10d33b9c5b68482) 2025-03-14T04:12:25.6352704Z Getting action download info 2025-03-14T04:12:25.7594725Z Uses: pytorch/pytorch/.github/workflows/_linux-test.yml@refs/heads/main (aed0b7a742a2d7b7901790622829cbd2135049a4) 2025-03-14T04:12:25.7596470Z ##[group] Inputs 2025-03-14T04:12:25.7596741Z build-environment: linux-jammy-py3.9-gcc11-build 2025-03-14T04:12:25.7598362Z test-matrix: {"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]} 2025-03-14T04:12:25.7600176Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:25.7600682Z sync-tag: 2025-03-14T04:12:25.7601354Z timeout-minutes: 240 2025-03-14T04:12:25.7601552Z use-gha: 2025-03-14T04:12:25.7601734Z dashboard-tag: 2025-03-14T04:12:25.7601949Z s3-bucket: gha-artifacts 2025-03-14T04:12:25.7602171Z aws-role-to-assume: 2025-03-14T04:12:25.7602879Z disable-monitor: false 2025-03-14T04:12:25.7603200Z ##[endgroup] 2025-03-14T04:12:25.7603553Z Complete job name: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:12:25.8001397Z A job started hook has been configured by the self-hosted runner administrator 2025-03-14T04:12:25.8104819Z ##[group]Run '/home/ec2-user/runner-scripts/before_job.sh' 2025-03-14T04:12:25.8111872Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:25.8112318Z ##[endgroup] 2025-03-14T04:12:27.0877268Z Runner Type: linux.8xlarge.amx 2025-03-14T04:12:27.0877758Z Instance Type: m7i-flex.8xlarge 2025-03-14T04:12:27.0877973Z AMI Name: unknown 2025-03-14T04:12:27.0902945Z AMI ID: ami-08b5b3a93ed654d19 2025-03-14T04:12:31.4359108Z ##[group]Run pytorch/test-infra/.github/actions/setup-ssh@main 2025-03-14T04:12:31.4359444Z with: 2025-03-14T04:12:31.4360102Z github-secret: *** 2025-03-14T04:12:31.4360557Z instructions: All testing is done inside the container, to start an interactive session run: docker exec -it $(docker container ps --format '{{.ID}}') bash 2025-03-14T04:12:31.4361043Z activate-with-label: false 2025-03-14T04:12:31.4361248Z label: with-ssh 2025-03-14T04:12:31.4361437Z remove-existing-keys: true 2025-03-14T04:12:31.4361629Z fail-silently: true 2025-03-14T04:12:31.4361813Z env: 2025-03-14T04:12:31.4361983Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:31.4362189Z ##[endgroup] 2025-03-14T04:12:31.5337838Z Please see https://github.com/pytorch/pytorch/wiki/Debugging-using-with-ssh-for-Github-Actions for more info. 2025-03-14T04:12:31.5338470Z Not on pull request and ciflow reference could not be extracted, skipping adding ssh keys 2025-03-14T04:12:31.5483202Z ##[group]Run pytorch/pytorch/.github/actions/checkout-pytorch@main 2025-03-14T04:12:31.5483519Z with: 2025-03-14T04:12:31.5483702Z no-sudo: true 2025-03-14T04:12:31.5483896Z submodules: recursive 2025-03-14T04:12:31.5484094Z fetch-depth: 0 2025-03-14T04:12:31.5484262Z env: 2025-03-14T04:12:31.5484435Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:31.5484647Z ##[endgroup] 2025-03-14T04:12:31.5555479Z ##[group]Run echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:31.5556087Z echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:31.5563842Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:31.5564103Z env: 2025-03-14T04:12:31.5564319Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:31.5564572Z ##[endgroup] 2025-03-14T04:12:31.5660898Z ##[group]Run # Use all available CPUs for fetching 2025-03-14T04:12:31.5661245Z # Use all available CPUs for fetching 2025-03-14T04:12:31.5661486Z cd "${GITHUB_WORKSPACE}" 2025-03-14T04:12:31.5661732Z git config --global fetch.parallel 0 2025-03-14T04:12:31.5661993Z git config --global submodule.fetchJobs 0 2025-03-14T04:12:31.5662224Z  2025-03-14T04:12:31.5662479Z # Clean workspace. The default checkout action should also do this, but 2025-03-14T04:12:31.5662783Z # do it here as well just in case 2025-03-14T04:12:31.5662995Z if [[ -d .git ]]; then 2025-03-14T04:12:31.5663204Z  if [ -z "${NO_SUDO}" ]; then 2025-03-14T04:12:31.5663422Z  sudo git clean -ffdx 2025-03-14T04:12:31.5663619Z  else 2025-03-14T04:12:31.5663800Z  git clean -ffdx 2025-03-14T04:12:31.5664123Z  fi 2025-03-14T04:12:31.5664299Z fi 2025-03-14T04:12:31.5669263Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:31.5669578Z env: 2025-03-14T04:12:31.5669853Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:31.5670067Z NO_SUDO: true 2025-03-14T04:12:31.5670243Z ##[endgroup] 2025-03-14T04:12:32.0118757Z Removing .additional_ci_files/ 2025-03-14T04:12:32.0119562Z Removing benchmarks/dynamo/__pycache__/ 2025-03-14T04:12:32.0119812Z Removing build/ 2025-03-14T04:12:32.0120650Z Removing dist/ 2025-03-14T04:12:32.0121002Z Removing logs-test-dynamic_cpu_inductor_torchbench-2-2-linux.8xlarge.amx_38753240423.zip 2025-03-14T04:12:32.0121342Z Removing stargan/ 2025-03-14T04:12:32.0121665Z Removing test-jsons-test-dynamic_cpu_inductor_torchbench-2-2-linux.8xlarge.amx_38753240423.zip 2025-03-14T04:12:32.0122144Z Removing test-reports-test-dynamic_cpu_inductor_torchbench-2-2-linux.8xlarge.amx_38753240423.zip 2025-03-14T04:12:32.0122506Z Removing test/test-reports/ 2025-03-14T04:12:32.0122720Z Removing tools/__pycache__/ 2025-03-14T04:12:32.0123008Z Removing tools/stats/__pycache__/ 2025-03-14T04:12:32.0123380Z Removing tools/stats/upload_utilization_stats/__pycache__/ 2025-03-14T04:12:32.0123650Z Removing torchbench/ 2025-03-14T04:12:32.0123843Z Removing usage_log.txt 2025-03-14T04:12:32.0200252Z ##[group]Run actions/checkout@v4 2025-03-14T04:12:32.0200490Z with: 2025-03-14T04:12:32.0200688Z ref: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:32.0200938Z fetch-depth: 0 2025-03-14T04:12:32.0201123Z submodules: recursive 2025-03-14T04:12:32.0201315Z show-progress: false 2025-03-14T04:12:32.0201510Z repository: pytorch/pytorch 2025-03-14T04:12:32.0201781Z token: *** 2025-03-14T04:12:32.0201953Z ssh-strict: true 2025-03-14T04:12:32.0202126Z ssh-user: git 2025-03-14T04:12:32.0202310Z persist-credentials: true 2025-03-14T04:12:32.0202506Z clean: true 2025-03-14T04:12:32.0202688Z sparse-checkout-cone-mode: true 2025-03-14T04:12:32.0202888Z fetch-tags: false 2025-03-14T04:12:32.0203061Z lfs: false 2025-03-14T04:12:32.0203239Z set-safe-directory: true 2025-03-14T04:12:32.0203609Z env: 2025-03-14T04:12:32.0203787Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:32.0203976Z ##[endgroup] 2025-03-14T04:12:32.1149129Z Syncing repository: pytorch/pytorch 2025-03-14T04:12:32.1150281Z ##[group]Getting Git version info 2025-03-14T04:12:32.1150622Z Working directory is '/home/ec2-user/actions-runner/_work/pytorch/pytorch' 2025-03-14T04:12:32.1151123Z [command]/usr/bin/git version 2025-03-14T04:12:32.1151355Z git version 2.47.1 2025-03-14T04:12:32.1158038Z ##[endgroup] 2025-03-14T04:12:32.1168854Z Copying '/home/ec2-user/.gitconfig' to '/home/ec2-user/actions-runner/_work/_temp/08a9ab18-1fea-43a3-b933-c459782c105f/.gitconfig' 2025-03-14T04:12:32.1190911Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/08a9ab18-1fea-43a3-b933-c459782c105f' before making global git config changes 2025-03-14T04:12:32.1191537Z Adding repository directory to the temporary git global config as a safe directory 2025-03-14T04:12:32.1199430Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T04:12:32.1246142Z [command]/usr/bin/git config --local --get remote.origin.url 2025-03-14T04:12:32.1267290Z https://github.com/pytorch/pytorch 2025-03-14T04:12:32.1284534Z ##[group]Removing previously created refs, to avoid conflicts 2025-03-14T04:12:32.1290001Z [command]/usr/bin/git rev-parse --symbolic-full-name --verify --quiet HEAD 2025-03-14T04:12:32.1310239Z HEAD 2025-03-14T04:12:32.1368110Z ##[endgroup] 2025-03-14T04:12:32.1372181Z [command]/usr/bin/git submodule status 2025-03-14T04:12:32.1751044Z 7e1e1fe3858c63c251c637ae41a20de425dde96f android/libs/fbjni (v0.1.0-12-g7e1e1fe) 2025-03-14T04:12:32.1818147Z 4dfe081cf6bcd15db339cf2680b9281b8451eeb3 third_party/FP16 (4dfe081) 2025-03-14T04:12:32.1882515Z b408327ac2a15ec3e43352421954f5b1967701d1 third_party/FXdiv (b408327) 2025-03-14T04:12:32.1969518Z c07e3a0400713d546e0dea2d5466dd22ea389c73 third_party/NNPACK (c07e3a0) 2025-03-14T04:12:32.1988657Z e170594ac7cf1dac584da473d4ca9301087090c1 third_party/NVTX (v3.1.0) 2025-03-14T04:12:32.2054050Z a6bfc237255a6bac1513f7c1ebde6d8aed6b5191 third_party/VulkanMemoryAllocator (v2.1.0-705-ga6bfc23) 2025-03-14T04:12:32.2623460Z 51a0103656eff6fc9bfd39a4597923c4b542c883 third_party/XNNPACK (remotes/origin/ds/ndk-1243-g51a010365) 2025-03-14T04:12:32.2650629Z 0d98dba29d66e93259db7daa53a9327df767a415 third_party/benchmark (v1.6.1) 2025-03-14T04:12:32.2679474Z 8086bbe3a78d931eb96fe12fdc014082e18d18d3 third_party/composable_kernel (mock-tag-test-6-g8086bbe3a) 2025-03-14T04:12:32.2801486Z 3b6597bba913d51161383657829b7e644e59c006 third_party/cpp-httplib (v0.15.3-20-g3b6597b) 2025-03-14T04:12:32.2906792Z 1e83a2fdd3102f65c6f1fb602c1b320486218a99 third_party/cpuinfo (1e83a2f) 2025-03-14T04:12:32.2941277Z 91b7532f3386768bba4f444ee7672b497f34da8a third_party/cudnn_frontend (v0.5-44-g91b7532) 2025-03-14T04:12:32.3025871Z afa1772203677c5118fcd82537a9c8fefbcc7008 third_party/cutlass (v3.8.0) 2025-03-14T04:12:32.3594740Z 3147391d946bb4b6c68edd901f2add6ac1f31f8c third_party/eigen (3.4.0) 2025-03-14T04:12:32.3912975Z dbc3157bf256f1339b3fa1fef2be89ac4078be0e third_party/fbgemm (v0.4.1-446-gdbc3157b) 2025-03-14T04:12:32.3994906Z 979702c87a8713a8e0a5e9fee122b90d2ef13be5 third_party/flash-attention (v2.7.4) 2025-03-14T04:12:32.4017947Z 01834de25e4bf3975a9a00e816292b1ad0fe184b third_party/flatbuffers (v23.3.3) 2025-03-14T04:12:32.4471725Z 123913715afeb8a437e6388b4473fcc4753e1c9a third_party/fmt (11.1.4) 2025-03-14T04:12:32.4569572Z 3fb5c176c17c765a3492cd2f0321b0dab712f350 third_party/gemmlowp/gemmlowp (remotes/origin/revert-87-master-135-g3fb5c17) 2025-03-14T04:12:32.4673613Z 5354032ea08eadd7fc4456477f7f7c6308818509 third_party/gloo (5354032) 2025-03-14T04:12:32.4887732Z b514bdc898e2951020cbdca1304b75f5950d1f59 third_party/googletest (release-1.8.0-3484-gb514bdc8) 2025-03-14T04:12:32.4963946Z 719d8e6cd7f7a0e01b155657526d693acf97c2b3 third_party/ideep (pytorch-rls-v3.7.1) 2025-03-14T04:12:32.5019319Z 5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42 third_party/ittapi (v3.23.0-14-g5b8a7d7) 2025-03-14T04:12:32.5250021Z 2859721fd9e73d3ca1c56f827dbc64e6d68f78a2 third_party/kineto (remotes/origin/sraikund/test-53-g2859721) 2025-03-14T04:12:32.5271747Z ef685a13cfbe8d418aa2ed34350e21e4938358b6 third_party/kleidiai (v1.3.0) 2025-03-14T04:12:32.5292839Z b66e3214d8a104669c2ec05ae91ebc26a8f5ab78 third_party/mimalloc (v1.8.2) 2025-03-14T04:12:32.5717278Z 87cda1d6646592ac5866dc703c8e1839046a6806 third_party/nlohmann (v3.10.1-113-g87cda1d6) 2025-03-14T04:12:32.5985975Z b8baa8446686496da4cc8fda09f2b6fe65c2a02c third_party/onnx (v1.17.0) 2025-03-14T04:12:32.6007508Z a799f4aed9c94b765dcdaabaeab7d5e7e2310878 third_party/opentelemetry-cpp (v1.14.2) 2025-03-14T04:12:32.6026891Z 9d3ab05a7fffbc71a492bc6a17be034e83e8f0fe third_party/pocketfft (release_for_eigen-11-g9d3ab05) 2025-03-14T04:12:32.6402912Z d1eca4e4b421cd2997495c4b4e65cea6be4e9b8a third_party/protobuf (v3.7.0-rc.2-1279-gd1eca4e4b) 2025-03-14T04:12:32.6473874Z 072586a71b55b7f8c584153d223e95687148a900 third_party/psimd (heads/master) 2025-03-14T04:12:32.6523928Z 4fe0e1e183925bf8cfa6aae24237e724a96479b8 third_party/pthreadpool (0.1-144-g4fe0e1e) 2025-03-14T04:12:32.6571266Z a2e59f0e7065404b44dfe92a28aca47ba1378dc4 third_party/pybind11 (v2.11.0-182-ga2e59f0e) 2025-03-14T04:12:32.6640708Z f45429b087dd7d5bc78bb40dc7cf06425c252d67 third_party/python-peachpy (remotes/origin/pre-generated) 2025-03-14T04:12:32.6739059Z 56e1f79cb140fb9326d612d0be06b5250565cade third_party/sleef (3.7-33-g56e1f79) 2025-03-14T04:12:32.6799301Z 52791a2fd214b2a9dc5759d36725909c1daa7f2e third_party/tensorpipe (remotes/origin/master) 2025-03-14T04:12:32.6813952Z ##[group]Cleaning the repository 2025-03-14T04:12:32.6820032Z [command]/usr/bin/git clean -ffdx 2025-03-14T04:12:32.6980601Z [command]/usr/bin/git reset --hard HEAD 2025-03-14T04:12:33.6643719Z HEAD is now at b4745db9048 [MPS] Add support for `i0e` in eager. (#149174) 2025-03-14T04:12:33.6690266Z ##[endgroup] 2025-03-14T04:12:33.6690826Z ##[group]Disabling automatic garbage collection 2025-03-14T04:12:33.6693799Z [command]/usr/bin/git config --local gc.auto 0 2025-03-14T04:12:33.6729978Z ##[endgroup] 2025-03-14T04:12:33.6734888Z ##[group]Setting up auth 2025-03-14T04:12:33.6739757Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2025-03-14T04:12:33.6760706Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2025-03-14T04:12:33.7058774Z Entering 'android/libs/fbjni' 2025-03-14T04:12:33.7109556Z Entering 'third_party/FP16' 2025-03-14T04:12:33.7159553Z Entering 'third_party/FXdiv' 2025-03-14T04:12:33.7209200Z Entering 'third_party/NNPACK' 2025-03-14T04:12:33.7259216Z Entering 'third_party/NVTX' 2025-03-14T04:12:33.7309978Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:33.7360925Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:33.7422966Z Entering 'third_party/benchmark' 2025-03-14T04:12:33.7472387Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:33.7528869Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:33.7577646Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:33.7630720Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:33.7671940Z Entering 'third_party/cutlass' 2025-03-14T04:12:33.7731620Z Entering 'third_party/eigen' 2025-03-14T04:12:33.7781667Z Entering 'third_party/fbgemm' 2025-03-14T04:12:33.7831789Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:33.7879376Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:33.7931612Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:33.7983225Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:33.8034149Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:33.8084664Z Entering 'third_party/flash-attention' 2025-03-14T04:12:33.8132968Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:33.8190197Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:33.8251255Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:33.8301386Z Entering 'third_party/fmt' 2025-03-14T04:12:33.8350302Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:33.8399892Z Entering 'third_party/gloo' 2025-03-14T04:12:33.8451753Z Entering 'third_party/googletest' 2025-03-14T04:12:33.8500029Z Entering 'third_party/ideep' 2025-03-14T04:12:33.8545067Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:33.8606093Z Entering 'third_party/ittapi' 2025-03-14T04:12:33.8654939Z Entering 'third_party/kineto' 2025-03-14T04:12:33.8698974Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:33.8744549Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:33.8798326Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:33.8855457Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:33.8899387Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:33.8947824Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:33.8997463Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:33.9049350Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:33.9107404Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:33.9154722Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:33.9206720Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:33.9260600Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:33.9305526Z Entering 'third_party/kleidiai' 2025-03-14T04:12:33.9364124Z Entering 'third_party/mimalloc' 2025-03-14T04:12:33.9408254Z Entering 'third_party/nlohmann' 2025-03-14T04:12:33.9459616Z Entering 'third_party/onnx' 2025-03-14T04:12:33.9525002Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:33.9576555Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:33.9628098Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:33.9674374Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:33.9726281Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:33.9772975Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:33.9822610Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:33.9870210Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:33.9917851Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:33.9965386Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:34.0042128Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:34.0105692Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:34.0139080Z Entering 'third_party/pocketfft' 2025-03-14T04:12:34.0189544Z Entering 'third_party/protobuf' 2025-03-14T04:12:34.0238403Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:34.0284086Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:34.0336410Z Entering 'third_party/psimd' 2025-03-14T04:12:34.0405599Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:34.0432654Z Entering 'third_party/pybind11' 2025-03-14T04:12:34.0482162Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:34.0532323Z Entering 'third_party/sleef' 2025-03-14T04:12:34.0576505Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:34.0630006Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:34.0676053Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:34.0724679Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:34.0770814Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:34.0821002Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:34.0891822Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2025-03-14T04:12:34.0920684Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2025-03-14T04:12:34.1210612Z Entering 'android/libs/fbjni' 2025-03-14T04:12:34.1260327Z Entering 'third_party/FP16' 2025-03-14T04:12:34.1313273Z Entering 'third_party/FXdiv' 2025-03-14T04:12:34.1365477Z Entering 'third_party/NNPACK' 2025-03-14T04:12:34.1415566Z Entering 'third_party/NVTX' 2025-03-14T04:12:34.1463706Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:34.1515307Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:34.1576772Z Entering 'third_party/benchmark' 2025-03-14T04:12:34.1631293Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:34.1682760Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:34.1731488Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:34.1781604Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:34.1834171Z Entering 'third_party/cutlass' 2025-03-14T04:12:34.1892056Z Entering 'third_party/eigen' 2025-03-14T04:12:34.1944931Z Entering 'third_party/fbgemm' 2025-03-14T04:12:34.1994804Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:34.2045091Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:34.2094380Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:34.2150392Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:34.2197592Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:34.2248052Z Entering 'third_party/flash-attention' 2025-03-14T04:12:34.2299551Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:34.2353517Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:34.2416499Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:34.2465246Z Entering 'third_party/fmt' 2025-03-14T04:12:34.2521630Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:34.2579975Z Entering 'third_party/gloo' 2025-03-14T04:12:34.2617263Z Entering 'third_party/googletest' 2025-03-14T04:12:34.2665159Z Entering 'third_party/ideep' 2025-03-14T04:12:34.2716022Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:34.2771627Z Entering 'third_party/ittapi' 2025-03-14T04:12:34.2821989Z Entering 'third_party/kineto' 2025-03-14T04:12:34.2869020Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:34.2915936Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:34.2966285Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:34.3017106Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:34.3064922Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:34.3109552Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:34.3163614Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:34.3211152Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:34.3260293Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:34.3308606Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:34.3359990Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:34.3410130Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:34.3466180Z Entering 'third_party/kleidiai' 2025-03-14T04:12:34.3519023Z Entering 'third_party/mimalloc' 2025-03-14T04:12:34.3570113Z Entering 'third_party/nlohmann' 2025-03-14T04:12:34.3622300Z Entering 'third_party/onnx' 2025-03-14T04:12:34.3685797Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:34.3734920Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:34.3789672Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:34.3837105Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:34.3883531Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:34.3933449Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:34.3981013Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:34.4032106Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:34.4078458Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:34.4128282Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:34.4177993Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:34.4231916Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:34.4300171Z Entering 'third_party/pocketfft' 2025-03-14T04:12:34.4348729Z Entering 'third_party/protobuf' 2025-03-14T04:12:34.4400694Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:34.4444539Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:34.4498690Z Entering 'third_party/psimd' 2025-03-14T04:12:34.4549565Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:34.4598728Z Entering 'third_party/pybind11' 2025-03-14T04:12:34.4652641Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:34.4703925Z Entering 'third_party/sleef' 2025-03-14T04:12:34.4755275Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:34.4802351Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:34.4849616Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:34.4900348Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:34.4953098Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:34.4999937Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:34.5077512Z [command]/usr/bin/git config --local http.https://github.com/.extraheader AUTHORIZATION: basic *** 2025-03-14T04:12:34.5138156Z ##[endgroup] 2025-03-14T04:12:34.5138870Z ##[group]Fetching the repository 2025-03-14T04:12:34.5139384Z [command]/usr/bin/git -c protocol.version=2 fetch --prune --no-recurse-submodules origin +refs/heads/*:refs/remotes/origin/* +refs/tags/*:refs/tags/* 2025-03-14T04:12:34.7530455Z From https://github.com/pytorch/pytorch 2025-03-14T04:12:34.7531073Z - [deleted] (none) -> ciflow/inductor/149162 2025-03-14T04:12:34.7791809Z - [deleted] (none) -> ciflow/trunk/149166 2025-03-14T04:12:36.1031283Z b4745db9048..e5679009988 main -> origin/main 2025-03-14T04:12:36.1037844Z + e2f3d057bea...c4b8be3d09f update_submodule_FBGEMM -> origin/update_submodule_FBGEMM (forced update) 2025-03-14T04:12:36.1038388Z 4098a229a04..49570cb4024 viable/strict -> origin/viable/strict 2025-03-14T04:12:36.1038844Z 1579a02c823..3ffd7552df1 wdvr/iss145259_alt -> origin/wdvr/iss145259_alt 2025-03-14T04:12:36.1050152Z * [new tag] ciflow/trunk/146289 -> ciflow/trunk/146289 2025-03-14T04:12:36.1050627Z * [new tag] ciflow/trunk/149064 -> ciflow/trunk/149064 2025-03-14T04:12:36.1433461Z [command]/usr/bin/git rev-parse --verify --quiet aed0b7a742a2d7b7901790622829cbd2135049a4^{object} 2025-03-14T04:12:36.1455445Z aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:36.1474466Z ##[endgroup] 2025-03-14T04:12:36.1474951Z ##[group]Determining the checkout info 2025-03-14T04:12:36.1475312Z ##[endgroup] 2025-03-14T04:12:36.1475526Z [command]/usr/bin/git sparse-checkout disable 2025-03-14T04:12:36.4312727Z [command]/usr/bin/git config --local --unset-all extensions.worktreeConfig 2025-03-14T04:12:36.4339971Z ##[group]Checking out the ref 2025-03-14T04:12:36.4344026Z [command]/usr/bin/git checkout --progress --force aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:36.5248698Z Previous HEAD position was b4745db9048 [MPS] Add support for `i0e` in eager. (#149174) 2025-03-14T04:12:36.5255197Z HEAD is now at aed0b7a742a [c10d] Add param recording for uniqueID broadcasting and allgather (#149166) 2025-03-14T04:12:36.5276519Z ##[endgroup] 2025-03-14T04:12:36.5276954Z ##[group]Setting up auth for fetching submodules 2025-03-14T04:12:36.5285863Z [command]/usr/bin/git config --global http.https://github.com/.extraheader AUTHORIZATION: basic *** 2025-03-14T04:12:36.5346740Z [command]/usr/bin/git config --global --unset-all url.https://github.com/.insteadOf 2025-03-14T04:12:36.5375810Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf git@github.com: 2025-03-14T04:12:36.5402421Z [command]/usr/bin/git config --global --add url.https://github.com/.insteadOf org-21003710@github.com: 2025-03-14T04:12:36.5423188Z ##[endgroup] 2025-03-14T04:12:36.5423650Z ##[group]Fetching submodules 2025-03-14T04:12:36.5427670Z [command]/usr/bin/git submodule sync --recursive 2025-03-14T04:12:36.5771438Z Synchronizing submodule url for 'android/libs/fbjni' 2025-03-14T04:12:36.5819595Z Synchronizing submodule url for 'third_party/FP16' 2025-03-14T04:12:36.5842174Z Synchronizing submodule url for 'third_party/FXdiv' 2025-03-14T04:12:36.5868885Z Synchronizing submodule url for 'third_party/NNPACK' 2025-03-14T04:12:36.5888563Z Synchronizing submodule url for 'third_party/NVTX' 2025-03-14T04:12:36.5905136Z Synchronizing submodule url for 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:36.5924389Z Synchronizing submodule url for 'third_party/XNNPACK' 2025-03-14T04:12:36.5964505Z Synchronizing submodule url for 'third_party/benchmark' 2025-03-14T04:12:36.5979126Z Synchronizing submodule url for 'third_party/composable_kernel' 2025-03-14T04:12:36.6006538Z Synchronizing submodule url for 'third_party/cpp-httplib' 2025-03-14T04:12:36.6021019Z Synchronizing submodule url for 'third_party/cpuinfo' 2025-03-14T04:12:36.6038367Z Synchronizing submodule url for 'third_party/cudnn_frontend' 2025-03-14T04:12:36.6057055Z Synchronizing submodule url for 'third_party/cutlass' 2025-03-14T04:12:36.6077739Z Synchronizing submodule url for 'third_party/eigen' 2025-03-14T04:12:36.6099262Z Synchronizing submodule url for 'third_party/fbgemm' 2025-03-14T04:12:36.6117411Z Synchronizing submodule url for 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:36.6136469Z Synchronizing submodule url for 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:36.6155082Z Synchronizing submodule url for 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:36.6177038Z Synchronizing submodule url for 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:36.6195206Z Synchronizing submodule url for 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:36.6214514Z Synchronizing submodule url for 'third_party/flash-attention' 2025-03-14T04:12:36.6231093Z Synchronizing submodule url for 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:36.6255942Z Synchronizing submodule url for 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:36.6288986Z Synchronizing submodule url for 'third_party/flatbuffers' 2025-03-14T04:12:36.6307584Z Synchronizing submodule url for 'third_party/fmt' 2025-03-14T04:12:36.6325950Z Synchronizing submodule url for 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:36.6343455Z Synchronizing submodule url for 'third_party/gloo' 2025-03-14T04:12:36.6359464Z Synchronizing submodule url for 'third_party/googletest' 2025-03-14T04:12:36.6383062Z Synchronizing submodule url for 'third_party/ideep' 2025-03-14T04:12:36.6394154Z Synchronizing submodule url for 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:36.6424784Z Synchronizing submodule url for 'third_party/ittapi' 2025-03-14T04:12:36.6443187Z Synchronizing submodule url for 'third_party/kineto' 2025-03-14T04:12:36.6461368Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:36.6478708Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:36.6502978Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:36.6571217Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:36.6588274Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:36.6602913Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:36.6644251Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:36.6662912Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:36.6680276Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:36.6710529Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:36.6783689Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:36.6784349Z Synchronizing submodule url for 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:36.6784788Z Synchronizing submodule url for 'third_party/kleidiai' 2025-03-14T04:12:36.6791334Z Synchronizing submodule url for 'third_party/mimalloc' 2025-03-14T04:12:36.6808635Z Synchronizing submodule url for 'third_party/nlohmann' 2025-03-14T04:12:36.6825868Z Synchronizing submodule url for 'third_party/onnx' 2025-03-14T04:12:36.6852989Z Synchronizing submodule url for 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:36.6871637Z Synchronizing submodule url for 'third_party/opentelemetry-cpp' 2025-03-14T04:12:36.6892199Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:36.6911005Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:36.6933510Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:36.6948906Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:36.7000162Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:36.7018289Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:36.7038084Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:36.7053114Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:36.7069592Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:36.7089878Z Synchronizing submodule url for 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:36.7127010Z Synchronizing submodule url for 'third_party/pocketfft' 2025-03-14T04:12:36.7162951Z Synchronizing submodule url for 'third_party/protobuf' 2025-03-14T04:12:36.7177679Z Synchronizing submodule url for 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:36.7199754Z Synchronizing submodule url for 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:36.7220550Z Synchronizing submodule url for 'third_party/psimd' 2025-03-14T04:12:36.7240662Z Synchronizing submodule url for 'third_party/pthreadpool' 2025-03-14T04:12:36.7261212Z Synchronizing submodule url for 'third_party/pybind11' 2025-03-14T04:12:36.7274788Z Synchronizing submodule url for 'third_party/python-peachpy' 2025-03-14T04:12:36.7298634Z Synchronizing submodule url for 'third_party/sleef' 2025-03-14T04:12:36.7316145Z Synchronizing submodule url for 'third_party/tensorpipe' 2025-03-14T04:12:36.7332281Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:36.7350589Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:36.7367240Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:36.7381980Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:36.7400822Z Synchronizing submodule url for 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:36.7520497Z [command]/usr/bin/git -c protocol.version=2 submodule update --init --force --recursive 2025-03-14T04:12:36.8024598Z Submodule path 'android/libs/fbjni': checked out '7e1e1fe3858c63c251c637ae41a20de425dde96f' 2025-03-14T04:12:36.8133186Z Submodule path 'third_party/FP16': checked out '4dfe081cf6bcd15db339cf2680b9281b8451eeb3' 2025-03-14T04:12:36.8217743Z Submodule path 'third_party/FXdiv': checked out 'b408327ac2a15ec3e43352421954f5b1967701d1' 2025-03-14T04:12:36.8443554Z Submodule path 'third_party/NNPACK': checked out 'c07e3a0400713d546e0dea2d5466dd22ea389c73' 2025-03-14T04:12:36.8757284Z Submodule path 'third_party/NVTX': checked out 'e170594ac7cf1dac584da473d4ca9301087090c1' 2025-03-14T04:12:36.9104703Z Submodule path 'third_party/VulkanMemoryAllocator': checked out 'a6bfc237255a6bac1513f7c1ebde6d8aed6b5191' 2025-03-14T04:12:37.5335474Z Submodule path 'third_party/XNNPACK': checked out '51a0103656eff6fc9bfd39a4597923c4b542c883' 2025-03-14T04:12:37.5545900Z Submodule path 'third_party/benchmark': checked out '0d98dba29d66e93259db7daa53a9327df767a415' 2025-03-14T04:12:37.7668397Z Submodule path 'third_party/composable_kernel': checked out '8086bbe3a78d931eb96fe12fdc014082e18d18d3' 2025-03-14T04:12:37.8045718Z Submodule path 'third_party/cpp-httplib': checked out '3b6597bba913d51161383657829b7e644e59c006' 2025-03-14T04:12:37.8915286Z Submodule path 'third_party/cpuinfo': checked out '1e83a2fdd3102f65c6f1fb602c1b320486218a99' 2025-03-14T04:12:37.9229373Z Submodule path 'third_party/cudnn_frontend': checked out '91b7532f3386768bba4f444ee7672b497f34da8a' 2025-03-14T04:12:38.4671638Z Submodule path 'third_party/cutlass': checked out 'afa1772203677c5118fcd82537a9c8fefbcc7008' 2025-03-14T04:12:38.6951490Z Submodule path 'third_party/eigen': checked out '3147391d946bb4b6c68edd901f2add6ac1f31f8c' 2025-03-14T04:12:38.7519403Z Submodule path 'third_party/fbgemm': checked out 'dbc3157bf256f1339b3fa1fef2be89ac4078be0e' 2025-03-14T04:12:38.7907910Z Submodule path 'third_party/fbgemm/third_party/asmjit': checked out 'd3fbf7c9bc7c1d1365a94a45614b91c5a3706b81' 2025-03-14T04:12:38.8739971Z Submodule path 'third_party/fbgemm/third_party/cpuinfo': checked out 'ed8b86a253800bafdb7b25c5c399f91bff9cb1f3' 2025-03-14T04:12:39.2375608Z Submodule path 'third_party/fbgemm/third_party/cutlass': checked out 'fc9ebc645b63f3a6bc80aaefde5c063fb72110d6' 2025-03-14T04:12:39.2779656Z Submodule path 'third_party/fbgemm/third_party/googletest': checked out 'cbf019de22c8dd37b2108da35b2748fd702d1796' 2025-03-14T04:12:39.2889574Z Submodule path 'third_party/fbgemm/third_party/hipify_torch': checked out '23f53b025b466d8ec3c45d52290d3442f7fbe6b1' 2025-03-14T04:12:39.3527410Z Submodule path 'third_party/flash-attention': checked out '979702c87a8713a8e0a5e9fee122b90d2ef13be5' 2025-03-14T04:12:39.5625363Z Submodule path 'third_party/flash-attention/csrc/composable_kernel': checked out '888317e698e9803c62bd38568abc9e05d7709f33' 2025-03-14T04:12:40.1129413Z Submodule path 'third_party/flash-attention/csrc/cutlass': checked out 'c506e16788cb08416a4a57e11a9067beeee29420' 2025-03-14T04:12:40.2328273Z Submodule path 'third_party/flatbuffers': checked out '01834de25e4bf3975a9a00e816292b1ad0fe184b' 2025-03-14T04:12:40.2617320Z Submodule path 'third_party/fmt': checked out '123913715afeb8a437e6388b4473fcc4753e1c9a' 2025-03-14T04:12:40.2983763Z Submodule path 'third_party/gemmlowp/gemmlowp': checked out '3fb5c176c17c765a3492cd2f0321b0dab712f350' 2025-03-14T04:12:40.3222078Z Submodule path 'third_party/gloo': checked out '5354032ea08eadd7fc4456477f7f7c6308818509' 2025-03-14T04:12:40.3616389Z Submodule path 'third_party/googletest': checked out 'b514bdc898e2951020cbdca1304b75f5950d1f59' 2025-03-14T04:12:40.3734995Z Submodule path 'third_party/ideep': checked out '719d8e6cd7f7a0e01b155657526d693acf97c2b3' 2025-03-14T04:12:40.8570146Z Submodule path 'third_party/ideep/mkl-dnn': checked out '8d263e693366ef8db40acc569cc7d8edf644556d' 2025-03-14T04:12:40.8720650Z Submodule path 'third_party/ittapi': checked out '5b8a7d7422611c3a0d799fb5fc5dd4abfae35b42' 2025-03-14T04:12:40.9576747Z Submodule path 'third_party/kineto': checked out '2859721fd9e73d3ca1c56f827dbc64e6d68f78a2' 2025-03-14T04:12:41.0338314Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog': checked out '7d04a0053a845370ae06ce317a22a48e9edcc74e' 2025-03-14T04:12:41.1980332Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM': checked out 'ffde4e54bc7249a6039a5e6b45b395141e1217f9' 2025-03-14T04:12:41.2152256Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr': checked out '871ed52d350214a034f6ef8a3b8f51c5ce1bd400' 2025-03-14T04:12:41.2466872Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt': checked out 'cd4af11efc9c622896a3e4cb599fa28668ca3d05' 2025-03-14T04:12:41.2602643Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags': checked out 'e171aa2d15ed9eb17054558e0b3a6a413bb01067' 2025-03-14T04:12:41.2681270Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc': checked out '8411df715cf522606e3b1aca386ddfc0b63d34b4' 2025-03-14T04:12:41.2845517Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog': checked out 'b33e3bad4c46c8a6345525fd822af355e5ef9446' 2025-03-14T04:12:41.3200491Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest': checked out '58d77fa8070e8cec2dc1ed015d66b454c8d78850' 2025-03-14T04:12:41.4096245Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/json': checked out '4f8fba14066156b73f1189a2b8bd568bde5284c5' 2025-03-14T04:12:41.4251616Z Submodule path 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs': checked out 'f68a2fa8ea36c783bdd760371411fcb495aa3150' 2025-03-14T04:12:41.4589254Z Submodule path 'third_party/kineto/libkineto/third_party/fmt': checked out '0041a40c1350ba702d475b9c4ad62da77caea164' 2025-03-14T04:12:41.4998507Z Submodule path 'third_party/kineto/libkineto/third_party/googletest': checked out '7aca84427f224eeed3144123d5230d5871e93347' 2025-03-14T04:12:41.5322325Z Submodule path 'third_party/kleidiai': checked out 'ef685a13cfbe8d418aa2ed34350e21e4938358b6' 2025-03-14T04:12:41.5672145Z Submodule path 'third_party/mimalloc': checked out 'b66e3214d8a104669c2ec05ae91ebc26a8f5ab78' 2025-03-14T04:12:41.6601673Z Submodule path 'third_party/nlohmann': checked out '87cda1d6646592ac5866dc703c8e1839046a6806' 2025-03-14T04:12:41.9564387Z Submodule path 'third_party/onnx': checked out 'b8baa8446686496da4cc8fda09f2b6fe65c2a02c' 2025-03-14T04:12:41.9947859Z Submodule path 'third_party/onnx/third_party/pybind11': checked out '3e9dfa2866941655c56877882565e7577de6fc7b' 2025-03-14T04:12:42.0570949Z Submodule path 'third_party/opentelemetry-cpp': checked out 'a799f4aed9c94b765dcdaabaeab7d5e7e2310878' 2025-03-14T04:12:42.0755423Z Submodule path 'third_party/opentelemetry-cpp/third_party/benchmark': checked out 'd572f4777349d43653b21d6c2fc63020ab326db2' 2025-03-14T04:12:42.1117279Z Submodule path 'third_party/opentelemetry-cpp/third_party/googletest': checked out 'b796f7d44681514f58a683a3a71ff17c94edb0c1' 2025-03-14T04:12:42.1233140Z Submodule path 'third_party/opentelemetry-cpp/third_party/ms-gsl': checked out '6f4529395c5b7c2d661812257cd6780c67e54afa' 2025-03-14T04:12:42.2194301Z Submodule path 'third_party/opentelemetry-cpp/third_party/nlohmann-json': checked out 'bc889afb4c5bf1c0d8ee29ef35eaaf4c8bef8a5d' 2025-03-14T04:12:42.2325390Z Submodule path 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto': checked out '4ca4f0335c63cda7ab31ea7ed70d6553aee14dce' 2025-03-14T04:12:42.2457834Z Submodule path 'third_party/opentelemetry-cpp/third_party/opentracing-cpp': checked out '06b57f48ded1fa3bdd3d4346f6ef29e40e08eaf5' 2025-03-14T04:12:42.2592952Z Submodule path 'third_party/opentelemetry-cpp/third_party/prometheus-cpp': checked out 'c9ffcdda9086ffd9e1283ea7a0276d831f3c8a8d' 2025-03-14T04:12:42.4824441Z Submodule path 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb': checked out 'eefb26f82b233268fc98577d265352720d477ba4' 2025-03-14T04:12:42.5224264Z Submodule path 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest': checked out 'e2239ee6043f73722e7aa812a459f54a28552929' 2025-03-14T04:12:42.9175235Z Submodule path 'third_party/opentelemetry-cpp/tools/vcpkg': checked out '8eb57355a4ffb410a2e94c07b4dca2dffbee8e50' 2025-03-14T04:12:42.9303408Z Submodule path 'third_party/pocketfft': checked out '9d3ab05a7fffbc71a492bc6a17be034e83e8f0fe' 2025-03-14T04:12:43.1604057Z Submodule path 'third_party/protobuf': checked out 'd1eca4e4b421cd2997495c4b4e65cea6be4e9b8a' 2025-03-14T04:12:43.1741812Z Submodule path 'third_party/protobuf/third_party/benchmark': checked out '5b7683f49e1e9223cf9927b24f6fd3d6bd82e3f8' 2025-03-14T04:12:43.2178610Z Submodule path 'third_party/protobuf/third_party/googletest': checked out '5ec7f0c4a113e2f18ac2c6cc7df51ad6afc24081' 2025-03-14T04:12:43.2266735Z Submodule path 'third_party/psimd': checked out '072586a71b55b7f8c584153d223e95687148a900' 2025-03-14T04:12:43.2384300Z Submodule path 'third_party/pthreadpool': checked out '4fe0e1e183925bf8cfa6aae24237e724a96479b8' 2025-03-14T04:12:43.2699979Z Submodule path 'third_party/pybind11': checked out 'a2e59f0e7065404b44dfe92a28aca47ba1378dc4' 2025-03-14T04:12:43.2980600Z Submodule path 'third_party/python-peachpy': checked out 'f45429b087dd7d5bc78bb40dc7cf06425c252d67' 2025-03-14T04:12:43.3375845Z Submodule path 'third_party/sleef': checked out '56e1f79cb140fb9326d612d0be06b5250565cade' 2025-03-14T04:12:43.3611306Z Submodule path 'third_party/tensorpipe': checked out '52791a2fd214b2a9dc5759d36725909c1daa7f2e' 2025-03-14T04:12:43.3996074Z Submodule path 'third_party/tensorpipe/third_party/googletest': checked out 'aee0f9d9b5b87796ee8a0ab26b7587ec30e8858e' 2025-03-14T04:12:43.4140171Z Submodule path 'third_party/tensorpipe/third_party/libnop': checked out '910b55815be16109f04f4180e9adee14fb4ce281' 2025-03-14T04:12:43.4696201Z Submodule path 'third_party/tensorpipe/third_party/libuv': checked out '1dff88e5161cba5c59276d2070d2e304e4dcb242' 2025-03-14T04:12:43.4994776Z Submodule path 'third_party/tensorpipe/third_party/pybind11': checked out 'a23996fce38ff6ccfbcdc09f1e63f2c4be5ea2ef' 2025-03-14T04:12:43.5075813Z Submodule path 'third_party/tensorpipe/third_party/pybind11/tools/clang': checked out '6a00cbc4a9b8e68b71caf7f774b3f9c753ae84d5' 2025-03-14T04:12:43.5121014Z [command]/usr/bin/git submodule foreach --recursive git config --local gc.auto 0 2025-03-14T04:12:43.5450738Z Entering 'android/libs/fbjni' 2025-03-14T04:12:43.5486273Z Entering 'third_party/FP16' 2025-03-14T04:12:43.5528768Z Entering 'third_party/FXdiv' 2025-03-14T04:12:43.5612163Z Entering 'third_party/NNPACK' 2025-03-14T04:12:43.5645407Z Entering 'third_party/NVTX' 2025-03-14T04:12:43.5678612Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:43.5716421Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:43.5760714Z Entering 'third_party/benchmark' 2025-03-14T04:12:43.5796649Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:43.5915707Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:43.5950396Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:43.5981285Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:43.6019539Z Entering 'third_party/cutlass' 2025-03-14T04:12:43.6063469Z Entering 'third_party/eigen' 2025-03-14T04:12:43.6100454Z Entering 'third_party/fbgemm' 2025-03-14T04:12:43.6155579Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:43.6173892Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:43.6209351Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:43.6371413Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:43.6428125Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:43.6448759Z Entering 'third_party/flash-attention' 2025-03-14T04:12:43.6483151Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:43.6525256Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:43.6568893Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:43.6610577Z Entering 'third_party/fmt' 2025-03-14T04:12:43.6644718Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:43.6680811Z Entering 'third_party/gloo' 2025-03-14T04:12:43.6716499Z Entering 'third_party/googletest' 2025-03-14T04:12:43.6772480Z Entering 'third_party/ideep' 2025-03-14T04:12:43.6789521Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:43.6834018Z Entering 'third_party/ittapi' 2025-03-14T04:12:43.6872327Z Entering 'third_party/kineto' 2025-03-14T04:12:43.6909592Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:43.6942315Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:43.6982326Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:43.7110169Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:43.7146022Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:43.7178051Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:43.7219576Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:43.7256434Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:43.7291892Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:43.7348126Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:43.7421326Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:43.7455782Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:43.7495213Z Entering 'third_party/kleidiai' 2025-03-14T04:12:43.7529923Z Entering 'third_party/mimalloc' 2025-03-14T04:12:43.7568211Z Entering 'third_party/nlohmann' 2025-03-14T04:12:43.7604078Z Entering 'third_party/onnx' 2025-03-14T04:12:43.7651803Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:43.7709455Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:43.7725322Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:43.7759993Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:43.7795429Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:43.7835687Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:43.7869714Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:43.7906231Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:43.7947973Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:43.7977195Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:43.8082537Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:43.8124267Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:43.8179951Z Entering 'third_party/pocketfft' 2025-03-14T04:12:43.8216790Z Entering 'third_party/protobuf' 2025-03-14T04:12:43.8255212Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:43.8290163Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:43.8330671Z Entering 'third_party/psimd' 2025-03-14T04:12:43.8366745Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:43.8404472Z Entering 'third_party/pybind11' 2025-03-14T04:12:43.8488854Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:43.8490792Z Entering 'third_party/sleef' 2025-03-14T04:12:43.8548875Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:43.8549430Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:43.8632162Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:43.8653344Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:43.8672196Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:43.8704404Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:43.8757675Z ##[endgroup] 2025-03-14T04:12:43.8758161Z ##[group]Persisting credentials for submodules 2025-03-14T04:12:43.8764962Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'url\.https\:\/\/github\.com\/\.insteadOf' && git config --local --unset-all 'url.https://github.com/.insteadOf' || :" 2025-03-14T04:12:43.9059992Z Entering 'android/libs/fbjni' 2025-03-14T04:12:43.9087694Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9093118Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9125375Z Entering 'third_party/FP16' 2025-03-14T04:12:43.9173712Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9174486Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9191064Z Entering 'third_party/FXdiv' 2025-03-14T04:12:43.9222571Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9223074Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9256519Z Entering 'third_party/NNPACK' 2025-03-14T04:12:43.9285180Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9286999Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9315127Z Entering 'third_party/NVTX' 2025-03-14T04:12:43.9343306Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9343787Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9381020Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:43.9414724Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9415365Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9447283Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:43.9476160Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9476588Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9527949Z Entering 'third_party/benchmark' 2025-03-14T04:12:43.9559697Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9561563Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9597189Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:43.9631260Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9636360Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9665941Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:43.9701798Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9702182Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9736719Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:43.9766841Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9767411Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9800338Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:43.9829717Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9830134Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9865718Z Entering 'third_party/cutlass' 2025-03-14T04:12:43.9895628Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9898052Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9953397Z Entering 'third_party/eigen' 2025-03-14T04:12:43.9979824Z url.https://github.com/.insteadof 2025-03-14T04:12:43.9980442Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0017497Z Entering 'third_party/fbgemm' 2025-03-14T04:12:44.0045952Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0046461Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0078790Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:44.0111485Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0116405Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0145922Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:44.0179184Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0179568Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0211602Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:44.0242569Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0242961Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0279878Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:44.0311220Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0311652Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0363699Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:44.0376928Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0379244Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0419181Z Entering 'third_party/flash-attention' 2025-03-14T04:12:44.0448871Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0449478Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0485826Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:44.0515497Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0516185Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0587656Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:44.0588274Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0588796Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0677609Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:44.0678237Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0678668Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0697484Z Entering 'third_party/fmt' 2025-03-14T04:12:44.0728272Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0732599Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0759618Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:44.0790969Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0793042Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0823757Z Entering 'third_party/gloo' 2025-03-14T04:12:44.0854092Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0859138Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0910033Z Entering 'third_party/googletest' 2025-03-14T04:12:44.0938952Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0939598Z url.https://github.com/.insteadof 2025-03-14T04:12:44.0981189Z Entering 'third_party/ideep' 2025-03-14T04:12:44.1008264Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1008840Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1051135Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:44.1086294Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1088560Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1184614Z Entering 'third_party/ittapi' 2025-03-14T04:12:44.1205700Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1206170Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1237967Z Entering 'third_party/kineto' 2025-03-14T04:12:44.1268459Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1273078Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1303064Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:44.1333474Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1335046Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1419420Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:44.1430289Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1430660Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1461322Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:44.1492664Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1497483Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1523655Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:44.1554267Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1556207Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1585297Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:44.1618712Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1619324Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1652991Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:44.1678209Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1678783Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1715245Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:44.1746318Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1746877Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1780988Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:44.1815575Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1817566Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1843768Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:44.1872281Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1872752Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1926547Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:44.1960908Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1961402Z url.https://github.com/.insteadof 2025-03-14T04:12:44.1970308Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:44.2001422Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2032339Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2032864Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:44.2061578Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2062104Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2100721Z Entering 'third_party/kleidiai' 2025-03-14T04:12:44.2130347Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2130966Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2162083Z Entering 'third_party/mimalloc' 2025-03-14T04:12:44.2199139Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2204075Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2225121Z Entering 'third_party/nlohmann' 2025-03-14T04:12:44.2255413Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2255928Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2352804Z Entering 'third_party/onnx' 2025-03-14T04:12:44.2484036Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2484964Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2485411Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:44.2485892Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2486265Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2533532Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:44.2562420Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2562958Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2577503Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:44.2618742Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2619383Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2646707Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:44.2675785Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2676296Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2714751Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:44.2746116Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2759244Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2795803Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:44.2807895Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2812584Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2854034Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:44.2875587Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2875969Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2911619Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:44.2941697Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2942288Z url.https://github.com/.insteadof 2025-03-14T04:12:44.2972834Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:44.3005280Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3009439Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3039664Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:44.3067917Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3068297Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3110285Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:44.3147079Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3147709Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3198860Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:44.3218147Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3218712Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3271643Z Entering 'third_party/pocketfft' 2025-03-14T04:12:44.3313622Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3324057Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3344667Z Entering 'third_party/protobuf' 2025-03-14T04:12:44.3375603Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3376032Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3421495Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:44.3465785Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3466648Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3487622Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:44.3519102Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3522986Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3554566Z Entering 'third_party/psimd' 2025-03-14T04:12:44.3581147Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3581749Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3619465Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:44.3660664Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3661606Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3684214Z Entering 'third_party/pybind11' 2025-03-14T04:12:44.3716278Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3721343Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3750019Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:44.3781098Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3782430Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3815580Z Entering 'third_party/sleef' 2025-03-14T04:12:44.3847513Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3852180Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3878149Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:44.3911636Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3914040Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3945859Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:44.3979423Z url.https://github.com/.insteadof 2025-03-14T04:12:44.3979818Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4013366Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:44.4044583Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4049624Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4072729Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:44.4110530Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4114887Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4142438Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:44.4173101Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4173575Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4214791Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:44.4265117Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4296837Z url.https://github.com/.insteadof 2025-03-14T04:12:44.4304491Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local 'http.https://github.com/.extraheader' 'AUTHORIZATION: basic ***' && git config --local --show-origin --name-only --get-regexp remote.origin.url" 2025-03-14T04:12:44.4614331Z Entering 'android/libs/fbjni' 2025-03-14T04:12:44.4665098Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/android/libs/fbjni/config remote.origin.url 2025-03-14T04:12:44.4680170Z Entering 'third_party/FP16' 2025-03-14T04:12:44.4726857Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FP16/config remote.origin.url 2025-03-14T04:12:44.4743818Z Entering 'third_party/FXdiv' 2025-03-14T04:12:44.4789506Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/FXdiv/config remote.origin.url 2025-03-14T04:12:44.4806168Z Entering 'third_party/NNPACK' 2025-03-14T04:12:44.4851876Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK/config remote.origin.url 2025-03-14T04:12:44.4862857Z Entering 'third_party/NVTX' 2025-03-14T04:12:44.4909065Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NVTX/config remote.origin.url 2025-03-14T04:12:44.4935103Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:44.4978479Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/VulkanMemoryAllocator/config remote.origin.url 2025-03-14T04:12:44.4997459Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:44.5041427Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/XNNPACK/config remote.origin.url 2025-03-14T04:12:44.5067614Z Entering 'third_party/benchmark' 2025-03-14T04:12:44.5113218Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/benchmark/config remote.origin.url 2025-03-14T04:12:44.5153621Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:44.5187264Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/composable_kernel/config remote.origin.url 2025-03-14T04:12:44.5208033Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:44.5252399Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpp-httplib/config remote.origin.url 2025-03-14T04:12:44.5265834Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:44.5312071Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cpuinfo/config remote.origin.url 2025-03-14T04:12:44.5330613Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:44.5382740Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cudnn_frontend/config remote.origin.url 2025-03-14T04:12:44.5389544Z Entering 'third_party/cutlass' 2025-03-14T04:12:44.5429676Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/cutlass/config remote.origin.url 2025-03-14T04:12:44.5452565Z Entering 'third_party/eigen' 2025-03-14T04:12:44.5515564Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/eigen/config remote.origin.url 2025-03-14T04:12:44.5531610Z Entering 'third_party/fbgemm' 2025-03-14T04:12:44.5577248Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/config remote.origin.url 2025-03-14T04:12:44.5591785Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:44.5638284Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/asmjit/config remote.origin.url 2025-03-14T04:12:44.5653246Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:44.5695014Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cpuinfo/config remote.origin.url 2025-03-14T04:12:44.5710312Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:44.5752950Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/cutlass/config remote.origin.url 2025-03-14T04:12:44.5771896Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:44.5817345Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.5835790Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:44.5874757Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fbgemm/modules/third_party/hipify_torch/config remote.origin.url 2025-03-14T04:12:44.5893009Z Entering 'third_party/flash-attention' 2025-03-14T04:12:44.5934598Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flash-attention/config remote.origin.url 2025-03-14T04:12:44.5949673Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:44.5990646Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flash-attention/modules/csrc/composable_kernel/config remote.origin.url 2025-03-14T04:12:44.6012241Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:44.6058424Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flash-attention/modules/csrc/cutlass/config remote.origin.url 2025-03-14T04:12:44.6080847Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:44.6128519Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/flatbuffers/config remote.origin.url 2025-03-14T04:12:44.6143908Z Entering 'third_party/fmt' 2025-03-14T04:12:44.6189353Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/fmt/config remote.origin.url 2025-03-14T04:12:44.6207991Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:44.6256641Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gemmlowp/gemmlowp/config remote.origin.url 2025-03-14T04:12:44.6268957Z Entering 'third_party/gloo' 2025-03-14T04:12:44.6316663Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/gloo/config remote.origin.url 2025-03-14T04:12:44.6331762Z Entering 'third_party/googletest' 2025-03-14T04:12:44.6377129Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.6398476Z Entering 'third_party/ideep' 2025-03-14T04:12:44.6442109Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/config remote.origin.url 2025-03-14T04:12:44.6457982Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:44.6502990Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ideep/modules/mkl-dnn/config remote.origin.url 2025-03-14T04:12:44.6526288Z Entering 'third_party/ittapi' 2025-03-14T04:12:44.6571016Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/ittapi/config remote.origin.url 2025-03-14T04:12:44.6593412Z Entering 'third_party/kineto' 2025-03-14T04:12:44.6643667Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/config remote.origin.url 2025-03-14T04:12:44.6652465Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:44.6693285Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/config remote.origin.url 2025-03-14T04:12:44.6710714Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:44.6753483Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/DCGM/config remote.origin.url 2025-03-14T04:12:44.6765002Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:44.6809574Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/cpr/config remote.origin.url 2025-03-14T04:12:44.6828880Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:44.6872167Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/fmt/config remote.origin.url 2025-03-14T04:12:44.6888263Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:44.6933751Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/gflags/config remote.origin.url 2025-03-14T04:12:44.6943450Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:44.6987188Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/gflags/modules/doc/config remote.origin.url 2025-03-14T04:12:44.7008618Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:44.7095537Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/glog/config remote.origin.url 2025-03-14T04:12:44.7104922Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:44.7149315Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.7163136Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:44.7209727Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/json/config remote.origin.url 2025-03-14T04:12:44.7222813Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:44.7267342Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/dynolog/modules/third_party/pfs/config remote.origin.url 2025-03-14T04:12:44.7287661Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:44.7332317Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/fmt/config remote.origin.url 2025-03-14T04:12:44.7349774Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:44.7391025Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kineto/modules/libkineto/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.7406964Z Entering 'third_party/kleidiai' 2025-03-14T04:12:44.7446747Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/kleidiai/config remote.origin.url 2025-03-14T04:12:44.7467057Z Entering 'third_party/mimalloc' 2025-03-14T04:12:44.7506109Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/mimalloc/config remote.origin.url 2025-03-14T04:12:44.7521377Z Entering 'third_party/nlohmann' 2025-03-14T04:12:44.7566142Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/nlohmann/config remote.origin.url 2025-03-14T04:12:44.7582071Z Entering 'third_party/onnx' 2025-03-14T04:12:44.7675146Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/config remote.origin.url 2025-03-14T04:12:44.7676151Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:44.7699462Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/onnx/modules/third_party/pybind11/config remote.origin.url 2025-03-14T04:12:44.7718612Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:44.7761461Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/config remote.origin.url 2025-03-14T04:12:44.7779573Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:44.7821609Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/benchmark/config remote.origin.url 2025-03-14T04:12:44.7839275Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:44.7879417Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.7897754Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:44.7939707Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/ms-gsl/config remote.origin.url 2025-03-14T04:12:44.7959528Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:44.8000787Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/nlohmann-json/config remote.origin.url 2025-03-14T04:12:44.8020563Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:44.8061017Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/opentelemetry-proto/config remote.origin.url 2025-03-14T04:12:44.8078896Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:44.8129629Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/opentracing-cpp/config remote.origin.url 2025-03-14T04:12:44.8135364Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:44.8173295Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/prometheus-cpp/config remote.origin.url 2025-03-14T04:12:44.8191664Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:44.8236034Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/prometheus-cpp/modules/civetweb/config remote.origin.url 2025-03-14T04:12:44.8254633Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:44.8299202Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/third_party/prometheus-cpp/modules/googletest/config remote.origin.url 2025-03-14T04:12:44.8316347Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:44.8359376Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/opentelemetry-cpp/modules/tools/vcpkg/config remote.origin.url 2025-03-14T04:12:44.8392679Z Entering 'third_party/pocketfft' 2025-03-14T04:12:44.8435714Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pocketfft/config remote.origin.url 2025-03-14T04:12:44.8454133Z Entering 'third_party/protobuf' 2025-03-14T04:12:44.8500882Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/config remote.origin.url 2025-03-14T04:12:44.8517239Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:44.8558430Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/benchmark/config remote.origin.url 2025-03-14T04:12:44.8573886Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:44.8616488Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/protobuf/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.8634582Z Entering 'third_party/psimd' 2025-03-14T04:12:44.8674017Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/psimd/config remote.origin.url 2025-03-14T04:12:44.8690666Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:44.8731151Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/NNPACK_deps/pthreadpool/config remote.origin.url 2025-03-14T04:12:44.8744733Z Entering 'third_party/pybind11' 2025-03-14T04:12:44.8791569Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/pybind11/config remote.origin.url 2025-03-14T04:12:44.8808385Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:44.8855191Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/python-peachpy/config remote.origin.url 2025-03-14T04:12:44.8863521Z Entering 'third_party/sleef' 2025-03-14T04:12:44.8913583Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/sleef/config remote.origin.url 2025-03-14T04:12:44.8928142Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:44.8971007Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/config remote.origin.url 2025-03-14T04:12:44.8984307Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:44.9029622Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/googletest/config remote.origin.url 2025-03-14T04:12:44.9061495Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:44.9105459Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libnop/config remote.origin.url 2025-03-14T04:12:44.9121214Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:44.9165677Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/libuv/config remote.origin.url 2025-03-14T04:12:44.9177937Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:44.9224355Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/config remote.origin.url 2025-03-14T04:12:44.9236977Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:44.9277176Z file:/home/ec2-user/actions-runner/_work/pytorch/pytorch/.git/modules/third_party/tensorpipe/modules/third_party/pybind11/modules/tools/clang/config remote.origin.url 2025-03-14T04:12:45.0229468Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'git@github.com:' 2025-03-14T04:12:45.0604841Z Entering 'android/libs/fbjni' 2025-03-14T04:12:45.0643175Z Entering 'third_party/FP16' 2025-03-14T04:12:45.0679017Z Entering 'third_party/FXdiv' 2025-03-14T04:12:45.0717807Z Entering 'third_party/NNPACK' 2025-03-14T04:12:45.0754108Z Entering 'third_party/NVTX' 2025-03-14T04:12:45.0792263Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:45.0833874Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:45.0881006Z Entering 'third_party/benchmark' 2025-03-14T04:12:45.0919400Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:45.0962645Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:45.1000915Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:45.1036962Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:45.1075974Z Entering 'third_party/cutlass' 2025-03-14T04:12:45.1127230Z Entering 'third_party/eigen' 2025-03-14T04:12:45.1166589Z Entering 'third_party/fbgemm' 2025-03-14T04:12:45.1204064Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:45.1239246Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:45.1272294Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:45.1320775Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:45.1357536Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:45.1400924Z Entering 'third_party/flash-attention' 2025-03-14T04:12:45.1438620Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:45.1481142Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:45.1528699Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:45.1567045Z Entering 'third_party/fmt' 2025-03-14T04:12:45.1602513Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:45.1639065Z Entering 'third_party/gloo' 2025-03-14T04:12:45.1673566Z Entering 'third_party/googletest' 2025-03-14T04:12:45.1709982Z Entering 'third_party/ideep' 2025-03-14T04:12:45.1742991Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:45.1786549Z Entering 'third_party/ittapi' 2025-03-14T04:12:45.1822315Z Entering 'third_party/kineto' 2025-03-14T04:12:45.1858851Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:45.1893016Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:45.1929859Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:45.1963953Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:45.1996628Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:45.2031054Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:45.2069867Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:45.2104371Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:45.2135649Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:45.2170090Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:45.2210445Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:45.2247038Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:45.2288434Z Entering 'third_party/kleidiai' 2025-03-14T04:12:45.2326187Z Entering 'third_party/mimalloc' 2025-03-14T04:12:45.2365848Z Entering 'third_party/nlohmann' 2025-03-14T04:12:45.2401529Z Entering 'third_party/onnx' 2025-03-14T04:12:45.2449214Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:45.2490870Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:45.2529964Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:45.2562977Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:45.2599714Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:45.2633593Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:45.2669709Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:45.2703735Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:45.2734380Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:45.2767788Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:45.2807130Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:45.2841349Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:45.2892683Z Entering 'third_party/pocketfft' 2025-03-14T04:12:45.2931174Z Entering 'third_party/protobuf' 2025-03-14T04:12:45.2968640Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:45.3014099Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:45.3056272Z Entering 'third_party/psimd' 2025-03-14T04:12:45.3123773Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:45.3160252Z Entering 'third_party/pybind11' 2025-03-14T04:12:45.3197948Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:45.3233293Z Entering 'third_party/sleef' 2025-03-14T04:12:45.3270741Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:45.3305105Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:45.3341218Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:45.3378730Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:45.3412589Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:45.3446694Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:45.3516214Z [command]/usr/bin/git submodule foreach --recursive git config --local --add 'url.https://github.com/.insteadOf' 'org-21003710@github.com:' 2025-03-14T04:12:45.3819913Z Entering 'android/libs/fbjni' 2025-03-14T04:12:45.3866579Z Entering 'third_party/FP16' 2025-03-14T04:12:45.3904840Z Entering 'third_party/FXdiv' 2025-03-14T04:12:45.3942645Z Entering 'third_party/NNPACK' 2025-03-14T04:12:45.3979130Z Entering 'third_party/NVTX' 2025-03-14T04:12:45.4019546Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T04:12:45.4058818Z Entering 'third_party/XNNPACK' 2025-03-14T04:12:45.4109598Z Entering 'third_party/benchmark' 2025-03-14T04:12:45.4148971Z Entering 'third_party/composable_kernel' 2025-03-14T04:12:45.4203545Z Entering 'third_party/cpp-httplib' 2025-03-14T04:12:45.4236296Z Entering 'third_party/cpuinfo' 2025-03-14T04:12:45.4272620Z Entering 'third_party/cudnn_frontend' 2025-03-14T04:12:45.4320793Z Entering 'third_party/cutlass' 2025-03-14T04:12:45.4365011Z Entering 'third_party/eigen' 2025-03-14T04:12:45.4413275Z Entering 'third_party/fbgemm' 2025-03-14T04:12:45.4450193Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T04:12:45.4485829Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T04:12:45.4537858Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T04:12:45.4567184Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T04:12:45.4611585Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T04:12:45.4662385Z Entering 'third_party/flash-attention' 2025-03-14T04:12:45.4702977Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T04:12:45.4751285Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T04:12:45.4791246Z Entering 'third_party/flatbuffers' 2025-03-14T04:12:45.4829939Z Entering 'third_party/fmt' 2025-03-14T04:12:45.4871736Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T04:12:45.4910844Z Entering 'third_party/gloo' 2025-03-14T04:12:45.4946038Z Entering 'third_party/googletest' 2025-03-14T04:12:45.4979356Z Entering 'third_party/ideep' 2025-03-14T04:12:45.5015812Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T04:12:45.5090280Z Entering 'third_party/ittapi' 2025-03-14T04:12:45.5127707Z Entering 'third_party/kineto' 2025-03-14T04:12:45.5163274Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T04:12:45.5200232Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T04:12:45.5233620Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T04:12:45.5270587Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T04:12:45.5307131Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T04:12:45.5337893Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T04:12:45.5376010Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T04:12:45.5416244Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T04:12:45.5453327Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T04:12:45.5490823Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T04:12:45.5527381Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T04:12:45.5567667Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T04:12:45.5607094Z Entering 'third_party/kleidiai' 2025-03-14T04:12:45.5641643Z Entering 'third_party/mimalloc' 2025-03-14T04:12:45.5678173Z Entering 'third_party/nlohmann' 2025-03-14T04:12:45.5716955Z Entering 'third_party/onnx' 2025-03-14T04:12:45.5761028Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T04:12:45.5804244Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T04:12:45.5843486Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T04:12:45.5877462Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T04:12:45.5918259Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T04:12:45.5954072Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T04:12:45.5986915Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T04:12:45.6018422Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T04:12:45.6056116Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T04:12:45.6093249Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T04:12:45.6130437Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T04:12:45.6166131Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T04:12:45.6220917Z Entering 'third_party/pocketfft' 2025-03-14T04:12:45.6260758Z Entering 'third_party/protobuf' 2025-03-14T04:12:45.6299530Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T04:12:45.6338522Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T04:12:45.6374769Z Entering 'third_party/psimd' 2025-03-14T04:12:45.6412754Z Entering 'third_party/pthreadpool' 2025-03-14T04:12:45.6447764Z Entering 'third_party/pybind11' 2025-03-14T04:12:45.6483569Z Entering 'third_party/python-peachpy' 2025-03-14T04:12:45.6520372Z Entering 'third_party/sleef' 2025-03-14T04:12:45.6555306Z Entering 'third_party/tensorpipe' 2025-03-14T04:12:45.6597672Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T04:12:45.6646093Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T04:12:45.6681948Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T04:12:45.6719471Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T04:12:45.6764809Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T04:12:45.6817252Z ##[endgroup] 2025-03-14T04:12:45.6859649Z [command]/usr/bin/git log -1 --format=%H 2025-03-14T04:12:45.6874932Z aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:45.7021542Z Prepare all required actions 2025-03-14T04:12:45.7022084Z Getting action download info 2025-03-14T04:12:45.8035780Z ##[group]Run ./.github/actions/setup-linux 2025-03-14T04:12:45.8036015Z env: 2025-03-14T04:12:45.8036190Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:45.8036381Z ##[endgroup] 2025-03-14T04:12:45.8079713Z ##[group]Run set -euo pipefail 2025-03-14T04:12:45.8080007Z set -euo pipefail 2025-03-14T04:12:45.8080384Z function get_ec2_metadata() { 2025-03-14T04:12:45.8080639Z  # Pulled from instance metadata endpoint for EC2 2025-03-14T04:12:45.8081034Z  # see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html 2025-03-14T04:12:45.8081376Z  category=$1 2025-03-14T04:12:45.8081916Z  # If it is GCP runner (runner name contains gcp), do not run this 2025-03-14T04:12:45.8082210Z  runner_name_str=i-047a1559c2de50868 2025-03-14T04:12:45.8082495Z  if [[ -f /.inarc ]]; then 2025-03-14T04:12:45.8082737Z  echo "ARC Runner, no info on ec2 metadata" 2025-03-14T04:12:45.8082995Z  elif [[ $runner_name_str == *"gcp"* ]]; then 2025-03-14T04:12:45.8083302Z  echo "Runner is from Google Cloud Platform, No info on ec2 metadata" 2025-03-14T04:12:45.8083567Z  else 2025-03-14T04:12:45.8084082Z  curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}" 2025-03-14T04:12:45.8084587Z  fi 2025-03-14T04:12:45.8084752Z } 2025-03-14T04:12:45.8084944Z echo "ami-id: $(get_ec2_metadata ami-id)" 2025-03-14T04:12:45.8085215Z echo "instance-id: $(get_ec2_metadata instance-id)" 2025-03-14T04:12:45.8085503Z echo "instance-type: $(get_ec2_metadata instance-type)" 2025-03-14T04:12:45.8085763Z echo "system info $(uname -a)" 2025-03-14T04:12:45.8091113Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:45.8091377Z env: 2025-03-14T04:12:45.8091552Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:45.8091738Z ##[endgroup] 2025-03-14T04:12:45.8220334Z ami-id: ami-08b5b3a93ed654d19 2025-03-14T04:12:45.8330700Z instance-id: i-047a1559c2de50868 2025-03-14T04:12:45.8433643Z instance-type: m7i-flex.8xlarge 2025-03-14T04:12:45.8444692Z system info Linux ip-10-0-71-89.ec2.internal 6.1.129-138.220.amzn2023.x86_64 #1 SMP PREEMPT_DYNAMIC Tue Feb 25 22:18:43 UTC 2025 x86_64 x86_64 x86_64 GNU/Linux 2025-03-14T04:12:45.8477018Z ##[group]Run echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:45.8477591Z echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:12:45.8482215Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:45.8482497Z env: 2025-03-14T04:12:45.8482674Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:45.8482871Z ##[endgroup] 2025-03-14T04:12:45.8540699Z ##[group]Run if systemctl is-active --quiet docker; then 2025-03-14T04:12:45.8541016Z if systemctl is-active --quiet docker; then 2025-03-14T04:12:45.8541272Z  echo "Docker daemon is running..."; 2025-03-14T04:12:45.8541499Z else 2025-03-14T04:12:45.8541751Z  echo "Starting docker deamon..." && sudo systemctl start docker; 2025-03-14T04:12:45.8542016Z fi 2025-03-14T04:12:45.8545900Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:45.8546154Z env: 2025-03-14T04:12:45.8546342Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:45.8546534Z ##[endgroup] 2025-03-14T04:12:45.8625736Z Docker daemon is running... 2025-03-14T04:12:45.8667226Z ##[group]Run nick-fields/retry@v3.0.0 2025-03-14T04:12:45.8667442Z with: 2025-03-14T04:12:45.8667607Z shell: bash 2025-03-14T04:12:45.8667935Z timeout_minutes: 5 2025-03-14T04:12:45.8668121Z max_attempts: 3 2025-03-14T04:12:45.8668300Z retry_wait_seconds: 30 2025-03-14T04:12:45.8669559Z command: AWS_ACCOUNT_ID=$(aws sts get-caller-identity|grep Account|cut -f4 -d\") aws ecr get-login-password --region "$AWS_DEFAULT_REGION" | docker login --username AWS \ --password-stdin "$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" # For LF Runners we need to make sure we also login to Meta's ECR docker registry too. META_AWS_ACCOUNT_ID=308535385114 if [ "$AWS_ACCOUNT_ID" != "$META_AWS_ACCOUNT_ID" ] ; then aws ecr get-login-password --region "$AWS_DEFAULT_REGION" | docker login --username AWS \ --password-stdin "$META_AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com" fi 2025-03-14T04:12:45.8670873Z polling_interval_seconds: 1 2025-03-14T04:12:45.8671075Z warning_on_retry: true 2025-03-14T04:12:45.8671267Z continue_on_error: false 2025-03-14T04:12:45.8671452Z env: 2025-03-14T04:12:45.8671617Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:45.8671803Z AWS_RETRY_MODE: standard 2025-03-14T04:12:45.8671982Z AWS_MAX_ATTEMPTS: 5 2025-03-14T04:12:45.8672171Z AWS_DEFAULT_REGION: us-east-1 2025-03-14T04:12:45.8672363Z ##[endgroup] 2025-03-14T04:12:46.8043652Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:46.8048016Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:46.8052132Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:46.8056322Z 2025-03-14T04:12:46.8058677Z Login Succeeded 2025-03-14T04:12:46.9371941Z Command completed after 1 attempt(s). 2025-03-14T04:12:46.9449113Z ##[group]Run env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:12:46.9449490Z env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:12:46.9449784Z env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:12:46.9455063Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:46.9455321Z env: 2025-03-14T04:12:46.9455498Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.9455696Z ##[endgroup] 2025-03-14T04:12:46.9532701Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T04:12:46.9533078Z # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T04:12:46.9533352Z # shellcheck disable=SC2046 2025-03-14T04:12:46.9533605Z docker stop $(docker ps -q) || true 2025-03-14T04:12:46.9533838Z # Prune all of the docker images 2025-03-14T04:12:46.9534062Z docker system prune -af 2025-03-14T04:12:46.9538241Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:46.9538497Z env: 2025-03-14T04:12:46.9538672Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:46.9538864Z ##[endgroup] 2025-03-14T04:12:46.9804215Z "docker stop" requires at least 1 argument. 2025-03-14T04:12:46.9808456Z See 'docker stop --help'. 2025-03-14T04:12:46.9812356Z 2025-03-14T04:12:46.9816575Z Usage: docker stop [OPTIONS] CONTAINER [CONTAINER...] 2025-03-14T04:12:46.9818118Z 2025-03-14T04:12:46.9818822Z Stop one or more running containers 2025-03-14T04:12:46.9965861Z Total reclaimed space: 0B 2025-03-14T04:12:46.9995352Z ##[group]Run set +e 2025-03-14T04:12:46.9995590Z set +e 2025-03-14T04:12:46.9995768Z set -x 2025-03-14T04:12:46.9995932Z  2025-03-14T04:12:46.9996133Z PT_DOMAIN=download.pytorch.org 2025-03-14T04:12:46.9996500Z # TODO: Flaky access to download.pytorch.org https://github.com/pytorch/pytorch/issues/100400, 2025-03-14T04:12:46.9996935Z # cleaning this up once the issue is fixed. There are more than one resolved IP here, the last 2025-03-14T04:12:46.9997249Z # one is returned at random 2025-03-14T04:12:46.9997510Z RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" | tail -n1) 2025-03-14T04:12:46.9997754Z  2025-03-14T04:12:46.9998045Z if [ -z "${RESOLVED_IP}" ]; then 2025-03-14T04:12:46.9998324Z  echo "Couldn't resolve ${PT_DOMAIN}, retrying with Google DNS..." 2025-03-14T04:12:46.9998644Z  RESOLVED_IP=$(dig -4 +short "${PT_DOMAIN}" @8.8.8.8 | tail -n1) 2025-03-14T04:12:46.9998893Z  2025-03-14T04:12:46.9999072Z  if [ -z "${RESOLVED_IP}" ]; then 2025-03-14T04:12:46.9999324Z  echo "Couldn't resolve ${PT_DOMAIN}, exiting..." 2025-03-14T04:12:46.9999644Z  exit 1 2025-03-14T04:12:46.9999811Z  fi 2025-03-14T04:12:46.9999965Z fi 2025-03-14T04:12:47.0000119Z  2025-03-14T04:12:47.0000306Z if grep -r "${PT_DOMAIN}" /etc/hosts; then 2025-03-14T04:12:47.0000551Z  # Clean up any old records first 2025-03-14T04:12:47.0000786Z  sudo sed -i "/${PT_DOMAIN}/d" /etc/hosts 2025-03-14T04:12:47.0001000Z fi 2025-03-14T04:12:47.0001152Z  2025-03-14T04:12:47.0001370Z echo "${RESOLVED_IP} ${PT_DOMAIN}" | sudo tee -a /etc/hosts 2025-03-14T04:12:47.0001619Z cat /etc/hosts 2025-03-14T04:12:47.0005900Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.0006153Z env: 2025-03-14T04:12:47.0006327Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.0006515Z ##[endgroup] 2025-03-14T04:12:47.0031205Z + PT_DOMAIN=download.pytorch.org 2025-03-14T04:12:47.0038095Z ++ dig -4 +short download.pytorch.org 2025-03-14T04:12:47.0043134Z ++ tail -n1 2025-03-14T04:12:47.0550872Z + RESOLVED_IP=18.160.10.22 2025-03-14T04:12:47.0555390Z + '[' -z 18.160.10.22 ']' 2025-03-14T04:12:47.0557076Z + grep -r download.pytorch.org /etc/hosts 2025-03-14T04:12:47.0561470Z + sudo sed -i /download.pytorch.org/d /etc/hosts 2025-03-14T04:12:47.0561733Z 18.160.10.76 download.pytorch.org 2025-03-14T04:12:47.3223264Z + echo '18.160.10.22 download.pytorch.org' 2025-03-14T04:12:47.3223666Z + sudo tee -a /etc/hosts 2025-03-14T04:12:47.4083762Z 18.160.10.22 download.pytorch.org 2025-03-14T04:12:47.4102680Z + cat /etc/hosts 2025-03-14T04:12:47.4113358Z 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 2025-03-14T04:12:47.4119687Z ::1 localhost6 localhost6.localdomain6 2025-03-14T04:12:47.4120007Z 18.160.10.22 download.pytorch.org 2025-03-14T04:12:47.4222020Z ##[group]Run pytorch/test-infra/.github/actions/calculate-docker-image@main 2025-03-14T04:12:47.4222318Z with: 2025-03-14T04:12:47.4222785Z docker-image-name: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4223299Z docker-build-dir: .ci/docker 2025-03-14T04:12:47.4223500Z working-directory: . 2025-03-14T04:12:47.4223740Z docker-registry: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.4224182Z force-push: false 2025-03-14T04:12:47.4224391Z env: 2025-03-14T04:12:47.4224578Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.4224789Z ##[endgroup] 2025-03-14T04:12:47.4243592Z ##[group]Run set -ex 2025-03-14T04:12:47.4243839Z set -ex 2025-03-14T04:12:47.4243999Z  2025-03-14T04:12:47.4244257Z # If the docker build directory or the build script doesn't exist, the action will 2025-03-14T04:12:47.4244702Z # gracefully return the docker image name as it is. Pulling docker image in Linux 2025-03-14T04:12:47.4245058Z # job could then download the pre-built image as usual 2025-03-14T04:12:47.4245386Z if [[ ! -d "${DOCKER_BUILD_DIR}" ]] || [[ ! -f "${DOCKER_BUILD_DIR}/build.sh" ]]; then 2025-03-14T04:12:47.4245683Z  echo "skip=true" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4245977Z  echo "docker-image=${DOCKER_IMAGE_NAME}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4246239Z  2025-03-14T04:12:47.4246479Z  echo "There is no Docker build script in ${REPO_NAME} repo, skipping..." 2025-03-14T04:12:47.4246751Z  exit 0 2025-03-14T04:12:47.4246918Z else 2025-03-14T04:12:47.4247107Z  echo "skip=false" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4247329Z fi 2025-03-14T04:12:47.4247490Z  2025-03-14T04:12:47.4247722Z if [[ "${DOCKER_IMAGE_NAME}" == *"${DOCKER_REGISTRY}/${REPO_NAME}"* ]]; then 2025-03-14T04:12:47.4248092Z  # The docker image name already includes the ECR prefix and tag, so we can just 2025-03-14T04:12:47.4248425Z  # use it as it is, but first let's extract the tag 2025-03-14T04:12:47.4248838Z  DOCKER_TAG=$(echo "${DOCKER_IMAGE_NAME}" | awk -F '[:,]' '{print $2}') 2025-03-14T04:12:47.4249161Z  echo "docker-tag=${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4249467Z  echo "docker-image=${DOCKER_IMAGE_NAME}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4249731Z else 2025-03-14T04:12:47.4249952Z  DOCKER_TAG=$(git rev-parse HEAD:"${DOCKER_BUILD_DIR}") 2025-03-14T04:12:47.4250250Z  echo "docker-tag=${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4250631Z  echo "docker-image=${DOCKER_REGISTRY}/${REPO_NAME}/${DOCKER_IMAGE_NAME}:${DOCKER_TAG}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4250966Z fi 2025-03-14T04:12:47.4256557Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.4256810Z env: 2025-03-14T04:12:47.4256985Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.4257195Z REPO_NAME: pytorch 2025-03-14T04:12:47.4257672Z DOCKER_IMAGE_NAME: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4258164Z DOCKER_BUILD_DIR: .ci/docker 2025-03-14T04:12:47.4258433Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.4258683Z ##[endgroup] 2025-03-14T04:12:47.4282015Z + [[ ! -d .ci/docker ]] 2025-03-14T04:12:47.4282357Z + [[ ! -f .ci/docker/build.sh ]] 2025-03-14T04:12:47.4282580Z + echo skip=false 2025-03-14T04:12:47.4283241Z + [[ 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 == *\3\0\8\5\3\5\3\8\5\1\1\4\.\d\k\r\.\e\c\r\.\u\s\-\e\a\s\t\-\1\.\a\m\a\z\o\n\a\w\s\.\c\o\m\/\p\y\t\o\r\c\h* ]] 2025-03-14T04:12:47.4291635Z ++ echo 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4292192Z ++ awk -F '[:,]' '{print $2}' 2025-03-14T04:12:47.4310199Z + DOCKER_TAG=aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4314959Z + echo docker-tag=aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4320148Z + echo docker-image=308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4347553Z ##[group]Run set +e 2025-03-14T04:12:47.4347796Z set +e 2025-03-14T04:12:47.4347973Z set -x 2025-03-14T04:12:47.4348529Z  2025-03-14T04:12:47.4348706Z login() { 2025-03-14T04:12:47.4349031Z  aws ecr get-login-password --region us-east-1 | docker login -u AWS --password-stdin "$1" 2025-03-14T04:12:47.4349354Z } 2025-03-14T04:12:47.4349531Z  2025-03-14T04:12:47.4349691Z retry () { 2025-03-14T04:12:47.4349894Z  $* || (sleep 1 && $*) || (sleep 2 && $*) 2025-03-14T04:12:47.4350121Z } 2025-03-14T04:12:47.4350279Z  2025-03-14T04:12:47.4350445Z retry login "${DOCKER_REGISTRY}" 2025-03-14T04:12:47.4350653Z  2025-03-14T04:12:47.4350822Z START_TIME=$(date +%s) 2025-03-14T04:12:47.4351036Z # Wait up to 120 minutes 2025-03-14T04:12:47.4351289Z while [[ $(( $(date +%s) - 7200 )) -lt $START_TIME ]]; do 2025-03-14T04:12:47.4351599Z  # Check if image already exists, if it does then skip building it 2025-03-14T04:12:47.4351911Z  if docker manifest inspect "${DOCKER_IMAGE}"; then 2025-03-14T04:12:47.4352152Z  exit 0 2025-03-14T04:12:47.4352328Z  fi 2025-03-14T04:12:47.4352492Z  2025-03-14T04:12:47.4352750Z  # NB: This flag is used by Docker build workflow to push the image to ECR, so we can 2025-03-14T04:12:47.4353150Z  # use this to differentiate between the Docker build and regular build jobs. For the 2025-03-14T04:12:47.4353635Z  # latter, it will wait for the Docker images to become available before continuing 2025-03-14T04:12:47.4354001Z  if [ "${DOCKER_PUSH:-false}" == "true" ]; then 2025-03-14T04:12:47.4354282Z  # It's a Docker build job, let's build the image 2025-03-14T04:12:47.4354525Z  break 2025-03-14T04:12:47.4354710Z  else 2025-03-14T04:12:47.4354949Z  # It's a regular build job, wait for the image to become available 2025-03-14T04:12:47.4355221Z  sleep 300 2025-03-14T04:12:47.4355409Z  fi 2025-03-14T04:12:47.4355580Z done 2025-03-14T04:12:47.4355750Z  2025-03-14T04:12:47.4355997Z # NB: This part requires a full checkout. Otherwise, the merge base will 2025-03-14T04:12:47.4356358Z # be empty. The default action would be to continue rebuild the image 2025-03-14T04:12:47.4356677Z if [[ "$BASE_REVISION" = "$(git rev-parse HEAD)" ]]; then 2025-03-14T04:12:47.4356971Z  # if we're on the base branch then use the parent commit 2025-03-14T04:12:47.4357236Z  MERGE_BASE=$(git rev-parse HEAD~) 2025-03-14T04:12:47.4357450Z else 2025-03-14T04:12:47.4357679Z  # otherwise we're on a PR, so use the most recent base commit 2025-03-14T04:12:47.4357982Z  MERGE_BASE=$(git merge-base HEAD "$BASE_REVISION") 2025-03-14T04:12:47.4358215Z fi 2025-03-14T04:12:47.4358375Z  2025-03-14T04:12:47.4358550Z if [[ -z "${MERGE_BASE}" ]]; then 2025-03-14T04:12:47.4358794Z  echo "rebuild=true" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4359013Z  2025-03-14T04:12:47.4359304Z  echo "Finding merge base only works with full checkout, please set fetch-depth to 0, continuing ..." 2025-03-14T04:12:47.4359692Z  exit 0 2025-03-14T04:12:47.4359858Z fi 2025-03-14T04:12:47.4360015Z  2025-03-14T04:12:47.4360224Z if ! git rev-parse "${MERGE_BASE}:${DOCKER_BUILD_DIR}"; then 2025-03-14T04:12:47.4360627Z  echo "Directory '${DOCKER_BUILD_DIR}' not found in commit $MERGE_BASE, you should rebase onto a more recent commit" 2025-03-14T04:12:47.4360969Z  exit 1 2025-03-14T04:12:47.4361133Z fi 2025-03-14T04:12:47.4361290Z  2025-03-14T04:12:47.4361526Z PREVIOUS_DOCKER_TAG=$(git rev-parse "${MERGE_BASE}:${DOCKER_BUILD_DIR}") 2025-03-14T04:12:47.4361907Z # If no image exists but the hash is the same as the previous hash then we should error out here 2025-03-14T04:12:47.4362246Z if [[ "${PREVIOUS_DOCKER_TAG}" == "${DOCKER_TAG}" ]]; then 2025-03-14T04:12:47.4362638Z  echo "WARNING: Something has gone wrong and the previous image isn't available for the merge-base of your branch" 2025-03-14T04:12:47.4363072Z  echo " Will re-build docker image to store in local cache, TTS may be longer" 2025-03-14T04:12:47.4363346Z fi 2025-03-14T04:12:47.4363501Z  2025-03-14T04:12:47.4363686Z echo "rebuild=true" >> "${GITHUB_OUTPUT}" 2025-03-14T04:12:47.4368337Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:47.4368586Z env: 2025-03-14T04:12:47.4368755Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:47.4368954Z DOCKER_BUILD_DIR: .ci/docker 2025-03-14T04:12:47.4369193Z BASE_REVISION: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:12:47.4369720Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4370215Z DOCKER_TAG: aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:47.4370496Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.4370746Z DOCKER_PUSH: 2025-03-14T04:12:47.4370918Z ##[endgroup] 2025-03-14T04:12:47.4395674Z + retry login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.4399819Z + login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.4404635Z + aws ecr get-login-password --region us-east-1 2025-03-14T04:12:47.4407007Z + docker login -u AWS --password-stdin 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:47.8768484Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:47.8768851Z Login Succeeded 2025-03-14T04:12:47.8769271Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:47.8769734Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:47.8770256Z 2025-03-14T04:12:47.8785557Z ++ date +%s 2025-03-14T04:12:47.8794210Z + START_TIME=1741925567 2025-03-14T04:12:47.8799167Z ++ date +%s 2025-03-14T04:12:47.8804531Z + [[ 1741918367 -lt 1741925567 ]] 2025-03-14T04:12:47.8805454Z + docker manifest inspect 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.1320342Z { 2025-03-14T04:12:48.1320746Z "schemaVersion": 2, 2025-03-14T04:12:48.1321107Z "mediaType": "application/vnd.docker.distribution.manifest.v2+json", 2025-03-14T04:12:48.1321424Z "config": { 2025-03-14T04:12:48.1321669Z "mediaType": "application/vnd.docker.container.image.v1+json", 2025-03-14T04:12:48.1321942Z "size": 42081, 2025-03-14T04:12:48.1322221Z "digest": "sha256:1bab961b3bd90ec6714167a095e5437a0239700971887d1c663377ef708f8526" 2025-03-14T04:12:48.1322518Z }, 2025-03-14T04:12:48.1322664Z "layers": [ 2025-03-14T04:12:48.1322827Z { 2025-03-14T04:12:48.1323066Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1323345Z "size": 30440118, 2025-03-14T04:12:48.1323634Z "digest": "sha256:8f84a9f2102e97a4a6bf673b150fc9894df5acc9618ad3484c6c36f768c1caa0" 2025-03-14T04:12:48.1323939Z }, 2025-03-14T04:12:48.1324560Z { 2025-03-14T04:12:48.1324798Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1325069Z "size": 1896, 2025-03-14T04:12:48.1325367Z "digest": "sha256:f35880ae6ee6dd2a62a077d19ff6b5c4a69745027e986e8ed5fec074f76c859a" 2025-03-14T04:12:48.1325671Z }, 2025-03-14T04:12:48.1325821Z { 2025-03-14T04:12:48.1326044Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1326310Z "size": 319404545, 2025-03-14T04:12:48.1326584Z "digest": "sha256:8eb502731466bf7440d89c4538928f5a175e8b54b788f1e8d194d0f864ff206d" 2025-03-14T04:12:48.1326871Z }, 2025-03-14T04:12:48.1327012Z { 2025-03-14T04:12:48.1327233Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1327500Z "size": 864, 2025-03-14T04:12:48.1327779Z "digest": "sha256:d4ce6a1f04ff4b142de5bce2ef06e1538172f3f7245835a1393a2a3b87a616bb" 2025-03-14T04:12:48.1328181Z }, 2025-03-14T04:12:48.1328334Z { 2025-03-14T04:12:48.1328562Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1328825Z "size": 106, 2025-03-14T04:12:48.1329096Z "digest": "sha256:ca18d6003a1855ff2be2115cc2154b50c52d2fef9f8628623f168c33016d3b33" 2025-03-14T04:12:48.1329397Z }, 2025-03-14T04:12:48.1329546Z { 2025-03-14T04:12:48.1329764Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1330024Z "size": 704, 2025-03-14T04:12:48.1330296Z "digest": "sha256:f6b56646e2f02522c5afb19aff566ef53261a591ce3ecbeaa224ed40df1ed9a4" 2025-03-14T04:12:48.1330590Z }, 2025-03-14T04:12:48.1330738Z { 2025-03-14T04:12:48.1330950Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1331210Z "size": 1216, 2025-03-14T04:12:48.1331487Z "digest": "sha256:454c9d6c7abb004ad3cf2a984a4c653d3dcb3af36d26bfe90988a24dfbe1650c" 2025-03-14T04:12:48.1331784Z }, 2025-03-14T04:12:48.1331926Z { 2025-03-14T04:12:48.1332143Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1332408Z "size": 483, 2025-03-14T04:12:48.1332672Z "digest": "sha256:a66b8377f49fed837811a0ed9d612fc454b00944b0bafccbb4611b19e2fd2976" 2025-03-14T04:12:48.1333095Z }, 2025-03-14T04:12:48.1333244Z { 2025-03-14T04:12:48.1333464Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1333759Z "size": 110341891, 2025-03-14T04:12:48.1334044Z "digest": "sha256:c75867b7d634b7bfdf1bb7a2cf5062bef03aa58f357db40fad0ca3db26633c1f" 2025-03-14T04:12:48.1334340Z }, 2025-03-14T04:12:48.1334572Z { 2025-03-14T04:12:48.1334790Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1335050Z "size": 4165, 2025-03-14T04:12:48.1335310Z "digest": "sha256:64866485623d4cd2c086ae4dd8c332eba6200229a00c3457274adf9cf3878f44" 2025-03-14T04:12:48.1335598Z }, 2025-03-14T04:12:48.1335745Z { 2025-03-14T04:12:48.1335970Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1336232Z "size": 1860, 2025-03-14T04:12:48.1336494Z "digest": "sha256:04b678046b3a28400a60c07993009616e6f2667c9052eeba35cd953db82b1af2" 2025-03-14T04:12:48.1336780Z }, 2025-03-14T04:12:48.1336926Z { 2025-03-14T04:12:48.1337147Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1337408Z "size": 701, 2025-03-14T04:12:48.1337677Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.1337965Z }, 2025-03-14T04:12:48.1338114Z { 2025-03-14T04:12:48.1338336Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1338603Z "size": 477, 2025-03-14T04:12:48.1338871Z "digest": "sha256:564c8877ceb50a429fa53713805ae4726c040473188d1fb1e4dcd5ba9706304f" 2025-03-14T04:12:48.1339170Z }, 2025-03-14T04:12:48.1339316Z { 2025-03-14T04:12:48.1339537Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1339864Z "size": 2831705826, 2025-03-14T04:12:48.1340154Z "digest": "sha256:8d7dafab91e2016111c6948bf0794c93e2721bf193c48886fe2240153b249e33" 2025-03-14T04:12:48.1340454Z }, 2025-03-14T04:12:48.1340606Z { 2025-03-14T04:12:48.1340827Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1341095Z "size": 32, 2025-03-14T04:12:48.1341375Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1341677Z }, 2025-03-14T04:12:48.1341829Z { 2025-03-14T04:12:48.1342053Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1342319Z "size": 380, 2025-03-14T04:12:48.1342587Z "digest": "sha256:3195860f4968f586f181dbcfe1714dbac201156cad2831d1f0b2a7e7d77cd745" 2025-03-14T04:12:48.1342886Z }, 2025-03-14T04:12:48.1343035Z { 2025-03-14T04:12:48.1343248Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1343517Z "size": 232996, 2025-03-14T04:12:48.1343803Z "digest": "sha256:64889f83e2762c0beecdc83ecdcda11013915f96d9a510a4d4c71d8f5c98c0d1" 2025-03-14T04:12:48.1344288Z }, 2025-03-14T04:12:48.1344452Z { 2025-03-14T04:12:48.1344688Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1344965Z "size": 231, 2025-03-14T04:12:48.1345253Z "digest": "sha256:a2f45c18f0c1c2df7c02c57024d329a2fabc91c70176271b58e5d318dd3458da" 2025-03-14T04:12:48.1345550Z }, 2025-03-14T04:12:48.1345699Z { 2025-03-14T04:12:48.1345979Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1346360Z "size": 3780000, 2025-03-14T04:12:48.1346744Z "digest": "sha256:16d7101d144158769623d4f9f5a88461a9f00e204f0d8eb2de4e5df6a1550c14" 2025-03-14T04:12:48.1347165Z }, 2025-03-14T04:12:48.1347333Z { 2025-03-14T04:12:48.1347555Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1347820Z "size": 1946, 2025-03-14T04:12:48.1348106Z "digest": "sha256:9f39c1b701e2a249071ced1a08ec63d1cfb1b7cb8379cab2cade1bf20b3c9de2" 2025-03-14T04:12:48.1348411Z }, 2025-03-14T04:12:48.1348556Z { 2025-03-14T04:12:48.1348780Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1350385Z "size": 105, 2025-03-14T04:12:48.1350665Z "digest": "sha256:2edf8a767cf2f72a7b1de53020b860979b1bdd164a8ed7ef367bd832d23d2f8b" 2025-03-14T04:12:48.1350968Z }, 2025-03-14T04:12:48.1351120Z { 2025-03-14T04:12:48.1351343Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1351612Z "size": 802, 2025-03-14T04:12:48.1351887Z "digest": "sha256:6ee1d4017bc6986ed5897ef9a654bbf0ed6a7817dc066925f236df53355fcf90" 2025-03-14T04:12:48.1352186Z }, 2025-03-14T04:12:48.1352336Z { 2025-03-14T04:12:48.1352562Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1352833Z "size": 32, 2025-03-14T04:12:48.1353093Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1353385Z }, 2025-03-14T04:12:48.1353532Z { 2025-03-14T04:12:48.1353743Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1354010Z "size": 104, 2025-03-14T04:12:48.1354282Z "digest": "sha256:aa5b1d7b7a2ced97aeb9c9ae265f99c9200cf7925c897161239a001f052f72a8" 2025-03-14T04:12:48.1354589Z }, 2025-03-14T04:12:48.1354732Z { 2025-03-14T04:12:48.1354944Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1355195Z "size": 504, 2025-03-14T04:12:48.1355451Z "digest": "sha256:6100538713cbf01bbdc99f33c49d4158409d312b0d91e0da2b1b27872c295aef" 2025-03-14T04:12:48.1355732Z }, 2025-03-14T04:12:48.1355873Z { 2025-03-14T04:12:48.1356084Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1356340Z "size": 101109876, 2025-03-14T04:12:48.1356604Z "digest": "sha256:f53dff608124892061f86553f7367a2bbc24bf8e87852b705ead5a9711ce0551" 2025-03-14T04:12:48.1356883Z }, 2025-03-14T04:12:48.1357074Z { 2025-03-14T04:12:48.1357289Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1357534Z "size": 107, 2025-03-14T04:12:48.1357798Z "digest": "sha256:692dab4cd4df9b516d5a00637f3b139f358fac08546e782196a6b571e89db338" 2025-03-14T04:12:48.1358081Z }, 2025-03-14T04:12:48.1358225Z { 2025-03-14T04:12:48.1358436Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1358689Z "size": 490, 2025-03-14T04:12:48.1358947Z "digest": "sha256:2e13cb071445f474d0c6c51ba16f9efb8107ab2b96467aee933b5f0c8724b604" 2025-03-14T04:12:48.1359229Z }, 2025-03-14T04:12:48.1359373Z { 2025-03-14T04:12:48.1359587Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1359839Z "size": 338, 2025-03-14T04:12:48.1360084Z "digest": "sha256:12fc0b9855405052fa6937387f7293816b891253be753195323ce0073a151b5e" 2025-03-14T04:12:48.1360356Z }, 2025-03-14T04:12:48.1360498Z { 2025-03-14T04:12:48.1360713Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1360966Z "size": 103, 2025-03-14T04:12:48.1361216Z "digest": "sha256:9c0523cdc042e8a11440408370d68e599496333bff6312078af524f2611baae4" 2025-03-14T04:12:48.1361488Z }, 2025-03-14T04:12:48.1361628Z { 2025-03-14T04:12:48.1361843Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1362095Z "size": 1473, 2025-03-14T04:12:48.1362362Z "digest": "sha256:76be39b43c8ff15ab266bcad8f5744d72bc263df9d447748733c6fcf4fc1943e" 2025-03-14T04:12:48.1362655Z }, 2025-03-14T04:12:48.1362802Z { 2025-03-14T04:12:48.1363018Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1363281Z "size": 446377208, 2025-03-14T04:12:48.1363562Z "digest": "sha256:a813b158a4210a11a29ed58fd3d62fa8dab8efdf6e0af85385c2885a1d1c9d55" 2025-03-14T04:12:48.1363859Z }, 2025-03-14T04:12:48.1364006Z { 2025-03-14T04:12:48.1364228Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1364490Z "size": 164, 2025-03-14T04:12:48.1364759Z "digest": "sha256:bbc30b7542d1a52790dae399a0e23ec15f0ec726ef5d671b4e06e6118c912f91" 2025-03-14T04:12:48.1365101Z }, 2025-03-14T04:12:48.1365239Z { 2025-03-14T04:12:48.1365463Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1365723Z "size": 422, 2025-03-14T04:12:48.1365989Z "digest": "sha256:2a30d35d5515be01fdb30110959c5f5adcd6b7e5fca723ec9c98f48f91fcb738" 2025-03-14T04:12:48.1366282Z }, 2025-03-14T04:12:48.1366430Z { 2025-03-14T04:12:48.1366650Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1366912Z "size": 32, 2025-03-14T04:12:48.1367177Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1367471Z }, 2025-03-14T04:12:48.1367618Z { 2025-03-14T04:12:48.1367842Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1368099Z "size": 111, 2025-03-14T04:12:48.1368360Z "digest": "sha256:34c633845b891bd5eee69ead4576b3fde778f2ee4d7e65cd095848edc8946683" 2025-03-14T04:12:48.1368647Z }, 2025-03-14T04:12:48.1368788Z { 2025-03-14T04:12:48.1368996Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1369250Z "size": 473, 2025-03-14T04:12:48.1369505Z "digest": "sha256:f4328165c8f338158381d4a7bc37f4596966f29a09ff5b1cfd3c9e8fbb149342" 2025-03-14T04:12:48.1369782Z }, 2025-03-14T04:12:48.1369924Z { 2025-03-14T04:12:48.1370134Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1370383Z "size": 32, 2025-03-14T04:12:48.1370646Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1370930Z }, 2025-03-14T04:12:48.1371069Z { 2025-03-14T04:12:48.1371278Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1371529Z "size": 112, 2025-03-14T04:12:48.1371832Z "digest": "sha256:ced7420502578d83680bff46820c743cf2dc7d1f7bd6c4650fe189c940416b54" 2025-03-14T04:12:48.1372116Z }, 2025-03-14T04:12:48.1372262Z { 2025-03-14T04:12:48.1372476Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1372729Z "size": 565, 2025-03-14T04:12:48.1372983Z "digest": "sha256:7543460794d1c69c1e1a7e1edba30a6239234fb5014d8b334f01f8addc38128e" 2025-03-14T04:12:48.1373265Z }, 2025-03-14T04:12:48.1373412Z { 2025-03-14T04:12:48.1373625Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1373881Z "size": 43164080, 2025-03-14T04:12:48.1374164Z "digest": "sha256:81f896b48ff04356cc2ca3a784defda917a1bc7f9ccc1a3c0dbdf15b1d1cf156" 2025-03-14T04:12:48.1374451Z }, 2025-03-14T04:12:48.1374596Z { 2025-03-14T04:12:48.1374809Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1375061Z "size": 106, 2025-03-14T04:12:48.1375318Z "digest": "sha256:f11b5769703741548b6910c4cf3891909c6fc2153c15ddf1596145939bc1f675" 2025-03-14T04:12:48.1375593Z }, 2025-03-14T04:12:48.1375734Z { 2025-03-14T04:12:48.1375945Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1376203Z "size": 345, 2025-03-14T04:12:48.1376478Z "digest": "sha256:d09490ef7bbf73ff136691138f700147ae2c817b845e5ea9a86e1c3be639c159" 2025-03-14T04:12:48.1376753Z }, 2025-03-14T04:12:48.1376898Z { 2025-03-14T04:12:48.1377114Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1377368Z "size": 32, 2025-03-14T04:12:48.1377627Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1377912Z }, 2025-03-14T04:12:48.1378055Z { 2025-03-14T04:12:48.1378268Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1378520Z "size": 106, 2025-03-14T04:12:48.1378778Z "digest": "sha256:595c6ea973ce7878ed25917778eaa88783efa7e652b515158353e878cedce9fa" 2025-03-14T04:12:48.1379062Z }, 2025-03-14T04:12:48.1379204Z { 2025-03-14T04:12:48.1379416Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1379736Z "size": 425, 2025-03-14T04:12:48.1379986Z "digest": "sha256:b65570655a311da76613ae5622813bfe1741f803bd187d1f83d1542c73c3ceed" 2025-03-14T04:12:48.1380261Z }, 2025-03-14T04:12:48.1380396Z { 2025-03-14T04:12:48.1380607Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1380865Z "size": 19308697, 2025-03-14T04:12:48.1381139Z "digest": "sha256:f3024011b7b6bb9bbd71304103e6e4c7e7cf6cc0e616150929ffcdb4660be46b" 2025-03-14T04:12:48.1381635Z }, 2025-03-14T04:12:48.1381804Z { 2025-03-14T04:12:48.1382028Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1382292Z "size": 105, 2025-03-14T04:12:48.1382559Z "digest": "sha256:0b7e81f1bc5d8e9784247bb0d869e69737e76887e24b3ef6773f42405a938f63" 2025-03-14T04:12:48.1382857Z }, 2025-03-14T04:12:48.1383009Z { 2025-03-14T04:12:48.1383229Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1383492Z "size": 643, 2025-03-14T04:12:48.1383755Z "digest": "sha256:c9603583aaa028021352754f45cfaedb840742c6578e1efada89ec05c07d5082" 2025-03-14T04:12:48.1384119Z }, 2025-03-14T04:12:48.1384284Z { 2025-03-14T04:12:48.1384499Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1384767Z "size": 701, 2025-03-14T04:12:48.1385080Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.1385388Z }, 2025-03-14T04:12:48.1385539Z { 2025-03-14T04:12:48.1385764Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1386035Z "size": 143, 2025-03-14T04:12:48.1386300Z "digest": "sha256:68f75179d12201922607e31597da3d213875a942f8012b1c43d43c357499b646" 2025-03-14T04:12:48.1386597Z }, 2025-03-14T04:12:48.1386743Z { 2025-03-14T04:12:48.1387065Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1387336Z "size": 136, 2025-03-14T04:12:48.1387614Z "digest": "sha256:2ce6ce002394ba831fcec41621aa011ca17592a66c8020b64eb1fe58505f2ed4" 2025-03-14T04:12:48.1387908Z }, 2025-03-14T04:12:48.1388057Z { 2025-03-14T04:12:48.1388275Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1388543Z "size": 5219780266, 2025-03-14T04:12:48.1388819Z "digest": "sha256:cb03b7532b5e2d7fbb9a55d16acbdc1fd4f52b9cc00e62003118e2c820bbdd07" 2025-03-14T04:12:48.1389113Z }, 2025-03-14T04:12:48.1389262Z { 2025-03-14T04:12:48.1389482Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1389744Z "size": 196, 2025-03-14T04:12:48.1390017Z "digest": "sha256:046ab5a4210dd05ee2a4d9ed8f1f5c86bf8ac03438dd03bb9f586578f0b40434" 2025-03-14T04:12:48.1390310Z }, 2025-03-14T04:12:48.1390457Z { 2025-03-14T04:12:48.1390680Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1390941Z "size": 1401, 2025-03-14T04:12:48.1391220Z "digest": "sha256:da2b385f2f548b4fdb79d4a5f8dcaceff0a8e1c0ef59425e041cf189dfe66f74" 2025-03-14T04:12:48.1391524Z }, 2025-03-14T04:12:48.1391668Z { 2025-03-14T04:12:48.1392785Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1393115Z "size": 701, 2025-03-14T04:12:48.1393401Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.1393695Z }, 2025-03-14T04:12:48.1393840Z { 2025-03-14T04:12:48.1394064Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1394328Z "size": 139, 2025-03-14T04:12:48.1394596Z "digest": "sha256:7bc635713dd5ff2321baf7a09438d605c0145a774060722495c5682045e3eed1" 2025-03-14T04:12:48.1394888Z }, 2025-03-14T04:12:48.1395041Z { 2025-03-14T04:12:48.1395282Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1395555Z "size": 5175240887, 2025-03-14T04:12:48.1395840Z "digest": "sha256:cd296e79aaba46073adfef39e70b87062399ab2648d531184bdae59da7021328" 2025-03-14T04:12:48.1396256Z }, 2025-03-14T04:12:48.1396406Z { 2025-03-14T04:12:48.1396630Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1396893Z "size": 155, 2025-03-14T04:12:48.1397157Z "digest": "sha256:26ea03719a99ff44da69ffcc24e8f006472a88c1160a1b48f194d012108735b3" 2025-03-14T04:12:48.1397449Z }, 2025-03-14T04:12:48.1397596Z { 2025-03-14T04:12:48.1397809Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1398070Z "size": 1401, 2025-03-14T04:12:48.1398355Z "digest": "sha256:da2b385f2f548b4fdb79d4a5f8dcaceff0a8e1c0ef59425e041cf189dfe66f74" 2025-03-14T04:12:48.1398654Z }, 2025-03-14T04:12:48.1398798Z { 2025-03-14T04:12:48.1399015Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1399279Z "size": 701, 2025-03-14T04:12:48.1399541Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.1399829Z }, 2025-03-14T04:12:48.1399978Z { 2025-03-14T04:12:48.1400199Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1400467Z "size": 139, 2025-03-14T04:12:48.1400740Z "digest": "sha256:f37a0227cb699ac15b09aa6ef41075ffe443681db0af5841da6553a2090fbfe6" 2025-03-14T04:12:48.1401034Z }, 2025-03-14T04:12:48.1401190Z { 2025-03-14T04:12:48.1401408Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1401653Z "size": 32, 2025-03-14T04:12:48.1401918Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1402208Z }, 2025-03-14T04:12:48.1402354Z { 2025-03-14T04:12:48.1402566Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1402818Z "size": 160, 2025-03-14T04:12:48.1403129Z "digest": "sha256:0bd4004e84e3c2791c68438d3e95d8c82de275d45fb9a3ddf018d8d6dc8ffdc2" 2025-03-14T04:12:48.1403418Z }, 2025-03-14T04:12:48.1403560Z { 2025-03-14T04:12:48.1403778Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1404036Z "size": 765, 2025-03-14T04:12:48.1404296Z "digest": "sha256:967b86e63131ae345453e13efb40580cc1c734b0eb75aa6c65aa173a45946211" 2025-03-14T04:12:48.1404576Z }, 2025-03-14T04:12:48.1404721Z { 2025-03-14T04:12:48.1404932Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1405183Z "size": 701, 2025-03-14T04:12:48.1405441Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.1405711Z }, 2025-03-14T04:12:48.1405856Z { 2025-03-14T04:12:48.1406070Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1406327Z "size": 138, 2025-03-14T04:12:48.1406592Z "digest": "sha256:905d662f8eef91929aef8d9f01cfd429c3ecb16b2544892af0aeb64d98122115" 2025-03-14T04:12:48.1406878Z }, 2025-03-14T04:12:48.1407021Z { 2025-03-14T04:12:48.1407234Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1407492Z "size": 32, 2025-03-14T04:12:48.1407754Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1408038Z }, 2025-03-14T04:12:48.1408184Z { 2025-03-14T04:12:48.1408394Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1408646Z "size": 159, 2025-03-14T04:12:48.1408906Z "digest": "sha256:39fff80b800e3735de2c6daf433e9df8cf0b4b02bcc5b2f62ba6154177fde92c" 2025-03-14T04:12:48.1409190Z }, 2025-03-14T04:12:48.1409325Z { 2025-03-14T04:12:48.1409537Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1409794Z "size": 907, 2025-03-14T04:12:48.1410048Z "digest": "sha256:d681503af97af958755d5133477828ceca373627a9a0354ec6ba5f355c576422" 2025-03-14T04:12:48.1410328Z }, 2025-03-14T04:12:48.1410472Z { 2025-03-14T04:12:48.1410686Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1410995Z "size": 701, 2025-03-14T04:12:48.1411252Z "digest": "sha256:1e2892d1c0d6f1b67d3ba1d866912303eac78217715c2fa8631fd39c22f81996" 2025-03-14T04:12:48.1411531Z }, 2025-03-14T04:12:48.1411678Z { 2025-03-14T04:12:48.1411891Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1412143Z "size": 134, 2025-03-14T04:12:48.1412408Z "digest": "sha256:acd125116d9b9aa3745376e8edce601ca8c1cbe1f1cbd14d0d116b13ed58d436" 2025-03-14T04:12:48.1412696Z }, 2025-03-14T04:12:48.1412840Z { 2025-03-14T04:12:48.1413045Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1413297Z "size": 32, 2025-03-14T04:12:48.1413555Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1413837Z }, 2025-03-14T04:12:48.1413985Z { 2025-03-14T04:12:48.1414198Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1414452Z "size": 159, 2025-03-14T04:12:48.1414702Z "digest": "sha256:78b00f805b53e274a95890d94e0cae256b17552d517d2a19c38760a1d8ff107b" 2025-03-14T04:12:48.1414980Z }, 2025-03-14T04:12:48.1415122Z { 2025-03-14T04:12:48.1415334Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1415584Z "size": 1485, 2025-03-14T04:12:48.1415854Z "digest": "sha256:8b3d8ccc53ec9443f345526e1411cbfb5910da12fad3f39f76ee42ce0ad14e1d" 2025-03-14T04:12:48.1416144Z }, 2025-03-14T04:12:48.1416290Z { 2025-03-14T04:12:48.1416503Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1416745Z "size": 32, 2025-03-14T04:12:48.1417005Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1417293Z }, 2025-03-14T04:12:48.1417439Z { 2025-03-14T04:12:48.1417698Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1417956Z "size": 135, 2025-03-14T04:12:48.1418216Z "digest": "sha256:07259ecbb7c987e75528fb0aa9e313d0ae77eb9a8f6e6249e4fdfd7d985a80b7" 2025-03-14T04:12:48.1418505Z }, 2025-03-14T04:12:48.1418645Z { 2025-03-14T04:12:48.1418878Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1419132Z "size": 380, 2025-03-14T04:12:48.1419390Z "digest": "sha256:afabfb1e95267970e90e2058d9c09f857443f80b997adfe57208801f5b8db81b" 2025-03-14T04:12:48.1419675Z }, 2025-03-14T04:12:48.1419817Z { 2025-03-14T04:12:48.1420025Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1420274Z "size": 32, 2025-03-14T04:12:48.1420531Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1420805Z }, 2025-03-14T04:12:48.1420948Z { 2025-03-14T04:12:48.1421163Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1421416Z "size": 104, 2025-03-14T04:12:48.1421678Z "digest": "sha256:56aa7cdd744f50ae4b9a678f5e53e7e9471f9dcf42ae8f15323d71ae01af8bd1" 2025-03-14T04:12:48.1421966Z }, 2025-03-14T04:12:48.1422109Z { 2025-03-14T04:12:48.1422319Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1422574Z "size": 1899, 2025-03-14T04:12:48.1422836Z "digest": "sha256:3d413cedb292cce13e279df55899acbcf1227ea646c86a599808a03ae8b7aba9" 2025-03-14T04:12:48.1423118Z }, 2025-03-14T04:12:48.1423261Z { 2025-03-14T04:12:48.1423477Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1423736Z "size": 196997029, 2025-03-14T04:12:48.1424099Z "digest": "sha256:c4d93cca7501ea10375008b5a60aef7eee5cf0d7d670fd766e7be3479726c58c" 2025-03-14T04:12:48.1424414Z }, 2025-03-14T04:12:48.1424558Z { 2025-03-14T04:12:48.1424784Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1425063Z "size": 106, 2025-03-14T04:12:48.1425344Z "digest": "sha256:be17a58842f02580271fffb31b6d71f17498b862bce2cb181d9897e73ce18af5" 2025-03-14T04:12:48.1425741Z }, 2025-03-14T04:12:48.1425895Z { 2025-03-14T04:12:48.1426119Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1426387Z "size": 163, 2025-03-14T04:12:48.1426665Z "digest": "sha256:af209379fbc2a1ce9c38f2383ec08f704de1b1eb23a531463224e80d937a13a3" 2025-03-14T04:12:48.1426971Z }, 2025-03-14T04:12:48.1427121Z { 2025-03-14T04:12:48.1427347Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1427619Z "size": 7943, 2025-03-14T04:12:48.1427898Z "digest": "sha256:879b59207c78a7748870b6aea98a65bafa1b3f0c63ec86b59a9b142260d41250" 2025-03-14T04:12:48.1428196Z }, 2025-03-14T04:12:48.1428342Z { 2025-03-14T04:12:48.1428561Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1428837Z "size": 8069, 2025-03-14T04:12:48.1429118Z "digest": "sha256:4918b9b279ff8944ea8eb1ba1ea23f23f39710864919f41470520c03f36ba04c" 2025-03-14T04:12:48.1429419Z }, 2025-03-14T04:12:48.1429571Z { 2025-03-14T04:12:48.1429796Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1430060Z "size": 304, 2025-03-14T04:12:48.1430340Z "digest": "sha256:f3e4cb9dda5d3af4525d8c720afb11c9ba9a48a146bbfb268434720eb33f9b7b" 2025-03-14T04:12:48.1430649Z }, 2025-03-14T04:12:48.1430803Z { 2025-03-14T04:12:48.1431027Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1431297Z "size": 32, 2025-03-14T04:12:48.1431575Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1431879Z }, 2025-03-14T04:12:48.1432028Z { 2025-03-14T04:12:48.1432251Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1432518Z "size": 106, 2025-03-14T04:12:48.1432864Z "digest": "sha256:da83488e1344293ac1fcf6c9ed132b6a3746e8c347dc0c5b4ebc8e24a3b73eee" 2025-03-14T04:12:48.1433171Z }, 2025-03-14T04:12:48.1433323Z { 2025-03-14T04:12:48.1433555Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1433833Z "size": 54145653, 2025-03-14T04:12:48.1434126Z "digest": "sha256:78dfb83debe9f57e9eec061eb7ad61e56e2549b77b32b9ca98395ba6655ab167" 2025-03-14T04:12:48.1434437Z }, 2025-03-14T04:12:48.1434589Z { 2025-03-14T04:12:48.1434810Z "mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip", 2025-03-14T04:12:48.1435077Z "size": 32, 2025-03-14T04:12:48.1435341Z "digest": "sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1" 2025-03-14T04:12:48.1435625Z } 2025-03-14T04:12:48.1435768Z ] 2025-03-14T04:12:48.1435916Z } 2025-03-14T04:12:48.1436112Z + exit 0 2025-03-14T04:12:48.1466793Z ##[group]Run set -eux 2025-03-14T04:12:48.1467029Z set -eux 2025-03-14T04:12:48.1467577Z aws secretsmanager get-secret-value --secret-id docker_hub_readonly_token | jq --raw-output '.SecretString' | jq -r .docker_hub_readonly_token | docker login --username pytorchbot --password-stdin 2025-03-14T04:12:48.1473308Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:48.1473573Z env: 2025-03-14T04:12:48.1473750Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.1473949Z ##[endgroup] 2025-03-14T04:12:48.1498690Z + aws secretsmanager get-secret-value --secret-id docker_hub_readonly_token 2025-03-14T04:12:48.1499059Z + jq --raw-output .SecretString 2025-03-14T04:12:48.1499281Z + jq -r .docker_hub_readonly_token 2025-03-14T04:12:48.1499789Z + docker login --username pytorchbot --password-stdin 2025-03-14T04:12:48.6479173Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:48.6479628Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:48.6480009Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:48.6480306Z 2025-03-14T04:12:48.6480573Z Login Succeeded 2025-03-14T04:12:48.6560540Z ##[group]Run tag=${ECR_DOCKER_IMAGE##*/} 2025-03-14T04:12:48.6560826Z tag=${ECR_DOCKER_IMAGE##*/} 2025-03-14T04:12:48.6561221Z echo "docker pull ghcr.io/pytorch/ci-image:${tag/:/-}" 2025-03-14T04:12:48.6565701Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:48.6565955Z env: 2025-03-14T04:12:48.6566127Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.6566608Z ECR_DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.6567088Z ##[endgroup] 2025-03-14T04:12:48.6591615Z docker pull ghcr.io/pytorch/ci-image:pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks-aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.6629667Z ##[group]Run pytorch/test-infra/.github/actions/pull-docker-image@main 2025-03-14T04:12:48.6629950Z with: 2025-03-14T04:12:48.6630403Z docker-image: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.6630974Z docker-registry: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.6631226Z env: 2025-03-14T04:12:48.6631393Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.6631575Z ##[endgroup] 2025-03-14T04:12:48.6840966Z ##[group]Run set -x 2025-03-14T04:12:48.6841188Z set -x 2025-03-14T04:12:48.6841364Z set +e 2025-03-14T04:12:48.6841526Z  2025-03-14T04:12:48.6841686Z login() { 2025-03-14T04:12:48.6842002Z  aws ecr get-login-password --region us-east-1 | docker login -u AWS --password-stdin "$1" 2025-03-14T04:12:48.6842321Z } 2025-03-14T04:12:48.6842484Z  2025-03-14T04:12:48.6842702Z retry () { 2025-03-14T04:12:48.6842891Z  $* || (sleep 1 && $*) || (sleep 2 && $*) 2025-03-14T04:12:48.6843106Z } 2025-03-14T04:12:48.6843262Z  2025-03-14T04:12:48.6843432Z retry login "${DOCKER_REGISTRY}" 2025-03-14T04:12:48.6843643Z  2025-03-14T04:12:48.6843810Z set -e 2025-03-14T04:12:48.6844046Z # ignore output since only exit code is used for conditional 2025-03-14T04:12:48.6844353Z # only pull docker image if it's not available locally 2025-03-14T04:12:48.6844688Z if ! docker inspect --type=image "${DOCKER_IMAGE}" >/dev/null 2>/dev/null; then 2025-03-14T04:12:48.6844997Z  retry docker pull "${DOCKER_IMAGE}" 2025-03-14T04:12:48.6845213Z fi 2025-03-14T04:12:48.6849605Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:12:48.6849852Z env: 2025-03-14T04:12:48.6850028Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:12:48.6850509Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:48.6851041Z DOCKER_REGISTRY: 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.6851292Z ##[endgroup] 2025-03-14T04:12:48.6874039Z + set +e 2025-03-14T04:12:48.6878716Z + retry login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.6880477Z + login 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:48.6880872Z + aws ecr get-login-password --region us-east-1 2025-03-14T04:12:48.6881293Z + docker login -u AWS --password-stdin 308535385114.dkr.ecr.us-east-1.amazonaws.com 2025-03-14T04:12:49.0901406Z WARNING! Your password will be stored unencrypted in /home/ec2-user/.docker/config.json. 2025-03-14T04:12:49.0901802Z Login Succeeded 2025-03-14T04:12:49.0905842Z Configure a credential helper to remove this warning. See 2025-03-14T04:12:49.0906419Z https://docs.docker.com/engine/reference/commandline/login/#credentials-store 2025-03-14T04:12:49.0906741Z 2025-03-14T04:12:49.0920319Z + set -e 2025-03-14T04:12:49.0922658Z + docker inspect --type=image 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:49.1077207Z + retry docker pull 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:49.4053471Z + docker pull 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:12:49.4054213Z aa89d6e739080d90fa18625d57297c6734465849: Pulling from pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks 2025-03-14T04:12:49.4054663Z 8f84a9f2102e: Pulling fs layer 2025-03-14T04:12:49.4054882Z f35880ae6ee6: Pulling fs layer 2025-03-14T04:12:49.4055088Z 8eb502731466: Pulling fs layer 2025-03-14T04:12:49.4055615Z d4ce6a1f04ff: Pulling fs layer 2025-03-14T04:12:49.4055822Z ca18d6003a18: Pulling fs layer 2025-03-14T04:12:49.4056019Z f6b56646e2f0: Pulling fs layer 2025-03-14T04:12:49.4056216Z 454c9d6c7abb: Pulling fs layer 2025-03-14T04:12:49.4056416Z a66b8377f49f: Pulling fs layer 2025-03-14T04:12:49.4056618Z c75867b7d634: Pulling fs layer 2025-03-14T04:12:49.4056837Z 64866485623d: Pulling fs layer 2025-03-14T04:12:49.4057033Z 04b678046b3a: Pulling fs layer 2025-03-14T04:12:49.4057226Z 1e2892d1c0d6: Pulling fs layer 2025-03-14T04:12:49.4057423Z 564c8877ceb5: Pulling fs layer 2025-03-14T04:12:49.4057669Z ca18d6003a18: Waiting 2025-03-14T04:12:49.4057891Z f6b56646e2f0: Waiting 2025-03-14T04:12:49.4058068Z 454c9d6c7abb: Waiting 2025-03-14T04:12:49.4058242Z c75867b7d634: Waiting 2025-03-14T04:12:49.4058416Z a66b8377f49f: Waiting 2025-03-14T04:12:49.4058592Z 64866485623d: Waiting 2025-03-14T04:12:49.4058760Z 04b678046b3a: Waiting 2025-03-14T04:12:49.4058937Z 1e2892d1c0d6: Waiting 2025-03-14T04:12:49.4059114Z d4ce6a1f04ff: Waiting 2025-03-14T04:12:49.4059312Z 8d7dafab91e2: Pulling fs layer 2025-03-14T04:12:49.4059514Z 564c8877ceb5: Waiting 2025-03-14T04:12:49.4059703Z 4f4fb700ef54: Pulling fs layer 2025-03-14T04:12:49.4059904Z 3195860f4968: Pulling fs layer 2025-03-14T04:12:49.4060098Z 8d7dafab91e2: Waiting 2025-03-14T04:12:49.4060284Z 64889f83e276: Pulling fs layer 2025-03-14T04:12:49.4060482Z 4f4fb700ef54: Waiting 2025-03-14T04:12:49.4060653Z 3195860f4968: Waiting 2025-03-14T04:12:49.4060834Z a2f45c18f0c1: Pulling fs layer 2025-03-14T04:12:49.4061035Z 16d7101d1441: Pulling fs layer 2025-03-14T04:12:49.4061235Z 9f39c1b701e2: Pulling fs layer 2025-03-14T04:12:49.4061457Z 2edf8a767cf2: Pulling fs layer 2025-03-14T04:12:49.4061649Z 6ee1d4017bc6: Pulling fs layer 2025-03-14T04:12:49.4061840Z 64889f83e276: Waiting 2025-03-14T04:12:49.4062028Z aa5b1d7b7a2c: Pulling fs layer 2025-03-14T04:12:49.4062228Z 6100538713cb: Pulling fs layer 2025-03-14T04:12:49.4062426Z f53dff608124: Pulling fs layer 2025-03-14T04:12:49.4062618Z a2f45c18f0c1: Waiting 2025-03-14T04:12:49.4062805Z 692dab4cd4df: Pulling fs layer 2025-03-14T04:12:49.4063007Z 2e13cb071445: Pulling fs layer 2025-03-14T04:12:49.4063280Z 12fc0b985540: Pulling fs layer 2025-03-14T04:12:49.4063476Z 6100538713cb: Waiting 2025-03-14T04:12:49.4063656Z f53dff608124: Waiting 2025-03-14T04:12:49.4063835Z aa5b1d7b7a2c: Waiting 2025-03-14T04:12:49.4064133Z 692dab4cd4df: Waiting 2025-03-14T04:12:49.4064325Z 2e13cb071445: Waiting 2025-03-14T04:12:49.4064508Z 2edf8a767cf2: Waiting 2025-03-14T04:12:49.4064686Z 6ee1d4017bc6: Waiting 2025-03-14T04:12:49.4064866Z 12fc0b985540: Waiting 2025-03-14T04:12:49.4065047Z 9f39c1b701e2: Waiting 2025-03-14T04:12:49.4065237Z 16d7101d1441: Waiting 2025-03-14T04:12:49.4065420Z 9c0523cdc042: Pulling fs layer 2025-03-14T04:12:49.4065621Z 76be39b43c8f: Pulling fs layer 2025-03-14T04:12:49.4065816Z a813b158a421: Pulling fs layer 2025-03-14T04:12:49.4066009Z 9c0523cdc042: Waiting 2025-03-14T04:12:49.4066186Z 76be39b43c8f: Waiting 2025-03-14T04:12:49.4066379Z bbc30b7542d1: Pulling fs layer 2025-03-14T04:12:49.4066578Z 2a30d35d5515: Pulling fs layer 2025-03-14T04:12:49.4066771Z a813b158a421: Waiting 2025-03-14T04:12:49.4066953Z 34c633845b89: Pulling fs layer 2025-03-14T04:12:49.4067154Z f4328165c8f3: Pulling fs layer 2025-03-14T04:12:49.4067338Z 2a30d35d5515: Waiting 2025-03-14T04:12:49.4067513Z 34c633845b89: Waiting 2025-03-14T04:12:49.4067839Z ced742050257: Pulling fs layer 2025-03-14T04:12:49.4068040Z 7543460794d1: Pulling fs layer 2025-03-14T04:12:49.4068238Z 81f896b48ff0: Pulling fs layer 2025-03-14T04:12:49.4068435Z f11b57697037: Pulling fs layer 2025-03-14T04:12:49.4068633Z d09490ef7bbf: Pulling fs layer 2025-03-14T04:12:49.4068834Z 595c6ea973ce: Pulling fs layer 2025-03-14T04:12:49.4069035Z b65570655a31: Pulling fs layer 2025-03-14T04:12:49.4069234Z f3024011b7b6: Pulling fs layer 2025-03-14T04:12:49.4069433Z 0b7e81f1bc5d: Pulling fs layer 2025-03-14T04:12:49.4069632Z c9603583aaa0: Pulling fs layer 2025-03-14T04:12:49.4069822Z ced742050257: Waiting 2025-03-14T04:12:49.4070077Z 7543460794d1: Waiting 2025-03-14T04:12:49.4070254Z 81f896b48ff0: Waiting 2025-03-14T04:12:49.4070420Z f11b57697037: Waiting 2025-03-14T04:12:49.4070593Z f3024011b7b6: Waiting 2025-03-14T04:12:49.4070770Z 0b7e81f1bc5d: Waiting 2025-03-14T04:12:49.4070972Z 595c6ea973ce: Waiting 2025-03-14T04:12:49.4071149Z c9603583aaa0: Waiting 2025-03-14T04:12:49.4071326Z b65570655a31: Waiting 2025-03-14T04:12:49.4071506Z 68f75179d122: Pulling fs layer 2025-03-14T04:12:49.4071706Z 2ce6ce002394: Pulling fs layer 2025-03-14T04:12:49.4071909Z cb03b7532b5e: Pulling fs layer 2025-03-14T04:12:49.4072110Z 046ab5a4210d: Pulling fs layer 2025-03-14T04:12:49.4072312Z da2b385f2f54: Pulling fs layer 2025-03-14T04:12:49.4072516Z 7bc635713dd5: Pulling fs layer 2025-03-14T04:12:49.4072718Z cd296e79aaba: Pulling fs layer 2025-03-14T04:12:49.4072911Z 046ab5a4210d: Waiting 2025-03-14T04:12:49.4073095Z 26ea03719a99: Pulling fs layer 2025-03-14T04:12:49.4073286Z cb03b7532b5e: Waiting 2025-03-14T04:12:49.4073460Z 68f75179d122: Waiting 2025-03-14T04:12:49.4073646Z f37a0227cb69: Pulling fs layer 2025-03-14T04:12:49.4073833Z 2ce6ce002394: Waiting 2025-03-14T04:12:49.4074014Z da2b385f2f54: Waiting 2025-03-14T04:12:49.4074197Z 0bd4004e84e3: Pulling fs layer 2025-03-14T04:12:49.4074388Z 7bc635713dd5: Waiting 2025-03-14T04:12:49.4074568Z cd296e79aaba: Waiting 2025-03-14T04:12:49.4074752Z 967b86e63131: Pulling fs layer 2025-03-14T04:12:49.4074947Z 26ea03719a99: Waiting 2025-03-14T04:12:49.4075120Z f37a0227cb69: Waiting 2025-03-14T04:12:49.4075305Z 905d662f8eef: Pulling fs layer 2025-03-14T04:12:49.4075501Z 0bd4004e84e3: Waiting 2025-03-14T04:12:49.4075675Z 967b86e63131: Waiting 2025-03-14T04:12:49.4075860Z 39fff80b800e: Pulling fs layer 2025-03-14T04:12:49.4076062Z d681503af97a: Pulling fs layer 2025-03-14T04:12:49.4076261Z acd125116d9b: Pulling fs layer 2025-03-14T04:12:49.4076448Z 39fff80b800e: Waiting 2025-03-14T04:12:49.4076633Z 78b00f805b53: Pulling fs layer 2025-03-14T04:12:49.4076839Z 8b3d8ccc53ec: Pulling fs layer 2025-03-14T04:12:49.4077044Z 07259ecbb7c9: Pulling fs layer 2025-03-14T04:12:49.4077249Z afabfb1e9526: Pulling fs layer 2025-03-14T04:12:49.4077459Z 56aa7cdd744f: Pulling fs layer 2025-03-14T04:12:49.4077656Z 3d413cedb292: Pulling fs layer 2025-03-14T04:12:49.4077853Z c4d93cca7501: Pulling fs layer 2025-03-14T04:12:49.4078049Z be17a58842f0: Pulling fs layer 2025-03-14T04:12:49.4078254Z af209379fbc2: Pulling fs layer 2025-03-14T04:12:49.4078449Z 879b59207c78: Pulling fs layer 2025-03-14T04:12:49.4078640Z 4918b9b279ff: Pulling fs layer 2025-03-14T04:12:49.4078834Z f3e4cb9dda5d: Pulling fs layer 2025-03-14T04:12:49.4079025Z d681503af97a: Waiting 2025-03-14T04:12:49.4079197Z c4d93cca7501: Waiting 2025-03-14T04:12:49.4079363Z afabfb1e9526: Waiting 2025-03-14T04:12:49.4079536Z acd125116d9b: Waiting 2025-03-14T04:12:49.4079709Z be17a58842f0: Waiting 2025-03-14T04:12:49.4079881Z 78b00f805b53: Waiting 2025-03-14T04:12:49.4080052Z af209379fbc2: Waiting 2025-03-14T04:12:49.4080222Z 4918b9b279ff: Waiting 2025-03-14T04:12:49.4080390Z 879b59207c78: Waiting 2025-03-14T04:12:49.4080565Z 8b3d8ccc53ec: Waiting 2025-03-14T04:12:49.4080738Z 56aa7cdd744f: Waiting 2025-03-14T04:12:49.4080911Z f3e4cb9dda5d: Waiting 2025-03-14T04:12:49.4081081Z 3d413cedb292: Waiting 2025-03-14T04:12:49.4081253Z 07259ecbb7c9: Waiting 2025-03-14T04:12:49.4081635Z da83488e1344: Pulling fs layer 2025-03-14T04:12:49.4081859Z 78dfb83debe9: Pulling fs layer 2025-03-14T04:12:49.4082116Z da83488e1344: Waiting 2025-03-14T04:12:49.4082278Z 78dfb83debe9: Waiting 2025-03-14T04:12:49.4965262Z f35880ae6ee6: Verifying Checksum 2025-03-14T04:12:49.4965711Z f35880ae6ee6: Download complete 2025-03-14T04:12:49.5843542Z d4ce6a1f04ff: Verifying Checksum 2025-03-14T04:12:49.5844011Z d4ce6a1f04ff: Download complete 2025-03-14T04:12:49.6610254Z ca18d6003a18: Verifying Checksum 2025-03-14T04:12:49.6615049Z ca18d6003a18: Download complete 2025-03-14T04:12:49.7564391Z f6b56646e2f0: Verifying Checksum 2025-03-14T04:12:49.7564711Z f6b56646e2f0: Download complete 2025-03-14T04:12:49.7666980Z 8f84a9f2102e: Verifying Checksum 2025-03-14T04:12:49.7667571Z 8f84a9f2102e: Download complete 2025-03-14T04:12:49.8374675Z a66b8377f49f: Download complete 2025-03-14T04:12:49.8541003Z 454c9d6c7abb: Download complete 2025-03-14T04:12:49.9519990Z 64866485623d: Verifying Checksum 2025-03-14T04:12:49.9520397Z 64866485623d: Download complete 2025-03-14T04:12:50.1217210Z 04b678046b3a: Verifying Checksum 2025-03-14T04:12:50.1218002Z 04b678046b3a: Download complete 2025-03-14T04:12:50.2128966Z 1e2892d1c0d6: Verifying Checksum 2025-03-14T04:12:50.2130724Z 1e2892d1c0d6: Download complete 2025-03-14T04:12:50.3013008Z 564c8877ceb5: Verifying Checksum 2025-03-14T04:12:50.3017684Z 564c8877ceb5: Download complete 2025-03-14T04:12:50.7058100Z 8f84a9f2102e: Pull complete 2025-03-14T04:12:50.7206695Z f35880ae6ee6: Pull complete 2025-03-14T04:12:50.9949892Z c75867b7d634: Verifying Checksum 2025-03-14T04:12:50.9952642Z c75867b7d634: Download complete 2025-03-14T04:12:51.0029116Z 4f4fb700ef54: Verifying Checksum 2025-03-14T04:12:51.0031508Z 4f4fb700ef54: Download complete 2025-03-14T04:12:51.0791187Z 3195860f4968: Verifying Checksum 2025-03-14T04:12:51.0791742Z 3195860f4968: Download complete 2025-03-14T04:12:51.2214534Z 64889f83e276: Download complete 2025-03-14T04:12:51.2948553Z a2f45c18f0c1: Verifying Checksum 2025-03-14T04:12:51.2951340Z a2f45c18f0c1: Download complete 2025-03-14T04:12:51.4117025Z 16d7101d1441: Verifying Checksum 2025-03-14T04:12:51.4120243Z 16d7101d1441: Download complete 2025-03-14T04:12:51.4862462Z 9f39c1b701e2: Verifying Checksum 2025-03-14T04:12:51.4862822Z 9f39c1b701e2: Download complete 2025-03-14T04:12:51.5655661Z 2edf8a767cf2: Download complete 2025-03-14T04:12:51.6882415Z 6ee1d4017bc6: Verifying Checksum 2025-03-14T04:12:51.6886669Z 6ee1d4017bc6: Download complete 2025-03-14T04:12:51.7795318Z aa5b1d7b7a2c: Verifying Checksum 2025-03-14T04:12:51.7795883Z aa5b1d7b7a2c: Download complete 2025-03-14T04:12:51.8757093Z 6100538713cb: Verifying Checksum 2025-03-14T04:12:51.8762293Z 6100538713cb: Download complete 2025-03-14T04:12:52.6656380Z 8eb502731466: Verifying Checksum 2025-03-14T04:12:52.6657978Z 8eb502731466: Download complete 2025-03-14T04:12:52.7470423Z 692dab4cd4df: Download complete 2025-03-14T04:12:52.8348679Z 2e13cb071445: Verifying Checksum 2025-03-14T04:12:52.8349068Z 2e13cb071445: Download complete 2025-03-14T04:12:52.9222983Z 12fc0b985540: Download complete 2025-03-14T04:12:52.9334773Z f53dff608124: Verifying Checksum 2025-03-14T04:12:52.9336430Z f53dff608124: Download complete 2025-03-14T04:12:53.0145360Z 9c0523cdc042: Verifying Checksum 2025-03-14T04:12:53.0150095Z 9c0523cdc042: Download complete 2025-03-14T04:12:53.0302289Z 76be39b43c8f: Verifying Checksum 2025-03-14T04:12:53.0302604Z 76be39b43c8f: Download complete 2025-03-14T04:12:53.0879058Z bbc30b7542d1: Download complete 2025-03-14T04:12:53.1744480Z 2a30d35d5515: Verifying Checksum 2025-03-14T04:12:53.1744849Z 2a30d35d5515: Download complete 2025-03-14T04:12:53.2558971Z 34c633845b89: Verifying Checksum 2025-03-14T04:12:53.2561812Z 34c633845b89: Download complete 2025-03-14T04:12:53.3336583Z f4328165c8f3: Verifying Checksum 2025-03-14T04:12:53.3337089Z f4328165c8f3: Download complete 2025-03-14T04:12:53.4077094Z ced742050257: Verifying Checksum 2025-03-14T04:12:53.4077494Z ced742050257: Download complete 2025-03-14T04:12:53.4947683Z 7543460794d1: Verifying Checksum 2025-03-14T04:12:53.4948088Z 7543460794d1: Download complete 2025-03-14T04:12:53.9843128Z 81f896b48ff0: Verifying Checksum 2025-03-14T04:12:53.9843440Z 81f896b48ff0: Download complete 2025-03-14T04:12:54.0747210Z f11b57697037: Download complete 2025-03-14T04:12:54.1685620Z d09490ef7bbf: Verifying Checksum 2025-03-14T04:12:54.1686008Z d09490ef7bbf: Download complete 2025-03-14T04:12:54.2500549Z 595c6ea973ce: Verifying Checksum 2025-03-14T04:12:54.2500889Z 595c6ea973ce: Download complete 2025-03-14T04:12:54.3446356Z b65570655a31: Verifying Checksum 2025-03-14T04:12:54.3446729Z b65570655a31: Download complete 2025-03-14T04:12:54.5932907Z f3024011b7b6: Verifying Checksum 2025-03-14T04:12:54.5933570Z f3024011b7b6: Download complete 2025-03-14T04:12:54.6876198Z 0b7e81f1bc5d: Download complete 2025-03-14T04:12:54.7838586Z c9603583aaa0: Download complete 2025-03-14T04:12:54.8630434Z 68f75179d122: Download complete 2025-03-14T04:12:54.9428861Z 2ce6ce002394: Download complete 2025-03-14T04:12:57.5445668Z a813b158a421: Verifying Checksum 2025-03-14T04:12:57.5448176Z a813b158a421: Download complete 2025-03-14T04:12:57.6312367Z 046ab5a4210d: Verifying Checksum 2025-03-14T04:12:57.6312730Z 046ab5a4210d: Download complete 2025-03-14T04:12:57.7138794Z da2b385f2f54: Download complete 2025-03-14T04:12:57.7907189Z 7bc635713dd5: Download complete 2025-03-14T04:13:01.2497152Z 8eb502731466: Pull complete 2025-03-14T04:13:01.2636016Z d4ce6a1f04ff: Pull complete 2025-03-14T04:13:01.2758239Z ca18d6003a18: Pull complete 2025-03-14T04:13:01.2896209Z f6b56646e2f0: Pull complete 2025-03-14T04:13:01.3044581Z 454c9d6c7abb: Pull complete 2025-03-14T04:13:01.3176534Z a66b8377f49f: Pull complete 2025-03-14T04:13:03.6733827Z c75867b7d634: Pull complete 2025-03-14T04:13:03.6890381Z 64866485623d: Pull complete 2025-03-14T04:13:03.7023175Z 04b678046b3a: Pull complete 2025-03-14T04:13:03.7154933Z 1e2892d1c0d6: Pull complete 2025-03-14T04:13:03.7267489Z 564c8877ceb5: Pull complete 2025-03-14T04:13:23.0181032Z 8d7dafab91e2: Verifying Checksum 2025-03-14T04:13:23.0181350Z 8d7dafab91e2: Download complete 2025-03-14T04:13:23.1174093Z 26ea03719a99: Verifying Checksum 2025-03-14T04:13:23.1179858Z 26ea03719a99: Download complete 2025-03-14T04:13:23.2278442Z f37a0227cb69: Verifying Checksum 2025-03-14T04:13:23.2281596Z f37a0227cb69: Download complete 2025-03-14T04:13:23.3406795Z 0bd4004e84e3: Verifying Checksum 2025-03-14T04:13:23.3407469Z 0bd4004e84e3: Download complete 2025-03-14T04:13:23.4367044Z 967b86e63131: Verifying Checksum 2025-03-14T04:13:23.4368895Z 967b86e63131: Download complete 2025-03-14T04:13:23.5057271Z 905d662f8eef: Verifying Checksum 2025-03-14T04:13:23.5058077Z 905d662f8eef: Download complete 2025-03-14T04:13:23.5812475Z 39fff80b800e: Verifying Checksum 2025-03-14T04:13:23.5812927Z 39fff80b800e: Download complete 2025-03-14T04:13:23.6717075Z d681503af97a: Verifying Checksum 2025-03-14T04:13:23.6717400Z d681503af97a: Download complete 2025-03-14T04:13:23.7790721Z acd125116d9b: Verifying Checksum 2025-03-14T04:13:23.7795039Z acd125116d9b: Download complete 2025-03-14T04:13:23.8791169Z 78b00f805b53: Verifying Checksum 2025-03-14T04:13:23.8794667Z 78b00f805b53: Download complete 2025-03-14T04:13:23.9461967Z 8b3d8ccc53ec: Verifying Checksum 2025-03-14T04:13:23.9467767Z 8b3d8ccc53ec: Download complete 2025-03-14T04:13:24.0154375Z 07259ecbb7c9: Download complete 2025-03-14T04:13:24.0961811Z afabfb1e9526: Download complete 2025-03-14T04:13:24.1907965Z 56aa7cdd744f: Verifying Checksum 2025-03-14T04:13:24.1908389Z 56aa7cdd744f: Download complete 2025-03-14T04:13:24.3092383Z 3d413cedb292: Download complete 2025-03-14T04:13:27.6710509Z c4d93cca7501: Verifying Checksum 2025-03-14T04:13:27.6711062Z c4d93cca7501: Download complete 2025-03-14T04:13:27.7742393Z be17a58842f0: Download complete 2025-03-14T04:13:27.8694002Z af209379fbc2: Verifying Checksum 2025-03-14T04:13:27.8694337Z af209379fbc2: Download complete 2025-03-14T04:13:27.9434941Z 879b59207c78: Download complete 2025-03-14T04:13:28.0251972Z 4918b9b279ff: Verifying Checksum 2025-03-14T04:13:28.0254931Z 4918b9b279ff: Download complete 2025-03-14T04:13:28.1465993Z f3e4cb9dda5d: Download complete 2025-03-14T04:13:28.2217745Z da83488e1344: Verifying Checksum 2025-03-14T04:13:28.2218094Z da83488e1344: Download complete 2025-03-14T04:13:29.3362809Z 78dfb83debe9: Verifying Checksum 2025-03-14T04:13:29.3363356Z 78dfb83debe9: Download complete 2025-03-14T04:14:07.0939093Z cb03b7532b5e: Verifying Checksum 2025-03-14T04:14:07.0939413Z cb03b7532b5e: Download complete 2025-03-14T04:14:12.6140816Z cd296e79aaba: Verifying Checksum 2025-03-14T04:14:12.6141218Z cd296e79aaba: Download complete 2025-03-14T04:14:20.0013066Z 8d7dafab91e2: Pull complete 2025-03-14T04:14:20.4829276Z 4f4fb700ef54: Pull complete 2025-03-14T04:14:20.9356095Z 3195860f4968: Pull complete 2025-03-14T04:14:21.4122729Z 64889f83e276: Pull complete 2025-03-14T04:14:21.6814939Z a2f45c18f0c1: Pull complete 2025-03-14T04:14:21.9374166Z 16d7101d1441: Pull complete 2025-03-14T04:14:22.2005154Z 9f39c1b701e2: Pull complete 2025-03-14T04:14:22.4390340Z 2edf8a767cf2: Pull complete 2025-03-14T04:14:22.7736535Z 6ee1d4017bc6: Pull complete 2025-03-14T04:14:23.3852268Z aa5b1d7b7a2c: Pull complete 2025-03-14T04:14:23.5178315Z 6100538713cb: Pull complete 2025-03-14T04:14:26.0551674Z f53dff608124: Pull complete 2025-03-14T04:14:26.3811172Z 692dab4cd4df: Pull complete 2025-03-14T04:14:26.7619709Z 2e13cb071445: Pull complete 2025-03-14T04:14:26.9179786Z 12fc0b985540: Pull complete 2025-03-14T04:14:26.9603695Z 9c0523cdc042: Pull complete 2025-03-14T04:14:27.0110452Z 76be39b43c8f: Pull complete 2025-03-14T04:14:35.9305087Z a813b158a421: Pull complete 2025-03-14T04:14:36.0425627Z bbc30b7542d1: Pull complete 2025-03-14T04:14:36.3769688Z 2a30d35d5515: Pull complete 2025-03-14T04:14:37.0219062Z 34c633845b89: Pull complete 2025-03-14T04:14:37.4897573Z f4328165c8f3: Pull complete 2025-03-14T04:14:38.3778963Z ced742050257: Pull complete 2025-03-14T04:14:38.8763969Z 7543460794d1: Pull complete 2025-03-14T04:14:41.7407765Z 81f896b48ff0: Pull complete 2025-03-14T04:14:42.1487181Z f11b57697037: Pull complete 2025-03-14T04:14:42.5196781Z d09490ef7bbf: Pull complete 2025-03-14T04:14:43.0291410Z 595c6ea973ce: Pull complete 2025-03-14T04:14:43.3901801Z b65570655a31: Pull complete 2025-03-14T04:14:44.1017710Z f3024011b7b6: Pull complete 2025-03-14T04:14:44.5775270Z 0b7e81f1bc5d: Pull complete 2025-03-14T04:14:45.0623101Z c9603583aaa0: Pull complete 2025-03-14T04:14:46.0177920Z 68f75179d122: Pull complete 2025-03-14T04:14:46.3397646Z 2ce6ce002394: Pull complete 2025-03-14T04:15:32.5386495Z cb03b7532b5e: Pull complete 2025-03-14T04:15:32.9618982Z 046ab5a4210d: Pull complete 2025-03-14T04:15:33.4112848Z da2b385f2f54: Pull complete 2025-03-14T04:15:34.2882884Z 7bc635713dd5: Pull complete 2025-03-14T04:17:10.1536930Z cd296e79aaba: Pull complete 2025-03-14T04:17:10.6048459Z 26ea03719a99: Pull complete 2025-03-14T04:17:11.9791561Z f37a0227cb69: Pull complete 2025-03-14T04:17:12.9078966Z 0bd4004e84e3: Pull complete 2025-03-14T04:17:13.3019973Z 967b86e63131: Pull complete 2025-03-14T04:17:14.1932875Z 905d662f8eef: Pull complete 2025-03-14T04:17:15.1138329Z 39fff80b800e: Pull complete 2025-03-14T04:17:15.5768496Z d681503af97a: Pull complete 2025-03-14T04:17:16.5221914Z acd125116d9b: Pull complete 2025-03-14T04:17:17.3898124Z 78b00f805b53: Pull complete 2025-03-14T04:17:17.8521475Z 8b3d8ccc53ec: Pull complete 2025-03-14T04:17:18.8397383Z 07259ecbb7c9: Pull complete 2025-03-14T04:17:19.2788407Z afabfb1e9526: Pull complete 2025-03-14T04:17:20.1389605Z 56aa7cdd744f: Pull complete 2025-03-14T04:17:20.5768396Z 3d413cedb292: Pull complete 2025-03-14T04:17:27.3428904Z c4d93cca7501: Pull complete 2025-03-14T04:17:27.7840203Z be17a58842f0: Pull complete 2025-03-14T04:17:28.2533346Z af209379fbc2: Pull complete 2025-03-14T04:17:28.7268356Z 879b59207c78: Pull complete 2025-03-14T04:17:29.2202845Z 4918b9b279ff: Pull complete 2025-03-14T04:17:29.6240941Z f3e4cb9dda5d: Pull complete 2025-03-14T04:17:30.5192032Z da83488e1344: Pull complete 2025-03-14T04:17:32.7383500Z 78dfb83debe9: Pull complete 2025-03-14T04:17:33.3980117Z Digest: sha256:2f16eb7d476b5dc359eb789543b0cfc9aa5c04fe105d51acd219f91259bad5ab 2025-03-14T04:17:33.4910066Z Status: Downloaded newer image for 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:17:33.5345096Z 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:17:33.5395114Z ##[group]Run echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:17:33.5395703Z echo "IN_CONTAINER_RUNNER=$(if [ -f /.inarc ] || [ -f /.incontainer ]; then echo true ; else echo false; fi)" >> "$GITHUB_OUTPUT" 2025-03-14T04:17:33.5402763Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:33.5403025Z env: 2025-03-14T04:17:33.5403207Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:33.5403405Z ##[endgroup] 2025-03-14T04:17:33.5477734Z Prepare all required actions 2025-03-14T04:17:33.5667957Z ##[group]Run ./.github/actions/get-workflow-job-id 2025-03-14T04:17:33.5668236Z with: 2025-03-14T04:17:33.5668625Z github-token: *** 2025-03-14T04:17:33.5668816Z env: 2025-03-14T04:17:33.5669007Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:33.5669221Z ##[endgroup] 2025-03-14T04:17:33.5984596Z ##[group]Run set -eux 2025-03-14T04:17:33.5984938Z set -eux 2025-03-14T04:17:33.5985292Z python3 .github/scripts/get_workflow_job_id.py "${GITHUB_RUN_ID}" "${RUNNER_NAME}" 2025-03-14T04:17:33.5990181Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:33.5990483Z env: 2025-03-14T04:17:33.5990676Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:33.5991186Z GITHUB_TOKEN: *** 2025-03-14T04:17:33.5991391Z ##[endgroup] 2025-03-14T04:17:33.6016030Z + python3 .github/scripts/get_workflow_job_id.py 13849515380 i-047a1559c2de50868 2025-03-14T04:17:34.2151949Z setting job-id=38754841598 2025-03-14T04:17:34.2156537Z setting job-name=linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:34.2467482Z ##[group]Run python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84 dataclasses_json==0.6.7 2025-03-14T04:17:34.2467960Z python3 -m pip install psutil==5.9.1 nvidia-ml-py==11.525.84 dataclasses_json==0.6.7 2025-03-14T04:17:34.2468334Z python3 -m tools.stats.monitor > usage_log.txt 2>&1 & 2025-03-14T04:17:34.2468649Z echo "monitor-script-pid=${!}" >> "${GITHUB_OUTPUT}" 2025-03-14T04:17:34.2473363Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:34.2473633Z env: 2025-03-14T04:17:34.2473819Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:34.2474023Z JOB_ID: 38754841598 2025-03-14T04:17:34.2474384Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:34.2474765Z WORKFLOW_NAME: inductor 2025-03-14T04:17:34.2474971Z WORKFLOW_RUN_ID: 13849515380 2025-03-14T04:17:34.2475191Z ##[endgroup] 2025-03-14T04:17:34.4188818Z Defaulting to user installation because normal site-packages is not writeable 2025-03-14T04:17:34.4325365Z Requirement already satisfied: psutil==5.9.1 in /home/ec2-user/.local/lib/python3.9/site-packages (5.9.1) 2025-03-14T04:17:34.4326298Z Requirement already satisfied: nvidia-ml-py==11.525.84 in /home/ec2-user/.local/lib/python3.9/site-packages (11.525.84) 2025-03-14T04:17:34.4330740Z Requirement already satisfied: dataclasses_json==0.6.7 in /home/ec2-user/.local/lib/python3.9/site-packages (0.6.7) 2025-03-14T04:17:34.4405455Z Requirement already satisfied: typing-inspect<1,>=0.4.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from dataclasses_json==0.6.7) (0.9.0) 2025-03-14T04:17:34.4407010Z Requirement already satisfied: marshmallow<4.0.0,>=3.18.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from dataclasses_json==0.6.7) (3.26.1) 2025-03-14T04:17:34.4465487Z Requirement already satisfied: packaging>=17.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from marshmallow<4.0.0,>=3.18.0->dataclasses_json==0.6.7) (24.2) 2025-03-14T04:17:34.4484754Z Requirement already satisfied: typing-extensions>=3.7.4 in /home/ec2-user/.local/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses_json==0.6.7) (4.12.2) 2025-03-14T04:17:34.4490709Z Requirement already satisfied: mypy-extensions>=0.3.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from typing-inspect<1,>=0.4.0->dataclasses_json==0.6.7) (1.0.0) 2025-03-14T04:17:34.5969154Z Prepare all required actions 2025-03-14T04:17:34.5969482Z Getting action download info 2025-03-14T04:17:34.7416783Z Download action repository 'seemethere/download-artifact-s3@v4' (SHA:1da556a7aa0a088e3153970611f6c432d58e80e6) 2025-03-14T04:17:35.6671780Z Download action repository 'actions/download-artifact@v4' (SHA:cc203385981b70ca67e1cc392babf9cc229d5806) 2025-03-14T04:17:38.6335521Z ##[group]Run ./.github/actions/download-build-artifacts 2025-03-14T04:17:38.6335791Z with: 2025-03-14T04:17:38.6336004Z name: linux-jammy-py3.9-gcc11-build 2025-03-14T04:17:38.6336236Z s3-bucket: gha-artifacts 2025-03-14T04:17:38.6336434Z env: 2025-03-14T04:17:38.6336607Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:38.6336802Z ##[endgroup] 2025-03-14T04:17:38.6496262Z ##[group]Run seemethere/download-artifact-s3@v4 2025-03-14T04:17:38.6496510Z with: 2025-03-14T04:17:38.6496700Z name: linux-jammy-py3.9-gcc11-build 2025-03-14T04:17:38.6496928Z s3-bucket: gha-artifacts 2025-03-14T04:17:38.6497187Z region: us-east-1 2025-03-14T04:17:38.6497364Z env: 2025-03-14T04:17:38.6497535Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:38.6497725Z ##[endgroup] 2025-03-14T04:17:39.2736665Z (node:227990) NOTE: We are formalizing our plans to enter AWS SDK for JavaScript (v2) into maintenance mode in 2023. 2025-03-14T04:17:39.2738625Z 2025-03-14T04:17:39.2738994Z Please migrate your code to use AWS SDK for JavaScript (v3). 2025-03-14T04:17:39.2739396Z For more information, check the migration guide at https://a.co/7PzMCcy 2025-03-14T04:17:39.2739948Z (Use `node --trace-warnings ...` to show where the warning was created) 2025-03-14T04:17:39.3655924Z Found 1 objects with prefix pytorch/pytorch/13849515380/linux-jammy-py3.9-gcc11-build/ 2025-03-14T04:17:39.3659203Z Starting download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2025-03-14T04:17:43.4343495Z Finished download (1/1): /home/ec2-user/actions-runner/_work/pytorch/pytorch/artifacts.zip 2025-03-14T04:17:43.4349295Z Artifact download has finished successfully 2025-03-14T04:17:43.4529825Z ##[group]Run unzip -o artifacts.zip 2025-03-14T04:17:43.4530083Z unzip -o artifacts.zip 2025-03-14T04:17:43.4534448Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:43.4534706Z env: 2025-03-14T04:17:43.4534876Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:43.4535072Z ##[endgroup] 2025-03-14T04:17:43.4567376Z Archive: artifacts.zip 2025-03-14T04:17:43.4567868Z creating: dist/ 2025-03-14T04:17:44.3323764Z inflating: dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl 2025-03-14T04:17:44.3429760Z inflating: dist/.ninja_log 2025-03-14T04:17:44.3431461Z creating: build/custom_test_artifacts/ 2025-03-14T04:17:44.3431794Z creating: build/custom_test_artifacts/custom-op-build/ 2025-03-14T04:17:44.3432131Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/ 2025-03-14T04:17:44.3432500Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/pkgRedirects/ 2025-03-14T04:17:44.3432967Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeConfigureLog.yaml 2025-03-14T04:17:44.3433372Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/ 2025-03-14T04:17:44.3433767Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeSystem.cmake 2025-03-14T04:17:44.3434186Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/ 2025-03-14T04:17:44.3434594Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/tmp/ 2025-03-14T04:17:44.3435613Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/CMakeCCompilerId.c 2025-03-14T04:17:44.3436153Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdC/a.out 2025-03-14T04:17:44.3441342Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeCCompiler.cmake 2025-03-14T04:17:44.3443767Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/ 2025-03-14T04:17:44.3444368Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/tmp/ 2025-03-14T04:17:44.3448627Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/CMakeCXXCompilerId.cpp 2025-03-14T04:17:44.3450758Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CompilerIdCXX/a.out 2025-03-14T04:17:44.3456474Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeCXXCompiler.cmake 2025-03-14T04:17:44.3458703Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_C.bin 2025-03-14T04:17:44.3462211Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_CXX.bin 2025-03-14T04:17:44.3462740Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeScratch/ 2025-03-14T04:17:44.3463196Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/cmake.check_cache 2025-03-14T04:17:44.3463731Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/ 2025-03-14T04:17:44.3464290Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.ts 2025-03-14T04:17:44.3464813Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/compiler_depend.make 2025-03-14T04:17:44.3465824Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/depend.make 2025-03-14T04:17:44.3466290Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/link.txt 2025-03-14T04:17:44.3466754Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/cmake_clean.cmake 2025-03-14T04:17:44.3467230Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/build.make 2025-03-14T04:17:44.3467701Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/DependInfo.cmake 2025-03-14T04:17:44.3468174Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/flags.make 2025-03-14T04:17:44.3468680Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/progress.make 2025-03-14T04:17:44.3469152Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o.d 2025-03-14T04:17:44.3626370Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/custom_ops.dir/op.cpp.o 2025-03-14T04:17:44.3627202Z creating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/ 2025-03-14T04:17:44.3627709Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.ts 2025-03-14T04:17:44.3628250Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/compiler_depend.make 2025-03-14T04:17:44.3628775Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/depend.make 2025-03-14T04:17:44.3629250Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/link.txt 2025-03-14T04:17:44.3629745Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/cmake_clean.cmake 2025-03-14T04:17:44.3630216Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/build.make 2025-03-14T04:17:44.3630685Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/DependInfo.cmake 2025-03-14T04:17:44.3631436Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/flags.make 2025-03-14T04:17:44.3631906Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/progress.make 2025-03-14T04:17:44.3646391Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o.d 2025-03-14T04:17:44.3714584Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/test_custom_ops.dir/test_custom_ops.cpp.o 2025-03-14T04:17:44.3717439Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/CMakeDirectoryInformation.cmake 2025-03-14T04:17:44.3718047Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/TargetDirectories.txt 2025-03-14T04:17:44.3718517Z extracting: build/custom_test_artifacts/custom-op-build/CMakeFiles/progress.marks 2025-03-14T04:17:44.3718939Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile2 2025-03-14T04:17:44.3719352Z inflating: build/custom_test_artifacts/custom-op-build/CMakeFiles/Makefile.cmake 2025-03-14T04:17:44.3719752Z inflating: build/custom_test_artifacts/custom-op-build/CMakeCache.txt 2025-03-14T04:17:44.3720121Z inflating: build/custom_test_artifacts/custom-op-build/Makefile 2025-03-14T04:17:44.3720480Z inflating: build/custom_test_artifacts/custom-op-build/cmake_install.cmake 2025-03-14T04:17:44.3857257Z inflating: build/custom_test_artifacts/custom-op-build/libcustom_ops.so 2025-03-14T04:17:44.3911215Z inflating: build/custom_test_artifacts/custom-op-build/test_custom_ops 2025-03-14T04:17:44.3916310Z creating: build/custom_test_artifacts/jit-hook-build/ 2025-03-14T04:17:44.3921914Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/ 2025-03-14T04:17:44.3924811Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/pkgRedirects/ 2025-03-14T04:17:44.3925312Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeConfigureLog.yaml 2025-03-14T04:17:44.3925736Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/ 2025-03-14T04:17:44.3926145Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeSystem.cmake 2025-03-14T04:17:44.3926574Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/ 2025-03-14T04:17:44.3926994Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/tmp/ 2025-03-14T04:17:44.3927460Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/CMakeCCompilerId.c 2025-03-14T04:17:44.3927932Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdC/a.out 2025-03-14T04:17:44.3928371Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeCCompiler.cmake 2025-03-14T04:17:44.3928794Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/ 2025-03-14T04:17:44.3929210Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/tmp/ 2025-03-14T04:17:44.3929922Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/CMakeCXXCompilerId.cpp 2025-03-14T04:17:44.3930991Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CompilerIdCXX/a.out 2025-03-14T04:17:44.3931465Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeCXXCompiler.cmake 2025-03-14T04:17:44.3931959Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_C.bin 2025-03-14T04:17:44.3932479Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_CXX.bin 2025-03-14T04:17:44.3932935Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeScratch/ 2025-03-14T04:17:44.3933330Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/cmake.check_cache 2025-03-14T04:17:44.3934256Z creating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/ 2025-03-14T04:17:44.3934735Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.ts 2025-03-14T04:17:44.3935238Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/compiler_depend.make 2025-03-14T04:17:44.3935824Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/depend.make 2025-03-14T04:17:44.3936275Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/link.txt 2025-03-14T04:17:44.3936731Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/cmake_clean.cmake 2025-03-14T04:17:44.3937193Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/build.make 2025-03-14T04:17:44.3937659Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/DependInfo.cmake 2025-03-14T04:17:44.3938126Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/flags.make 2025-03-14T04:17:44.3938578Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/progress.make 2025-03-14T04:17:44.3944456Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o.d 2025-03-14T04:17:44.3999328Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/test_jit_hooks.dir/test_jit_hooks.cpp.o 2025-03-14T04:17:44.4001266Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/CMakeDirectoryInformation.cmake 2025-03-14T04:17:44.4001873Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/TargetDirectories.txt 2025-03-14T04:17:44.4005322Z extracting: build/custom_test_artifacts/jit-hook-build/CMakeFiles/progress.marks 2025-03-14T04:17:44.4005856Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile2 2025-03-14T04:17:44.4010036Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeFiles/Makefile.cmake 2025-03-14T04:17:44.4014210Z inflating: build/custom_test_artifacts/jit-hook-build/CMakeCache.txt 2025-03-14T04:17:44.4016272Z inflating: build/custom_test_artifacts/jit-hook-build/Makefile 2025-03-14T04:17:44.4021347Z inflating: build/custom_test_artifacts/jit-hook-build/cmake_install.cmake 2025-03-14T04:17:44.4044691Z inflating: build/custom_test_artifacts/jit-hook-build/test_jit_hooks 2025-03-14T04:17:44.4045176Z creating: build/custom_test_artifacts/custom-backend-build/ 2025-03-14T04:17:44.4049104Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/ 2025-03-14T04:17:44.4051240Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/pkgRedirects/ 2025-03-14T04:17:44.4056431Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeConfigureLog.yaml 2025-03-14T04:17:44.4058807Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/ 2025-03-14T04:17:44.4059436Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeSystem.cmake 2025-03-14T04:17:44.4060875Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/ 2025-03-14T04:17:44.4061432Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/tmp/ 2025-03-14T04:17:44.4061938Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/CMakeCCompilerId.c 2025-03-14T04:17:44.4062434Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdC/a.out 2025-03-14T04:17:44.4062895Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeCCompiler.cmake 2025-03-14T04:17:44.4063348Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/ 2025-03-14T04:17:44.4063788Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/tmp/ 2025-03-14T04:17:44.4064620Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/CMakeCXXCompilerId.cpp 2025-03-14T04:17:44.4065152Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CompilerIdCXX/a.out 2025-03-14T04:17:44.4065645Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeCXXCompiler.cmake 2025-03-14T04:17:44.4066242Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_C.bin 2025-03-14T04:17:44.4066834Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/3.31.2/CMakeDetermineCompilerABI_CXX.bin 2025-03-14T04:17:44.4067322Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeScratch/ 2025-03-14T04:17:44.4067745Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/cmake.check_cache 2025-03-14T04:17:44.4068187Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/ 2025-03-14T04:17:44.4068672Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.ts 2025-03-14T04:17:44.4069217Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/compiler_depend.make 2025-03-14T04:17:44.4069739Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/depend.make 2025-03-14T04:17:44.4070224Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/link.txt 2025-03-14T04:17:44.4070726Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/cmake_clean.cmake 2025-03-14T04:17:44.4071224Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/build.make 2025-03-14T04:17:44.4071725Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/DependInfo.cmake 2025-03-14T04:17:44.4072231Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/flags.make 2025-03-14T04:17:44.4072732Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/progress.make 2025-03-14T04:17:44.4073266Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o.d 2025-03-14T04:17:44.4167228Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/custom_backend.dir/custom_backend.cpp.o 2025-03-14T04:17:44.4167800Z creating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/ 2025-03-14T04:17:44.4168835Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.ts 2025-03-14T04:17:44.4169463Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/compiler_depend.make 2025-03-14T04:17:44.4170073Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/depend.make 2025-03-14T04:17:44.4170586Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/link.txt 2025-03-14T04:17:44.4171108Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/cmake_clean.cmake 2025-03-14T04:17:44.4171667Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/build.make 2025-03-14T04:17:44.4172201Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/DependInfo.cmake 2025-03-14T04:17:44.4172731Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/flags.make 2025-03-14T04:17:44.4173250Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/progress.make 2025-03-14T04:17:44.4187016Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o.d 2025-03-14T04:17:44.4233682Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/test_custom_backend.dir/test_custom_backend.cpp.o 2025-03-14T04:17:44.4238362Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/CMakeDirectoryInformation.cmake 2025-03-14T04:17:44.4243732Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/TargetDirectories.txt 2025-03-14T04:17:44.4248145Z extracting: build/custom_test_artifacts/custom-backend-build/CMakeFiles/progress.marks 2025-03-14T04:17:44.4252221Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile2 2025-03-14T04:17:44.4257367Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeFiles/Makefile.cmake 2025-03-14T04:17:44.4262799Z inflating: build/custom_test_artifacts/custom-backend-build/CMakeCache.txt 2025-03-14T04:17:44.4263292Z inflating: build/custom_test_artifacts/custom-backend-build/Makefile 2025-03-14T04:17:44.4263689Z inflating: build/custom_test_artifacts/custom-backend-build/cmake_install.cmake 2025-03-14T04:17:44.4323438Z inflating: build/custom_test_artifacts/custom-backend-build/libcustom_backend.so 2025-03-14T04:17:44.4361578Z inflating: build/custom_test_artifacts/custom-backend-build/test_custom_backend 2025-03-14T04:17:44.4365556Z creating: build/lib/ 2025-03-14T04:17:44.4433529Z inflating: build/lib/libprotobuf-lite.a 2025-03-14T04:17:44.4815997Z inflating: build/lib/libprotobuf.a 2025-03-14T04:17:44.5246053Z inflating: build/lib/libprotoc.a 2025-03-14T04:17:44.5254220Z inflating: build/lib/libpthreadpool.a 2025-03-14T04:17:44.5258994Z inflating: build/lib/libcpuinfo.a 2025-03-14T04:17:44.5265832Z inflating: build/lib/libcpuinfo_internals.a 2025-03-14T04:17:44.5266101Z inflating: build/lib/libclog.a 2025-03-14T04:17:44.5271853Z inflating: build/lib/libnnpack_reference_layers.a 2025-03-14T04:17:44.5287210Z inflating: build/lib/libpytorch_qnnpack.a 2025-03-14T04:17:44.5449731Z inflating: build/lib/libmicrokernels-prod.a 2025-03-14T04:17:44.5465912Z inflating: build/lib/libnnpack.a 2025-03-14T04:17:44.6234125Z inflating: build/lib/libmicrokernels-all.a 2025-03-14T04:17:44.6295409Z inflating: build/lib/libgtest.a 2025-03-14T04:17:44.6309567Z inflating: build/lib/libgmock.a 2025-03-14T04:17:44.6312982Z inflating: build/lib/libgtest_main.a 2025-03-14T04:17:44.6316787Z inflating: build/lib/libgmock_main.a 2025-03-14T04:17:44.6389823Z inflating: build/lib/libXNNPACK.a 2025-03-14T04:17:44.6455116Z inflating: build/lib/libbenchmark.a 2025-03-14T04:17:44.6459156Z inflating: build/lib/libbenchmark_main.a 2025-03-14T04:17:44.6460922Z inflating: build/lib/libittnotify.a 2025-03-14T04:17:44.6519472Z inflating: build/lib/libasmjit.a 2025-03-14T04:17:44.7399724Z inflating: build/lib/libfbgemm.a 2025-03-14T04:17:44.7423475Z inflating: build/lib/libtensorpipe_uv.a 2025-03-14T04:17:44.7898685Z inflating: build/lib/libtensorpipe.a 2025-03-14T04:17:44.7997211Z inflating: build/lib/libgloo.a 2025-03-14T04:17:44.8030963Z inflating: build/lib/libonnx_proto.a 2025-03-14T04:17:44.8657555Z inflating: build/lib/libonnx.a 2025-03-14T04:17:45.7345784Z inflating: build/lib/libdnnl.a 2025-03-14T04:17:45.7360536Z inflating: build/lib/libfmt.a 2025-03-14T04:17:45.7588366Z inflating: build/lib/libkineto.a 2025-03-14T04:17:45.7685000Z inflating: build/lib/libc10.so 2025-03-14T04:17:45.7685459Z inflating: build/lib/libtorch_global_deps.so 2025-03-14T04:17:47.8783506Z inflating: build/lib/libtorch_cpu.so 2025-03-14T04:17:47.8783868Z inflating: build/lib/libunbox_lib.a 2025-03-14T04:17:47.8784436Z inflating: build/lib/libtorch.so 2025-03-14T04:17:47.8848335Z inflating: build/lib/libtorchbind_test.so 2025-03-14T04:17:47.8864359Z inflating: build/lib/libjitbackend_test.so 2025-03-14T04:17:47.8885886Z inflating: build/lib/libbackend_with_compiler.so 2025-03-14T04:17:47.8905648Z inflating: build/lib/libaoti_custom_ops.so 2025-03-14T04:17:47.8906063Z inflating: build/lib/libshm.so 2025-03-14T04:17:48.0569438Z inflating: build/lib/libtorch_python.so 2025-03-14T04:17:48.0599245Z inflating: build/lib/libnnapi_backend.so 2025-03-14T04:17:48.0601809Z creating: build/bin/ 2025-03-14T04:17:48.0602555Z creating: build/bin/CMakeFiles/ 2025-03-14T04:17:48.0603012Z inflating: build/bin/cmake_install.cmake 2025-03-14T04:17:48.0608120Z inflating: build/bin/CTestTestfile.cmake 2025-03-14T04:17:48.1009886Z inflating: build/bin/protoc-3.13.0.0 2025-03-14T04:17:48.1414208Z inflating: build/bin/protoc 2025-03-14T04:17:48.1462412Z inflating: build/bin/c10_CompileTimeFunctionPointer_test 2025-03-14T04:17:48.1512554Z inflating: build/bin/c10_DeviceGuard_test 2025-03-14T04:17:48.1562386Z inflating: build/bin/c10_Device_test 2025-03-14T04:17:48.1622056Z inflating: build/bin/c10_DispatchKeySet_test 2025-03-14T04:17:48.1671083Z inflating: build/bin/c10_StreamGuard_test 2025-03-14T04:17:48.1727289Z inflating: build/bin/c10_Scalar_test 2025-03-14T04:17:48.1778220Z inflating: build/bin/c10_SymInt_test 2025-03-14T04:17:48.1832681Z inflating: build/bin/c10_InlineStreamGuard_test 2025-03-14T04:17:48.1887475Z inflating: build/bin/c10_InlineDeviceGuard_test 2025-03-14T04:17:48.1942314Z inflating: build/bin/c10_SizesAndStrides_test 2025-03-14T04:17:48.2010955Z inflating: build/bin/c10_cow_test 2025-03-14T04:17:48.2061314Z inflating: build/bin/c10_ConstexprCrc_test 2025-03-14T04:17:48.2112497Z inflating: build/bin/c10_ArrayRef_test 2025-03-14T04:17:48.2164156Z inflating: build/bin/c10_Bitset_test 2025-03-14T04:17:48.2214297Z inflating: build/bin/c10_DeadlockDetection_test 2025-03-14T04:17:48.2264919Z inflating: build/bin/c10_Half_test 2025-03-14T04:17:48.2321344Z inflating: build/bin/c10_LeftRight_test 2025-03-14T04:17:48.2372039Z inflating: build/bin/c10_NetworkFlow_test 2025-03-14T04:17:48.2427028Z inflating: build/bin/c10_Metaprogramming_test 2025-03-14T04:17:48.2477542Z inflating: build/bin/c10_Synchronized_test 2025-03-14T04:17:48.2528056Z inflating: build/bin/c10_TypeIndex_test 2025-03-14T04:17:48.2582415Z inflating: build/bin/c10_ThreadLocal_test 2025-03-14T04:17:48.2631610Z inflating: build/bin/c10_TypeList_test 2025-03-14T04:17:48.2679099Z inflating: build/bin/c10_TypeTraits_test 2025-03-14T04:17:48.2727420Z inflating: build/bin/c10_accumulate_test 2025-03-14T04:17:48.2776857Z inflating: build/bin/c10_bit_cast_test 2025-03-14T04:17:48.2831753Z inflating: build/bin/c10_complex_math_test 2025-03-14T04:17:48.2884810Z inflating: build/bin/c10_bfloat16_test 2025-03-14T04:17:48.2940208Z inflating: build/bin/c10_complex_test 2025-03-14T04:17:48.2988328Z inflating: build/bin/c10_error_test 2025-03-14T04:17:48.3039329Z inflating: build/bin/c10_exception_test 2025-03-14T04:17:48.3086375Z inflating: build/bin/c10_flags_test 2025-03-14T04:17:48.3237098Z inflating: build/bin/c10_intrusive_ptr_test 2025-03-14T04:17:48.3287964Z inflating: build/bin/c10_generic_math_test 2025-03-14T04:17:48.3336602Z inflating: build/bin/c10_irange_test 2025-03-14T04:17:48.3390170Z inflating: build/bin/c10_lazy_test 2025-03-14T04:17:48.3445347Z inflating: build/bin/c10_logging_test 2025-03-14T04:17:48.3497558Z inflating: build/bin/c10_registry_test 2025-03-14T04:17:48.3557035Z inflating: build/bin/c10_ordered_preserving_dict_test 2025-03-14T04:17:48.3628600Z inflating: build/bin/c10_optional_test 2025-03-14T04:17:48.3769054Z inflating: build/bin/c10_small_vector_test 2025-03-14T04:17:48.3819036Z inflating: build/bin/c10_ssize_test 2025-03-14T04:17:48.3866998Z inflating: build/bin/c10_string_util_test 2025-03-14T04:17:48.3918786Z inflating: build/bin/c10_tempfile_test 2025-03-14T04:17:48.3960706Z inflating: build/bin/c10_intrusive_ptr_benchmark 2025-03-14T04:17:48.4008526Z inflating: build/bin/c10_string_view_test 2025-03-14T04:17:48.4076019Z inflating: build/bin/c10_typeid_test 2025-03-14T04:17:48.4419205Z inflating: build/bin/vec_test_all_types_DEFAULT 2025-03-14T04:17:48.4791265Z inflating: build/bin/vec_test_all_types_AVX512 2025-03-14T04:17:48.5168354Z inflating: build/bin/vec_test_all_types_AVX2 2025-03-14T04:17:48.5224420Z inflating: build/bin/test_edge_op_registration 2025-03-14T04:17:48.5274263Z inflating: build/bin/static_runtime_bench 2025-03-14T04:17:48.5495108Z inflating: build/bin/static_runtime_test 2025-03-14T04:17:48.5572748Z inflating: build/bin/Dict_test 2025-03-14T04:17:48.5617721Z inflating: build/bin/Dimname_test 2025-03-14T04:17:48.5676189Z inflating: build/bin/MaybeOwned_test 2025-03-14T04:17:48.5732148Z inflating: build/bin/NamedTensor_test 2025-03-14T04:17:48.5789764Z inflating: build/bin/apply_utils_test 2025-03-14T04:17:48.5858549Z inflating: build/bin/atest 2025-03-14T04:17:48.5905521Z inflating: build/bin/basic 2025-03-14T04:17:48.5958732Z inflating: build/bin/broadcast_test 2025-03-14T04:17:48.6007952Z inflating: build/bin/cpu_allocator_test 2025-03-14T04:17:48.6064424Z inflating: build/bin/cpu_generator_test 2025-03-14T04:17:48.6118202Z inflating: build/bin/cpu_profiling_allocator_test 2025-03-14T04:17:48.6201750Z inflating: build/bin/cpu_rng_test 2025-03-14T04:17:48.6277865Z inflating: build/bin/dispatch_key_set_test 2025-03-14T04:17:48.6301187Z inflating: build/bin/dlconvertor_test 2025-03-14T04:17:48.6354247Z inflating: build/bin/extension_backend_test 2025-03-14T04:17:48.6413192Z inflating: build/bin/half_test 2025-03-14T04:17:48.6512908Z inflating: build/bin/ivalue_test 2025-03-14T04:17:48.6551983Z inflating: build/bin/lazy_tensor_test 2025-03-14T04:17:48.6610626Z inflating: build/bin/math_kernel_test 2025-03-14T04:17:48.6655848Z inflating: build/bin/memory_format_test 2025-03-14T04:17:48.6706904Z inflating: build/bin/memory_overlapping_test 2025-03-14T04:17:48.6762698Z inflating: build/bin/mobile_memory_cleanup 2025-03-14T04:17:48.6813426Z inflating: build/bin/native_test 2025-03-14T04:17:48.6863415Z inflating: build/bin/operator_name_test 2025-03-14T04:17:48.6947342Z inflating: build/bin/operators_test 2025-03-14T04:17:48.6997593Z inflating: build/bin/packedtensoraccessor_test 2025-03-14T04:17:48.7061671Z inflating: build/bin/pow_test 2025-03-14T04:17:48.7121162Z inflating: build/bin/quantized_test 2025-03-14T04:17:48.7169052Z inflating: build/bin/reduce_ops_test 2025-03-14T04:17:48.7220786Z inflating: build/bin/reportMemoryUsage_test 2025-03-14T04:17:48.7277198Z inflating: build/bin/scalar_tensor_test 2025-03-14T04:17:48.7334318Z inflating: build/bin/scalar_test 2025-03-14T04:17:48.7382884Z inflating: build/bin/StorageUtils_test 2025-03-14T04:17:48.7442769Z inflating: build/bin/stride_properties_test 2025-03-14T04:17:48.7509117Z inflating: build/bin/tensor_iterator_test 2025-03-14T04:17:48.7569790Z inflating: build/bin/test_parallel 2025-03-14T04:17:48.7571756Z inflating: build/bin/thread_init_test 2025-03-14T04:17:48.7618036Z inflating: build/bin/type_ptr_test 2025-03-14T04:17:48.7674997Z inflating: build/bin/type_test 2025-03-14T04:17:48.7724266Z inflating: build/bin/undefined_tensor_test 2025-03-14T04:17:48.7726551Z inflating: build/bin/verify_api_visibility 2025-03-14T04:17:48.7791468Z inflating: build/bin/legacy_vmap_test 2025-03-14T04:17:48.7841905Z inflating: build/bin/weakref_test 2025-03-14T04:17:48.7890917Z inflating: build/bin/wrapdim_test 2025-03-14T04:17:48.7940632Z inflating: build/bin/xla_tensor_test 2025-03-14T04:17:48.8002485Z inflating: build/bin/IListRef_test 2025-03-14T04:17:48.8097140Z inflating: build/bin/List_test 2025-03-14T04:17:48.8161809Z inflating: build/bin/KernelFunction_test 2025-03-14T04:17:48.8270388Z inflating: build/bin/kernel_function_legacy_test 2025-03-14T04:17:48.8358947Z inflating: build/bin/kernel_function_test 2025-03-14T04:17:48.8475301Z inflating: build/bin/kernel_lambda_legacy_test 2025-03-14T04:17:48.8571173Z inflating: build/bin/kernel_lambda_test 2025-03-14T04:17:48.8630475Z inflating: build/bin/kernel_stackbased_test 2025-03-14T04:17:48.8725663Z inflating: build/bin/make_boxed_from_unboxed_functor_test 2025-03-14T04:17:48.8770720Z inflating: build/bin/CppSignature_test 2025-03-14T04:17:48.8825187Z inflating: build/bin/backend_fallback_test 2025-03-14T04:17:48.8867986Z inflating: build/bin/op_allowlist_test 2025-03-14T04:17:48.9145192Z inflating: build/bin/op_registration_test 2025-03-14T04:17:48.9206415Z inflating: build/bin/inline_container_test 2025-03-14T04:17:48.9714984Z inflating: build/bin/test_jit 2025-03-14T04:17:49.0411681Z inflating: build/bin/test_tensorexpr 2025-03-14T04:17:49.0461168Z inflating: build/bin/BackoffTest 2025-03-14T04:17:49.0516881Z inflating: build/bin/HashStoreTest 2025-03-14T04:17:49.0568920Z inflating: build/bin/FileStoreTest 2025-03-14T04:17:49.0620593Z inflating: build/bin/TCPStoreTest 2025-03-14T04:17:49.0631387Z inflating: build/bin/tutorial_tensorexpr 2025-03-14T04:17:49.0634578Z inflating: build/bin/example_allreduce 2025-03-14T04:17:49.0696466Z inflating: build/bin/ProcessGroupGlooTest 2025-03-14T04:17:49.0749456Z inflating: build/bin/test_dist_autograd 2025-03-14T04:17:49.0815163Z inflating: build/bin/test_cpp_rpc 2025-03-14T04:17:49.1816667Z inflating: build/bin/test_api 2025-03-14T04:17:49.1818974Z inflating: build/bin/parallel_benchmark 2025-03-14T04:17:49.1882843Z inflating: build/bin/test_mobile_nnc 2025-03-14T04:17:49.1889792Z inflating: build/bin/aot_model_compiler_test 2025-03-14T04:17:49.2204359Z inflating: build/bin/test_lazy 2025-03-14T04:17:49.2207114Z inflating: build/bin/torch_shm_manager 2025-03-14T04:17:49.2207567Z creating: .additional_ci_files/ 2025-03-14T04:17:49.2302324Z inflating: .additional_ci_files/test-times.json 2025-03-14T04:17:49.2663795Z inflating: .additional_ci_files/test-class-times.json 2025-03-14T04:17:49.3057963Z ##[group]Run rm artifacts.zip 2025-03-14T04:17:49.3058213Z rm artifacts.zip 2025-03-14T04:17:49.3062715Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:49.3062973Z env: 2025-03-14T04:17:49.3063144Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:49.3063362Z ##[endgroup] 2025-03-14T04:17:49.3619424Z ##[group]Run df -H 2025-03-14T04:17:49.3619649Z df -H 2025-03-14T04:17:49.3624399Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:49.3624671Z env: 2025-03-14T04:17:49.3624853Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:49.3625058Z ##[endgroup] 2025-03-14T04:17:49.3663408Z Filesystem Size Used Avail Use% Mounted on 2025-03-14T04:17:49.3663732Z devtmpfs 4.2M 0 4.2M 0% /dev 2025-03-14T04:17:49.3664082Z tmpfs 67G 0 67G 0% /dev/shm 2025-03-14T04:17:49.3664448Z tmpfs 27G 783k 27G 1% /run 2025-03-14T04:17:49.3664687Z /dev/nvme0n1p1 215G 49G 167G 23% / 2025-03-14T04:17:49.3664928Z tmpfs 67G 29k 67G 1% /tmp 2025-03-14T04:17:49.3665172Z /dev/nvme0n1p128 11M 1.4M 9.2M 13% /boot/efi 2025-03-14T04:17:49.3688957Z Prepare all required actions 2025-03-14T04:17:49.3689293Z Getting action download info 2025-03-14T04:17:49.5064025Z ##[group]Run ./.github/actions/download-td-artifacts 2025-03-14T04:17:49.5064457Z with: 2025-03-14T04:17:49.5064694Z env: 2025-03-14T04:17:49.5064960Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:49.5065222Z ##[endgroup] 2025-03-14T04:17:49.5203026Z ##[group]Run seemethere/download-artifact-s3@v4 2025-03-14T04:17:49.5203452Z with: 2025-03-14T04:17:49.5203697Z name: td_results 2025-03-14T04:17:49.5203955Z s3-bucket: gha-artifacts 2025-03-14T04:17:49.5204212Z region: us-east-1 2025-03-14T04:17:49.5204423Z env: 2025-03-14T04:17:49.5204807Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:49.5205066Z ##[endgroup] 2025-03-14T04:17:49.8917035Z (node:228011) NOTE: We are formalizing our plans to enter AWS SDK for JavaScript (v2) into maintenance mode in 2023. 2025-03-14T04:17:49.8921308Z 2025-03-14T04:17:49.8925174Z Please migrate your code to use AWS SDK for JavaScript (v3). 2025-03-14T04:17:49.8926570Z For more information, check the migration guide at https://a.co/7PzMCcy 2025-03-14T04:17:49.8927005Z (Use `node --trace-warnings ...` to show where the warning was created) 2025-03-14T04:17:49.9679079Z Found 0 objects with prefix pytorch/pytorch/13849515380/td_results/ 2025-03-14T04:17:49.9683669Z Artifact download has finished successfully 2025-03-14T04:17:50.0063584Z ##[group]Run mkdir -p .additional_ci_files 2025-03-14T04:17:50.0095068Z mkdir -p .additional_ci_files 2025-03-14T04:17:50.0095628Z mv td_results.json .additional_ci_files/td_results.json || true 2025-03-14T04:17:50.0100895Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:50.0101189Z env: 2025-03-14T04:17:50.0101380Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.0101580Z ##[endgroup] 2025-03-14T04:17:50.0149049Z mv: cannot stat 'td_results.json': No such file or directory 2025-03-14T04:17:50.0382325Z ##[group]Run .github/scripts/parse_ref.py 2025-03-14T04:17:50.0382639Z .github/scripts/parse_ref.py 2025-03-14T04:17:50.0387683Z shell: /usr/bin/bash -e {0} 2025-03-14T04:17:50.0387897Z env: 2025-03-14T04:17:50.0388073Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.0388265Z ##[endgroup] 2025-03-14T04:17:50.0660772Z Prepare all required actions 2025-03-14T04:17:50.0661356Z Getting action download info 2025-03-14T04:17:50.1862324Z ##[group]Run ./.github/actions/filter-test-configs 2025-03-14T04:17:50.1862585Z with: 2025-03-14T04:17:50.1862990Z github-token: *** 2025-03-14T04:17:50.1864692Z test-matrix: {"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]} 2025-03-14T04:17:50.1866431Z job-name: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:50.1866782Z env: 2025-03-14T04:17:50.1866964Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.1867164Z ##[endgroup] 2025-03-14T04:17:50.2180151Z ##[group]Run nick-fields/retry@v3.0.0 2025-03-14T04:17:50.2180390Z with: 2025-03-14T04:17:50.2180559Z shell: bash 2025-03-14T04:17:50.2180740Z timeout_minutes: 10 2025-03-14T04:17:50.2180921Z max_attempts: 5 2025-03-14T04:17:50.2181158Z retry_wait_seconds: 30 2025-03-14T04:17:50.2181891Z command: set -eux # PyYAML 6.0 doesn't work with MacOS x86 anymore # This must run on Python-3.7 (AmazonLinux2) so can't use request=3.32.2 python3 -m pip install requests==2.27.1 pyyaml==6.0.1 2025-03-14T04:17:50.2182382Z polling_interval_seconds: 1 2025-03-14T04:17:50.2182609Z warning_on_retry: true 2025-03-14T04:17:50.2182824Z continue_on_error: false 2025-03-14T04:17:50.2183012Z env: 2025-03-14T04:17:50.2183177Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:50.2183589Z GITHUB_TOKEN: *** 2025-03-14T04:17:50.2183770Z ##[endgroup] 2025-03-14T04:17:50.3035020Z + python3 -m pip install requests==2.27.1 pyyaml==6.0.1 2025-03-14T04:17:50.4724854Z Defaulting to user installation because normal site-packages is not writeable 2025-03-14T04:17:50.4852956Z Requirement already satisfied: requests==2.27.1 in /home/ec2-user/.local/lib/python3.9/site-packages (2.27.1) 2025-03-14T04:17:50.4854846Z Requirement already satisfied: pyyaml==6.0.1 in /home/ec2-user/.local/lib/python3.9/site-packages (6.0.1) 2025-03-14T04:17:50.4936676Z Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3.9/site-packages (from requests==2.27.1) (1.25.10) 2025-03-14T04:17:50.4940102Z Requirement already satisfied: charset-normalizer~=2.0.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from requests==2.27.1) (2.0.12) 2025-03-14T04:17:50.4945162Z Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3.9/site-packages (from requests==2.27.1) (2.10) 2025-03-14T04:17:50.4951205Z Requirement already satisfied: certifi>=2017.4.17 in /home/ec2-user/.local/lib/python3.9/site-packages (from requests==2.27.1) (2025.1.31) 2025-03-14T04:17:51.2821277Z Command completed after 1 attempt(s). 2025-03-14T04:17:51.3053481Z ##[group]Run set -x 2025-03-14T04:17:51.3053717Z set -x 2025-03-14T04:17:51.3053888Z  2025-03-14T04:17:51.3054153Z # Use relative path here as this could be checked out anywhere, not necessarily 2025-03-14T04:17:51.3054460Z # in runner workspace 2025-03-14T04:17:51.3054725Z python3 "${GITHUB_ACTION_PATH}/../../scripts/parse_ref.py" 2025-03-14T04:17:51.3059578Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:51.3059835Z env: 2025-03-14T04:17:51.3060020Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:51.3060378Z ##[endgroup] 2025-03-14T04:17:51.3120702Z + python3 /home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/filter-test-configs/../../scripts/parse_ref.py 2025-03-14T04:17:51.3534295Z ##[group]Run echo "Workflow: ${GITHUB_WORKFLOW}" 2025-03-14T04:17:51.3534605Z echo "Workflow: ${GITHUB_WORKFLOW}" 2025-03-14T04:17:51.3534842Z echo "Job name: ${JOB_NAME}" 2025-03-14T04:17:51.3535051Z  2025-03-14T04:17:51.3535336Z # Use relative path here as this could be checked out anywhere, not necessarily 2025-03-14T04:17:51.3535647Z # in runner workspace 2025-03-14T04:17:51.3535930Z python3 "${GITHUB_ACTION_PATH}/../../scripts/filter_test_configs.py" \ 2025-03-14T04:17:51.3536236Z  --workflow "${GITHUB_WORKFLOW}" \ 2025-03-14T04:17:51.3536467Z  --job-name "${JOB_NAME}" \ 2025-03-14T04:17:51.3538011Z  --test-matrix "{"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]}" \ 2025-03-14T04:17:51.3539552Z  --selected-test-configs "" \ 2025-03-14T04:17:51.3539791Z  --pr-number "${PR_NUMBER}" \ 2025-03-14T04:17:51.3540020Z  --tag "${TAG}" \ 2025-03-14T04:17:51.3540239Z  --event-name "${EVENT_NAME}" \ 2025-03-14T04:17:51.3540479Z  --schedule "${SCHEDULE}" \ 2025-03-14T04:17:51.3540700Z  --branch "${HEAD_BRANCH}" 2025-03-14T04:17:51.3545433Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:51.3545695Z env: 2025-03-14T04:17:51.3545884Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:51.3546296Z GITHUB_TOKEN: *** 2025-03-14T04:17:51.3546640Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:51.3547118Z PR_NUMBER: 2025-03-14T04:17:51.3547294Z TAG: 2025-03-14T04:17:51.3547455Z EVENT_NAME: push 2025-03-14T04:17:51.3547635Z SCHEDULE: 2025-03-14T04:17:51.3547810Z HEAD_BRANCH: 2025-03-14T04:17:51.3547990Z ##[endgroup] 2025-03-14T04:17:51.3571983Z Workflow: inductor 2025-03-14T04:17:51.3572546Z Job name: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:51.5494958Z ##[group]Run echo "Filtered matrix:" 2025-03-14T04:17:51.5495230Z echo "Filtered matrix:" 2025-03-14T04:17:51.5496712Z echo "{"include": [{"config": "cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_huggingface", "shard": 1, "num_shards": 1, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_timm", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 1, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "dynamic_cpu_inductor_torchbench", "shard": 2, "num_shards": 2, "runner": "linux.8xlarge.amx"}, {"config": "inductor_torchbench_cpu_smoketest_perf", "shard": 1, "num_shards": 1, "runner": "linux.24xl.spr-metal"}]}" 2025-03-14T04:17:51.5498192Z  2025-03-14T04:17:51.5498489Z echo 2025-03-14T04:17:51.5498711Z echo "Is the current job unstable? False" 2025-03-14T04:17:51.5498959Z  2025-03-14T04:17:51.5499129Z echo 2025-03-14T04:17:51.5499342Z echo "Is keep-going label set? False" 2025-03-14T04:17:51.5499579Z  2025-03-14T04:17:51.5499745Z echo 2025-03-14T04:17:51.5499947Z echo "Renabled issues? " 2025-03-14T04:17:51.5504783Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:51.5505046Z env: 2025-03-14T04:17:51.5505235Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:51.5505435Z ##[endgroup] 2025-03-14T04:17:51.5597294Z Filtered matrix: 2025-03-14T04:17:51.5601064Z {include: [{config: cpu_inductor_torchbench, shard: 1, num_shards: 2, runner: linux.8xlarge.amx}, {config: cpu_inductor_torchbench, shard: 2, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_huggingface, shard: 1, num_shards: 1, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_timm, shard: 1, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_timm, shard: 2, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_torchbench, shard: 1, num_shards: 2, runner: linux.8xlarge.amx}, {config: dynamic_cpu_inductor_torchbench, shard: 2, num_shards: 2, runner: linux.8xlarge.amx}, {config: inductor_torchbench_cpu_smoketest_perf, shard: 1, num_shards: 1, runner: linux.24xl.spr-metal}]} 2025-03-14T04:17:51.5602480Z 2025-03-14T04:17:51.5602569Z Is the current job unstable? False 2025-03-14T04:17:51.5602714Z 2025-03-14T04:17:51.5602797Z Is keep-going label set? False 2025-03-14T04:17:51.5602932Z 2025-03-14T04:17:51.5603006Z Renabled issues? 2025-03-14T04:17:51.5811719Z ##[group]Run echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}" 2025-03-14T04:17:51.5812084Z echo "timeout=$((JOB_TIMEOUT-30))" >> "${GITHUB_OUTPUT}" 2025-03-14T04:17:51.5816943Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T04:17:51.5817206Z env: 2025-03-14T04:17:51.5817378Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:51.5817569Z JOB_TIMEOUT: 240 2025-03-14T04:17:51.5817741Z ##[endgroup] 2025-03-14T04:17:51.6133127Z ##[group]Run set -x 2025-03-14T04:17:51.6133425Z set -x 2025-03-14T04:17:51.6133623Z  2025-03-14T04:17:51.6134392Z if [[ $TEST_CONFIG == 'multigpu' ]]; then 2025-03-14T04:17:51.6134678Z  TEST_COMMAND=.ci/pytorch/multigpu-test.sh 2025-03-14T04:17:51.6135134Z elif [[ $BUILD_ENVIRONMENT == *onnx* ]]; then 2025-03-14T04:17:51.6135386Z  TEST_COMMAND=.ci/onnx/test.sh 2025-03-14T04:17:51.6135609Z else 2025-03-14T04:17:51.6135807Z  TEST_COMMAND=.ci/pytorch/test.sh 2025-03-14T04:17:51.6136030Z fi 2025-03-14T04:17:51.6136197Z  2025-03-14T04:17:51.6136398Z # Leaving 1GB for the runner and other things 2025-03-14T04:17:51.6136777Z TOTAL_AVAILABLE_MEMORY_IN_GB=$(awk '/MemTotal/ { printf "%.3f \n", $2/1024/1024 - 1 }' /proc/meminfo) 2025-03-14T04:17:51.6137366Z # https://docs.docker.com/engine/containers/resource_constraints/#--memory-swap-details, the 3GB swap 2025-03-14T04:17:51.6137803Z # comes from https://github.com/pytorch/test-infra/pull/6058 2025-03-14T04:17:51.6138144Z TOTAL_MEMORY_WITH_SWAP=$(("${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}" + 3)) 2025-03-14T04:17:51.6138415Z  2025-03-14T04:17:51.6138624Z if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then 2025-03-14T04:17:51.6138862Z  SHM_OPTS= 2025-03-14T04:17:51.6139054Z  JENKINS_USER= 2025-03-14T04:17:51.6139306Z  # ensure that docker container cleanly exits in 12 hours 2025-03-14T04:17:51.6139617Z  # if for some reason cleanup action doesn't stop container 2025-03-14T04:17:51.6139884Z  # when job is cancelled 2025-03-14T04:17:51.6140111Z  DOCKER_SHELL_CMD="sleep 12h" 2025-03-14T04:17:51.6140331Z  2025-03-14T04:17:51.6140579Z  # since some steps are skipped on s390x, if they are necessary, run them here 2025-03-14T04:17:51.6140923Z  env | grep '^GITHUB' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:17:51.6141217Z  env | grep '^CI' >> "/tmp/github_env_${GITHUB_RUN_ID}" 2025-03-14T04:17:51.6141460Z else 2025-03-14T04:17:51.6141656Z  SHM_OPTS="--shm-size=${SHM_SIZE}" 2025-03-14T04:17:51.6142561Z  JENKINS_USER="--user jenkins" 2025-03-14T04:17:51.6142799Z  DOCKER_SHELL_CMD= 2025-03-14T04:17:51.6142998Z fi 2025-03-14T04:17:51.6143166Z  2025-03-14T04:17:51.6143408Z # detached container should get cleaned up by teardown_ec2_linux 2025-03-14T04:17:51.6143750Z # TODO: Stop building test binaries as part of the build phase 2025-03-14T04:17:51.6144191Z # Used for GPU_FLAG, SHM_OPTS, JENKINS_USER and DOCKER_SHELL_CMD since that doesn't play nice 2025-03-14T04:17:51.6144544Z # shellcheck disable=SC2086,SC2090 2025-03-14T04:17:51.6144784Z container_name=$(docker run \ 2025-03-14T04:17:51.6145013Z  ${GPU_FLAG:-} \ 2025-03-14T04:17:51.6145249Z  ${SCCACHE_SERVER_PORT_DOCKER_FLAG:-} \ 2025-03-14T04:17:51.6145504Z  -e BUILD_ENVIRONMENT \ 2025-03-14T04:17:51.6145714Z  -e PR_NUMBER \ 2025-03-14T04:17:51.6145914Z  -e GITHUB_ACTIONS \ 2025-03-14T04:17:51.6146119Z  -e GITHUB_REPOSITORY \ 2025-03-14T04:17:51.6146327Z  -e GITHUB_WORKFLOW \ 2025-03-14T04:17:51.6146529Z  -e GITHUB_JOB \ 2025-03-14T04:17:51.6146724Z  -e GITHUB_RUN_ID \ 2025-03-14T04:17:51.6146925Z  -e GITHUB_RUN_NUMBER \ 2025-03-14T04:17:51.6147131Z  -e GITHUB_RUN_ATTEMPT \ 2025-03-14T04:17:51.6147347Z  -e JOB_ID \ 2025-03-14T04:17:51.6147548Z  -e JOB_NAME \ 2025-03-14T04:17:51.6147747Z  -e BASE_SHA \ 2025-03-14T04:17:51.6147944Z  -e BRANCH \ 2025-03-14T04:17:51.6148138Z  -e SHA1 \ 2025-03-14T04:17:51.6148339Z  -e AWS_DEFAULT_REGION \ 2025-03-14T04:17:51.6148683Z  -e IN_WHEEL_TEST \ 2025-03-14T04:17:51.6148899Z  -e SHARD_NUMBER \ 2025-03-14T04:17:51.6149109Z  -e TEST_CONFIG \ 2025-03-14T04:17:51.6149322Z  -e NUM_TEST_SHARDS \ 2025-03-14T04:17:51.6149543Z  -e REENABLED_ISSUES \ 2025-03-14T04:17:51.6149825Z  -e CONTINUE_THROUGH_ERROR \ 2025-03-14T04:17:51.6150043Z  -e VERBOSE_TEST_LOGS \ 2025-03-14T04:17:51.6150258Z  -e TEST_SHOWLOCALS \ 2025-03-14T04:17:51.6150469Z  -e NO_TEST_TIMEOUT \ 2025-03-14T04:17:51.6150675Z  -e NO_TD \ 2025-03-14T04:17:51.6150875Z  -e TD_DISTRIBUTED \ 2025-03-14T04:17:51.6151086Z  -e PR_LABELS \ 2025-03-14T04:17:51.6151314Z  -e MAX_JOBS="$(nproc --ignore=2)" \ 2025-03-14T04:17:51.6151560Z  -e SCCACHE_BUCKET \ 2025-03-14T04:17:51.6151772Z  -e SCCACHE_REGION \ 2025-03-14T04:17:51.6151977Z  -e XLA_CUDA \ 2025-03-14T04:17:51.6152198Z  -e XLA_CLANG_CACHE_S3_BUCKET_NAME \ 2025-03-14T04:17:51.6152497Z  -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK \ 2025-03-14T04:17:51.6152752Z  -e PYTORCH_TEST_RERUN_DISABLED_TESTS \ 2025-03-14T04:17:51.6153011Z  -e SKIP_SCCACHE_INITIALIZATION=1 \ 2025-03-14T04:17:51.6153257Z  -e HUGGING_FACE_HUB_TOKEN \ 2025-03-14T04:17:51.6153502Z  -e SCRIBE_GRAPHQL_ACCESS_TOKEN \ 2025-03-14T04:17:51.6153737Z  -e DASHBOARD_TAG \ 2025-03-14T04:17:51.6153946Z  -e IS_A100_RUNNER \ 2025-03-14T04:17:51.6154162Z  -e ARTIFACTS_FILE_SUFFIX \ 2025-03-14T04:17:51.6154421Z  --memory="${TOTAL_AVAILABLE_MEMORY_IN_GB%.*}g" \ 2025-03-14T04:17:51.6154713Z  --memory-swap="${TOTAL_MEMORY_WITH_SWAP}g" \ 2025-03-14T04:17:51.6155005Z  --env-file="/tmp/github_env_${GITHUB_RUN_ID}" \ 2025-03-14T04:17:51.6155289Z  --security-opt seccomp=unconfined \ 2025-03-14T04:17:51.6155535Z  --cap-add=SYS_PTRACE \ 2025-03-14T04:17:51.6155759Z  --ipc=host \ 2025-03-14T04:17:51.6155959Z  ${SHM_OPTS} \ 2025-03-14T04:17:51.6156154Z  --tty \ 2025-03-14T04:17:51.6156341Z  --detach \ 2025-03-14T04:17:51.6156548Z  --name="${container_name}" \ 2025-03-14T04:17:51.6156775Z  ${JENKINS_USER} \ 2025-03-14T04:17:51.6157021Z  -v "${GITHUB_WORKSPACE}:/var/lib/jenkins/workspace" \ 2025-03-14T04:17:51.6157284Z  -w /var/lib/jenkins/workspace \ 2025-03-14T04:17:51.6157504Z  "${DOCKER_IMAGE}" \ 2025-03-14T04:17:51.6157694Z  ${DOCKER_SHELL_CMD} 2025-03-14T04:17:51.6157882Z ) 2025-03-14T04:17:51.6158091Z # Propagate download.pytorch.org IP to container 2025-03-14T04:17:51.6158498Z grep download.pytorch.org /etc/hosts | docker exec -i "${container_name}" sudo bash -c "/bin/cat >> /etc/hosts" 2025-03-14T04:17:51.6158927Z echo "DOCKER_CONTAINER_ID=${container_name}" >> "${GITHUB_ENV}" 2025-03-14T04:17:51.6159193Z  2025-03-14T04:17:51.6159390Z if [[ ${BUILD_ENVIRONMENT} == *"s390x"* ]]; then 2025-03-14T04:17:51.6159745Z  docker exec -t "${container_name}" sh -c "python3 -m pip install -r .ci/docker/requirements-ci.txt" 2025-03-14T04:17:51.6160066Z fi 2025-03-14T04:17:51.6160232Z  2025-03-14T04:17:51.6160544Z docker exec -t "${container_name}" sh -c "python3 -m pip install $(echo dist/*.whl)[opt-einsum] && ${TEST_COMMAND}" 2025-03-14T04:17:51.6165247Z shell: /usr/bin/bash -e {0} 2025-03-14T04:17:51.6165456Z env: 2025-03-14T04:17:51.6165647Z GIT_DEFAULT_BRANCH: main 2025-03-14T04:17:51.6165880Z BUILD_ENVIRONMENT: linux-jammy-py3.9-gcc11-build 2025-03-14T04:17:51.6166122Z PR_NUMBER: 2025-03-14T04:17:51.6166308Z GITHUB_REPOSITORY: pytorch/pytorch 2025-03-14T04:17:51.6166533Z GITHUB_WORKFLOW: inductor 2025-03-14T04:17:51.6166728Z GITHUB_JOB: test 2025-03-14T04:17:51.6166909Z GITHUB_RUN_ID: 13849515380 2025-03-14T04:17:51.6167176Z GITHUB_RUN_NUMBER: 122697 2025-03-14T04:17:51.6167375Z GITHUB_RUN_ATTEMPT: 1 2025-03-14T04:17:51.6167562Z JOB_ID: 38754841598 2025-03-14T04:17:51.6167902Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:17:51.6168251Z BRANCH: main 2025-03-14T04:17:51.6168496Z SHA1: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:17:51.6168753Z BASE_SHA: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:17:51.6168990Z TEST_CONFIG: cpu_inductor_torchbench 2025-03-14T04:17:51.6169204Z SHARD_NUMBER: 1 2025-03-14T04:17:51.6169378Z NUM_TEST_SHARDS: 2 2025-03-14T04:17:51.6169560Z REENABLED_ISSUES: 2025-03-14T04:17:51.6169747Z CONTINUE_THROUGH_ERROR: False 2025-03-14T04:17:51.6169950Z VERBOSE_TEST_LOGS: False 2025-03-14T04:17:51.6170143Z TEST_SHOWLOCALS: False 2025-03-14T04:17:51.6170331Z NO_TEST_TIMEOUT: False 2025-03-14T04:17:51.6170514Z NO_TD: False 2025-03-14T04:17:51.6170682Z TD_DISTRIBUTED: False 2025-03-14T04:17:51.6170905Z SCCACHE_BUCKET: ossci-compiler-cache-circleci-v2 2025-03-14T04:17:51.6171148Z SCCACHE_REGION: us-east-1 2025-03-14T04:17:51.6171341Z SHM_SIZE: 1g 2025-03-14T04:17:51.6171799Z DOCKER_IMAGE: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:17:51.6172278Z XLA_CUDA: 2025-03-14T04:17:51.6172525Z XLA_CLANG_CACHE_S3_BUCKET_NAME: ossci-compiler-clang-cache-circleci-xla 2025-03-14T04:17:51.6172831Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK: 0 2025-03-14T04:17:51.6173056Z PYTORCH_TEST_RERUN_DISABLED_TESTS: 0 2025-03-14T04:17:51.6173262Z DASHBOARD_TAG: 2025-03-14T04:17:51.6173674Z HUGGING_FACE_HUB_TOKEN: *** 2025-03-14T04:17:51.6173956Z SCRIBE_GRAPHQL_ACCESS_TOKEN: *** 2025-03-14T04:17:51.6174168Z IS_A100_RUNNER: 0 2025-03-14T04:17:51.6174454Z ARTIFACTS_FILE_SUFFIX: test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T04:17:51.6174769Z ##[endgroup] 2025-03-14T04:17:51.6201416Z + [[ cpu_inductor_torchbench == \m\u\l\t\i\g\p\u ]] 2025-03-14T04:17:51.6206021Z + [[ linux-jammy-py3.9-gcc11-build == *onnx* ]] 2025-03-14T04:17:51.6210953Z + TEST_COMMAND=.ci/pytorch/test.sh 2025-03-14T04:17:51.6215724Z ++ awk '/MemTotal/ { printf "%.3f \n", $2/1024/1024 - 1 }' /proc/meminfo 2025-03-14T04:17:51.6220793Z + TOTAL_AVAILABLE_MEMORY_IN_GB='122.780 ' 2025-03-14T04:17:51.6221089Z + TOTAL_MEMORY_WITH_SWAP=125 2025-03-14T04:17:51.6221344Z + [[ linux-jammy-py3.9-gcc11-build == *\s\3\9\0\x* ]] 2025-03-14T04:17:51.6221603Z + SHM_OPTS=--shm-size=1g 2025-03-14T04:17:51.6221812Z + JENKINS_USER='--user jenkins' 2025-03-14T04:17:51.6222015Z + DOCKER_SHELL_CMD= 2025-03-14T04:17:51.6229775Z +++ nproc --ignore=2 2025-03-14T04:17:51.6240081Z ++ docker run -e BUILD_ENVIRONMENT -e PR_NUMBER -e GITHUB_ACTIONS -e GITHUB_REPOSITORY -e GITHUB_WORKFLOW -e GITHUB_JOB -e GITHUB_RUN_ID -e GITHUB_RUN_NUMBER -e GITHUB_RUN_ATTEMPT -e JOB_ID -e JOB_NAME -e BASE_SHA -e BRANCH -e SHA1 -e AWS_DEFAULT_REGION -e IN_WHEEL_TEST -e SHARD_NUMBER -e TEST_CONFIG -e NUM_TEST_SHARDS -e REENABLED_ISSUES -e CONTINUE_THROUGH_ERROR -e VERBOSE_TEST_LOGS -e TEST_SHOWLOCALS -e NO_TEST_TIMEOUT -e NO_TD -e TD_DISTRIBUTED -e PR_LABELS -e MAX_JOBS=30 -e SCCACHE_BUCKET -e SCCACHE_REGION -e XLA_CUDA -e XLA_CLANG_CACHE_S3_BUCKET_NAME -e PYTORCH_TEST_CUDA_MEM_LEAK_CHECK -e PYTORCH_TEST_RERUN_DISABLED_TESTS -e SKIP_SCCACHE_INITIALIZATION=1 -e HUGGING_FACE_HUB_TOKEN -e SCRIBE_GRAPHQL_ACCESS_TOKEN -e DASHBOARD_TAG -e IS_A100_RUNNER -e ARTIFACTS_FILE_SUFFIX --memory=122g --memory-swap=125g --env-file=/tmp/github_env_13849515380 --security-opt seccomp=unconfined --cap-add=SYS_PTRACE --ipc=host --shm-size=1g --tty --detach --name= --user jenkins -v /home/ec2-user/actions-runner/_work/pytorch/pytorch:/var/lib/jenkins/workspace -w /var/lib/jenkins/workspace 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T04:18:46.5771540Z + container_name=2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T04:18:46.5772009Z + grep download.pytorch.org /etc/hosts 2025-03-14T04:18:46.5775546Z + docker exec -i 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 sudo bash -c '/bin/cat >> /etc/hosts' 2025-03-14T04:18:46.6777770Z + echo DOCKER_CONTAINER_ID=2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T04:18:46.6778296Z + [[ linux-jammy-py3.9-gcc11-build == *\s\3\9\0\x* ]] 2025-03-14T04:18:46.6780604Z ++ echo dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl 2025-03-14T04:18:46.6788486Z + docker exec -t 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 sh -c 'python3 -m pip install dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl[opt-einsum] && .ci/pytorch/test.sh' 2025-03-14T04:18:47.0767442Z Processing ./dist/torch-2.8.0a0+gitaed0b7a-cp39-cp39-linux_x86_64.whl (from torch==2.8.0a0+gitaed0b7a) 2025-03-14T04:18:47.2553863Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.16.1) 2025-03-14T04:18:47.2554674Z Requirement already satisfied: typing-extensions>=4.10.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (4.12.2) 2025-03-14T04:18:47.2746717Z Collecting sympy>=1.13.3 (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) 2025-03-14T04:18:47.2765457Z Using cached sympy-1.13.3-py3-none-any.whl.metadata (12 kB) 2025-03-14T04:18:47.2775700Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (2.8.8) 2025-03-14T04:18:47.2776723Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.1.6) 2025-03-14T04:18:47.2777738Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (2024.10.0) 2025-03-14T04:18:47.2796203Z Requirement already satisfied: opt-einsum>=3.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.3.0) 2025-03-14T04:18:47.2812474Z Requirement already satisfied: numpy>=1.7 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from opt-einsum>=3.3->torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (1.22.4) 2025-03-14T04:18:47.2818012Z Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from sympy>=1.13.3->torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (1.3.0) 2025-03-14T04:18:47.3093250Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from jinja2->torch==2.8.0a0+gitaed0b7a->torch==2.8.0a0+gitaed0b7a) (3.0.2) 2025-03-14T04:18:47.3160647Z Using cached sympy-1.13.3-py3-none-any.whl (6.2 MB) 2025-03-14T04:18:47.8326600Z Installing collected packages: sympy, torch 2025-03-14T04:18:47.8328684Z Attempting uninstall: sympy 2025-03-14T04:18:47.8338411Z Found existing installation: sympy 1.13.1 2025-03-14T04:18:47.9236188Z Uninstalling sympy-1.13.1: 2025-03-14T04:18:48.4105566Z Successfully uninstalled sympy-1.13.1 2025-03-14T04:18:57.6218543Z ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. 2025-03-14T04:18:57.6219338Z timm 1.0.14 requires torchvision, which is not installed. 2025-03-14T04:18:57.6219781Z Successfully installed sympy-1.13.3 torch-2.8.0a0+gitaed0b7a 2025-03-14T04:18:57.7132278Z + export TERM=vt100 2025-03-14T04:18:57.7132548Z + TERM=vt100 2025-03-14T04:18:57.7132747Z ++ dirname .ci/pytorch/test.sh 2025-03-14T04:18:57.7141446Z + source .ci/pytorch/common.sh 2025-03-14T04:18:57.7141757Z +++ dirname .ci/pytorch/common.sh 2025-03-14T04:18:57.7153935Z ++ source .ci/pytorch/common_utils.sh 2025-03-14T04:18:57.7157630Z +++ declare -f -t trap_add 2025-03-14T04:18:57.7157882Z ++ set -ex -o pipefail 2025-03-14T04:18:57.7158113Z ++ [[ linux-jammy-py3.9-gcc11-build == *rocm* ]] 2025-03-14T04:18:57.7158364Z ++ BUILD_TEST_LIBTORCH=0 2025-03-14T04:18:57.7158592Z + [[ linux-jammy-py3.9-gcc11-build != *rocm* ]] 2025-03-14T04:18:57.7159129Z + [[ linux-jammy-py3.9-gcc11-build != *s390x* ]] 2025-03-14T04:18:57.7159380Z + [[ -d /var/lib/jenkins/workspace ]] 2025-03-14T04:18:57.7159616Z ++ stat -c %u /var/lib/jenkins/workspace 2025-03-14T04:18:57.7168640Z + WORKSPACE_ORIGINAL_OWNER_ID=1000 2025-03-14T04:18:57.7168924Z + trap_add cleanup_workspace EXIT 2025-03-14T04:18:57.7169164Z + trap_add_cmd=cleanup_workspace 2025-03-14T04:18:57.7169375Z + shift 2025-03-14T04:18:57.7169550Z + for trap_add_name in "$@" 2025-03-14T04:18:57.7175414Z +++ trap -p EXIT 2025-03-14T04:18:57.7175772Z ++ eval 'extract_trap_cmd ' 2025-03-14T04:18:57.7176101Z +++ extract_trap_cmd 2025-03-14T04:18:57.7176350Z +++ printf '%s\n' '' 2025-03-14T04:18:57.7177898Z ++ printf '%s\n' cleanup_workspace 2025-03-14T04:18:57.7178284Z + trap -- ' 2025-03-14T04:18:57.7178503Z cleanup_workspace' EXIT 2025-03-14T04:18:57.7178760Z + sudo chown -R jenkins /var/lib/jenkins/workspace 2025-03-14T04:18:58.0651208Z + git config --global --add safe.directory /var/lib/jenkins/workspace 2025-03-14T04:18:58.0669723Z + echo 'Environment variables:' 2025-03-14T04:18:58.0689944Z Environment variables: 2025-03-14T04:18:58.0691942Z + env 2025-03-14T04:18:58.0692356Z INSTALLED_DB=yes 2025-03-14T04:18:58.0692731Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T04:18:58.0693049Z CONTINUE_THROUGH_ERROR=False 2025-03-14T04:18:58.0693315Z BUILD_ENVIRONMENT=linux-jammy-py3.9-gcc11-build 2025-03-14T04:18:58.0693556Z HOSTNAME=2160b5b633d5 2025-03-14T04:18:58.0693924Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0694297Z GITHUB_ACTION=__self 2025-03-14T04:18:58.0694525Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2025-03-14T04:18:58.0694742Z GITHUB_RUN_NUMBER=122697 2025-03-14T04:18:58.0694945Z TEST_CONFIG=cpu_inductor_torchbench 2025-03-14T04:18:58.0695159Z GITHUB_REPOSITORY_OWNER_ID=21003710 2025-03-14T04:18:58.0695389Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2025-03-14T04:18:58.0695613Z IS_A100_RUNNER=0 2025-03-14T04:18:58.0696008Z SCRIBE_GRAPHQL_ACCESS_TOKEN=*** 2025-03-14T04:18:58.0696230Z GITHUB_TRIGGERING_ACTOR=pytorchmergebot 2025-03-14T04:18:58.0696447Z GITHUB_REF_TYPE=branch 2025-03-14T04:18:58.0696641Z TORCH_CUDA_ARCH_LIST=Maxwell 2025-03-14T04:18:58.0696870Z BASE_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0697111Z XLA_CUDA= 2025-03-14T04:18:58.0697347Z HUGGING_FACE_HUB_TOKEN=*** 2025-03-14T04:18:58.0704532Z *** 2025-03-14T04:18:58.0704830Z GITHUB_REPOSITORY_ID=65600975 2025-03-14T04:18:58.0705063Z GITHUB_ACTIONS=true 2025-03-14T04:18:58.0705277Z SHA1=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0705569Z GITHUB_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0705920Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/inductor.yml@refs/heads/main 2025-03-14T04:18:58.0706234Z UCC_HOME=/usr 2025-03-14T04:18:58.0706418Z VERBOSE_TEST_LOGS=False 2025-03-14T04:18:58.0706619Z GITHUB_REF=refs/heads/main 2025-03-14T04:18:58.0706823Z SHARD_NUMBER=1 2025-03-14T04:18:58.0707001Z GITHUB_REF_PROTECTED=true 2025-03-14T04:18:58.0707201Z HOME=/var/lib/jenkins 2025-03-14T04:18:58.0707420Z GITHUB_API_URL=https://api.github.com 2025-03-14T04:18:58.0707665Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2025-03-14T04:18:58.0707880Z UCX_COMMIT= 2025-03-14T04:18:58.0708049Z NUM_TEST_SHARDS=2 2025-03-14T04:18:58.0708227Z UCX_HOME=/usr 2025-03-14T04:18:58.0708599Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0709146Z JOB_NAME=linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:18:58.0709885Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0710383Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2025-03-14T04:18:58.0710702Z GITHUB_EVENT_NAME=push 2025-03-14T04:18:58.0710997Z DASHBOARD_TAG= 2025-03-14T04:18:58.0711180Z GITHUB_RUN_ID=13849515380 2025-03-14T04:18:58.0711582Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0712000Z GITHUB_ACTOR=pytorchmergebot 2025-03-14T04:18:58.0712205Z PR_NUMBER= 2025-03-14T04:18:58.0712364Z DESIRED_CUDA= 2025-03-14T04:18:58.0712544Z GITHUB_RUN_ATTEMPT=1 2025-03-14T04:18:58.0712742Z ANACONDA_PYTHON_VERSION=3.9 2025-03-14T04:18:58.0712985Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2025-03-14T04:18:58.0713226Z TERM=vt100 2025-03-14T04:18:58.0713394Z INSTALLED_VISION=yes 2025-03-14T04:18:58.0713578Z BRANCH=main 2025-03-14T04:18:58.0713755Z SCCACHE_REGION=us-east-1 2025-03-14T04:18:58.0713965Z OPENSSL_ROOT_DIR=/opt/openssl 2025-03-14T04:18:58.0714176Z CUDA_PATH=/usr/local/cuda 2025-03-14T04:18:58.0714513Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2025-03-14T04:18:58.0714883Z GITHUB_SERVER_URL=https://github.com 2025-03-14T04:18:58.0715104Z UCC_COMMIT= 2025-03-14T04:18:58.0715274Z REENABLED_ISSUES= 2025-03-14T04:18:58.0715444Z DOCS=yes 2025-03-14T04:18:58.0715609Z SHLVL=1 2025-03-14T04:18:58.0715770Z MAX_JOBS=30 2025-03-14T04:18:58.0715942Z GITHUB_ACTOR_ID=97764156 2025-03-14T04:18:58.0716188Z GITHUB_WORKFLOW_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0716527Z GITHUB_REF_NAME=main 2025-03-14T04:18:58.0716795Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2025-03-14T04:18:58.0717078Z GITHUB_JOB=test 2025-03-14T04:18:58.0717258Z NO_TEST_TIMEOUT=False 2025-03-14T04:18:58.0717447Z TD_DISTRIBUTED=False 2025-03-14T04:18:58.0717651Z GITHUB_REPOSITORY=pytorch/pytorch 2025-03-14T04:18:58.0717870Z GITHUB_RETENTION_DAYS=90 2025-03-14T04:18:58.0718069Z OPENSSL_DIR=/opt/openssl 2025-03-14T04:18:58.0718264Z GITHUB_ACTION_REPOSITORY= 2025-03-14T04:18:58.0718743Z PATH=/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:18:58.0719220Z GITHUB_BASE_REF= 2025-03-14T04:18:58.0719387Z INSTALLED_ACL= 2025-03-14T04:18:58.0719661Z ARTIFACTS_FILE_SUFFIX=test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T04:18:58.0719969Z CI=true 2025-03-14T04:18:58.0720139Z GITHUB_REPOSITORY_OWNER=pytorch 2025-03-14T04:18:58.0720339Z JOB_ID=38754841598 2025-03-14T04:18:58.0720515Z INSTALLED_PROTOBUF=yes 2025-03-14T04:18:58.0720693Z GITHUB_HEAD_REF= 2025-03-14T04:18:58.0720867Z GITHUB_ACTION_REF= 2025-03-14T04:18:58.0721074Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2025-03-14T04:18:58.0721310Z TEST_SHOWLOCALS=False 2025-03-14T04:18:58.0721496Z GITHUB_WORKFLOW=inductor 2025-03-14T04:18:58.0721693Z DEBIAN_FRONTEND=noninteractive 2025-03-14T04:18:58.0722072Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0722450Z NO_TD=False 2025-03-14T04:18:58.0722624Z SKIP_SCCACHE_INITIALIZATION=1 2025-03-14T04:18:58.0722820Z _=/usr/bin/env 2025-03-14T04:18:58.0723041Z ++ python -c 'import site; print(site.getsitepackages()[0])' 2025-03-14T04:18:58.0925134Z + TORCH_INSTALL_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch 2025-03-14T04:18:58.0925734Z + TORCH_BIN_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/bin 2025-03-14T04:18:58.0926179Z + TORCH_LIB_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib 2025-03-14T04:18:58.0927182Z + TORCH_TEST_DIR=/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/test 2025-03-14T04:18:58.0927545Z + BUILD_DIR=build 2025-03-14T04:18:58.0928116Z + BUILD_RENAMED_DIR=build_renamed 2025-03-14T04:18:58.0928358Z + BUILD_BIN_DIR=build/bin 2025-03-14T04:18:58.0928565Z + SHARD_NUMBER=1 2025-03-14T04:18:58.0928748Z + NUM_TEST_SHARDS=2 2025-03-14T04:18:58.0928960Z + export TORCH_SERIALIZATION_DEBUG=1 2025-03-14T04:18:58.0929190Z + TORCH_SERIALIZATION_DEBUG=1 2025-03-14T04:18:58.0929550Z + export VALGRIND=ON 2025-03-14T04:18:58.0929741Z + VALGRIND=ON 2025-03-14T04:18:58.0929956Z + [[ linux-jammy-py3.9-gcc11-build == *clang9* ]] 2025-03-14T04:18:58.0930219Z + [[ linux-jammy-py3.9-gcc11-build == *xpu* ]] 2025-03-14T04:18:58.0930476Z + [[ linux-jammy-py3.9-gcc11-build == *s390x* ]] 2025-03-14T04:18:58.0930707Z + [[ 0 == \1 ]] 2025-03-14T04:18:58.0930887Z + [[ False == \1 ]] 2025-03-14T04:18:58.0931091Z + [[ linux-jammy-py3.9-gcc11-build != *bazel* ]] 2025-03-14T04:18:58.0938824Z ++ realpath build/custom_test_artifacts 2025-03-14T04:18:58.0949022Z + CUSTOM_TEST_ARTIFACT_BUILD_DIR=/var/lib/jenkins/workspace/build/custom_test_artifacts 2025-03-14T04:18:58.0949555Z + [[ -n '' ]] 2025-03-14T04:18:58.0949943Z + echo 'Environment variables' 2025-03-14T04:18:58.0950226Z Environment variables 2025-03-14T04:18:58.0950727Z + env 2025-03-14T04:18:58.0955554Z INSTALLED_DB=yes 2025-03-14T04:18:58.0955984Z GITHUB_WORKSPACE=/home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T04:18:58.0956394Z CONTINUE_THROUGH_ERROR=False 2025-03-14T04:18:58.0957253Z BUILD_ENVIRONMENT=linux-jammy-py3.9-gcc11-build 2025-03-14T04:18:58.0957564Z HOSTNAME=2160b5b633d5 2025-03-14T04:18:58.0958017Z GITHUB_PATH=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/add_path_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0958463Z GITHUB_ACTION=__self 2025-03-14T04:18:58.0958681Z PYTORCH_TEST_CUDA_MEM_LEAK_CHECK=0 2025-03-14T04:18:58.0958912Z GITHUB_RUN_NUMBER=122697 2025-03-14T04:18:58.0959130Z TEST_CONFIG=cpu_inductor_torchbench 2025-03-14T04:18:58.0959357Z GITHUB_REPOSITORY_OWNER_ID=21003710 2025-03-14T04:18:58.0959599Z TORCH_NVCC_FLAGS=-Xfatbin -compress-all 2025-03-14T04:18:58.0959854Z IS_A100_RUNNER=0 2025-03-14T04:18:58.0960345Z SCRIBE_GRAPHQL_ACCESS_TOKEN=*** 2025-03-14T04:18:58.0960582Z GITHUB_TRIGGERING_ACTOR=pytorchmergebot 2025-03-14T04:18:58.0960811Z GITHUB_REF_TYPE=branch 2025-03-14T04:18:58.0961010Z TORCH_CUDA_ARCH_LIST=Maxwell 2025-03-14T04:18:58.0961246Z BASE_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0961496Z XLA_CUDA= 2025-03-14T04:18:58.0961740Z HUGGING_FACE_HUB_TOKEN=*** 2025-03-14T04:18:58.0962160Z *** 2025-03-14T04:18:58.0962340Z GITHUB_REPOSITORY_ID=65600975 2025-03-14T04:18:58.0962549Z GITHUB_ACTIONS=true 2025-03-14T04:18:58.0962757Z SHA1=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0963018Z GITHUB_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0963362Z GITHUB_WORKFLOW_REF=pytorch/pytorch/.github/workflows/inductor.yml@refs/heads/main 2025-03-14T04:18:58.0963677Z UCC_HOME=/usr 2025-03-14T04:18:58.0963860Z TORCH_SERIALIZATION_DEBUG=1 2025-03-14T04:18:58.0964066Z VERBOSE_TEST_LOGS=False 2025-03-14T04:18:58.0964268Z GITHUB_REF=refs/heads/main 2025-03-14T04:18:58.0964451Z SHARD_NUMBER=1 2025-03-14T04:18:58.0964632Z GITHUB_REF_PROTECTED=true 2025-03-14T04:18:58.0964831Z HOME=/var/lib/jenkins 2025-03-14T04:18:58.0965043Z GITHUB_API_URL=https://api.github.com 2025-03-14T04:18:58.0965275Z PYTORCH_TEST_RERUN_DISABLED_TESTS=0 2025-03-14T04:18:58.0965490Z UCX_COMMIT= 2025-03-14T04:18:58.0965654Z NUM_TEST_SHARDS=2 2025-03-14T04:18:58.0965828Z UCX_HOME=/usr 2025-03-14T04:18:58.0966193Z GITHUB_STATE=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/save_state_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0966734Z JOB_NAME=linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T04:18:58.0967260Z GITHUB_ENV=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_env_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0967744Z GITHUB_EVENT_PATH=/home/ec2-user/actions-runner/_work/_temp/_github_workflow/event.json 2025-03-14T04:18:58.0968248Z GITHUB_EVENT_NAME=push 2025-03-14T04:18:58.0968450Z DASHBOARD_TAG= 2025-03-14T04:18:58.0968632Z GITHUB_RUN_ID=13849515380 2025-03-14T04:18:58.0969032Z GITHUB_STEP_SUMMARY=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/step_summary_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0969510Z GITHUB_ACTOR=pytorchmergebot 2025-03-14T04:18:58.0969713Z PR_NUMBER= 2025-03-14T04:18:58.0969879Z DESIRED_CUDA= 2025-03-14T04:18:58.0970045Z GITHUB_RUN_ATTEMPT=1 2025-03-14T04:18:58.0970232Z VALGRIND=ON 2025-03-14T04:18:58.0970410Z ANACONDA_PYTHON_VERSION=3.9 2025-03-14T04:18:58.0970654Z GITHUB_GRAPHQL_URL=https://api.github.com/graphql 2025-03-14T04:18:58.0970892Z TERM=vt100 2025-03-14T04:18:58.0971061Z INSTALLED_VISION=yes 2025-03-14T04:18:58.0971240Z BRANCH=main 2025-03-14T04:18:58.0971416Z SCCACHE_REGION=us-east-1 2025-03-14T04:18:58.0971620Z OPENSSL_ROOT_DIR=/opt/openssl 2025-03-14T04:18:58.0971829Z CUDA_PATH=/usr/local/cuda 2025-03-14T04:18:58.0972168Z GITHUB_ACTION_PATH=/home/ec2-user/actions-runner/_work/pytorch/pytorch/./.github/actions/setup-linux 2025-03-14T04:18:58.0972529Z GITHUB_SERVER_URL=https://github.com 2025-03-14T04:18:58.0972743Z UCC_COMMIT= 2025-03-14T04:18:58.0972912Z REENABLED_ISSUES= 2025-03-14T04:18:58.0973091Z DOCS=yes 2025-03-14T04:18:58.0973245Z SHLVL=1 2025-03-14T04:18:58.0973412Z MAX_JOBS=30 2025-03-14T04:18:58.0973586Z GITHUB_ACTOR_ID=97764156 2025-03-14T04:18:58.0973851Z GITHUB_WORKFLOW_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T04:18:58.0974120Z GITHUB_REF_NAME=main 2025-03-14T04:18:58.0974390Z XLA_CLANG_CACHE_S3_BUCKET_NAME=ossci-compiler-clang-cache-circleci-xla 2025-03-14T04:18:58.0974678Z GITHUB_JOB=test 2025-03-14T04:18:58.0974855Z NO_TEST_TIMEOUT=False 2025-03-14T04:18:58.0975044Z TD_DISTRIBUTED=False 2025-03-14T04:18:58.0975243Z GITHUB_REPOSITORY=pytorch/pytorch 2025-03-14T04:18:58.0975465Z GITHUB_RETENTION_DAYS=90 2025-03-14T04:18:58.0975662Z OPENSSL_DIR=/opt/openssl 2025-03-14T04:18:58.0975862Z GITHUB_ACTION_REPOSITORY= 2025-03-14T04:18:58.0976340Z PATH=/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:18:58.0976809Z GITHUB_BASE_REF= 2025-03-14T04:18:58.0976989Z INSTALLED_ACL= 2025-03-14T04:18:58.0977269Z ARTIFACTS_FILE_SUFFIX=test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T04:18:58.0977581Z CI=true 2025-03-14T04:18:58.0977758Z GITHUB_REPOSITORY_OWNER=pytorch 2025-03-14T04:18:58.0977956Z JOB_ID=38754841598 2025-03-14T04:18:58.0978136Z INSTALLED_PROTOBUF=yes 2025-03-14T04:18:58.0978324Z GITHUB_HEAD_REF= 2025-03-14T04:18:58.0978501Z GITHUB_ACTION_REF= 2025-03-14T04:18:58.0978715Z SCCACHE_BUCKET=ossci-compiler-cache-circleci-v2 2025-03-14T04:18:58.0978959Z TEST_SHOWLOCALS=False 2025-03-14T04:18:58.0979146Z GITHUB_WORKFLOW=inductor 2025-03-14T04:18:58.0979348Z DEBIAN_FRONTEND=noninteractive 2025-03-14T04:18:58.0979742Z GITHUB_OUTPUT=/home/ec2-user/actions-runner/_work/_temp/_runner_file_commands/set_output_eec2a1dd-795a-4a1d-ade5-363f790577cc 2025-03-14T04:18:58.0980134Z NO_TD=False 2025-03-14T04:18:58.0980312Z SKIP_SCCACHE_INITIALIZATION=1 2025-03-14T04:18:58.0980516Z _=/usr/bin/env 2025-03-14T04:18:58.0980695Z + echo 'Testing pytorch' 2025-03-14T04:18:58.0980884Z Testing pytorch 2025-03-14T04:18:58.0981098Z + export LANG=C.UTF-8 2025-03-14T04:18:58.0981278Z + LANG=C.UTF-8 2025-03-14T04:18:58.0981641Z + PR_NUMBER= 2025-03-14T04:18:58.0981870Z + [[ cpu_inductor_torchbench == \d\e\f\a\u\l\t ]] 2025-03-14T04:18:58.0982150Z + [[ cpu_inductor_torchbench == \d\i\s\t\r\i\b\u\t\e\d ]] 2025-03-14T04:18:58.0982417Z + [[ cpu_inductor_torchbench == \s\l\o\w ]] 2025-03-14T04:18:58.0982702Z + [[ linux-jammy-py3.9-gcc11-build == *slow-gradcheck* ]] 2025-03-14T04:18:58.0982982Z + [[ linux-jammy-py3.9-gcc11-build == *cuda* ]] 2025-03-14T04:18:58.0983240Z + [[ linux-jammy-py3.9-gcc11-build == *rocm* ]] 2025-03-14T04:18:58.0983495Z + [[ linux-jammy-py3.9-gcc11-build == *xpu* ]] 2025-03-14T04:18:58.0983886Z + [[ cpu_inductor_torchbench == *crossref* ]] 2025-03-14T04:18:58.0984151Z + [[ linux-jammy-py3.9-gcc11-build == *rocm* ]] 2025-03-14T04:18:58.0984521Z + [[ linux-jammy-py3.9-gcc11-build == *xpu* ]] 2025-03-14T04:18:58.0984795Z + [[ linux-jammy-py3.9-gcc11-build != *-bazel-* ]] 2025-03-14T04:18:58.0985067Z + pip_install --user ninja==1.10.2 2025-03-14T04:18:58.0985464Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:18:58.0985808Z + python3 -m pip install --progress-bar off --user ninja==1.10.2 2025-03-14T04:18:58.4712011Z Collecting ninja==1.10.2 2025-03-14T04:18:58.4851514Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl.metadata (5.0 kB) 2025-03-14T04:18:58.4970267Z Downloading ninja-1.10.2-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (108 kB) 2025-03-14T04:18:58.9808874Z Installing collected packages: ninja 2025-03-14T04:18:58.9892254Z  WARNING: The script ninja is installed in '/var/lib/jenkins/.local/bin' which is not on PATH. 2025-03-14T04:18:58.9892974Z Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. 2025-03-14T04:18:58.9941423Z Successfully installed ninja-1.10.2 2025-03-14T04:18:59.0754957Z + export PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:18:59.0756145Z + PATH=/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:18:59.0756790Z + [[ linux-jammy-py3.9-gcc11-build == *aarch64* ]] 2025-03-14T04:18:59.0757044Z + install_tlparse 2025-03-14T04:18:59.0757251Z + pip_install --user tlparse==0.3.30 2025-03-14T04:18:59.0757525Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:18:59.0757858Z + python3 -m pip install --progress-bar off --user tlparse==0.3.30 2025-03-14T04:18:59.4019918Z Collecting tlparse==0.3.30 2025-03-14T04:18:59.4146946Z Downloading tlparse-0.3.30-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.9 kB) 2025-03-14T04:18:59.4264348Z Downloading tlparse-0.3.30-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.3 MB) 2025-03-14T04:18:59.9318727Z Installing collected packages: tlparse 2025-03-14T04:18:59.9655236Z Successfully installed tlparse-0.3.30 2025-03-14T04:19:00.0631012Z ++ python -m site --user-base 2025-03-14T04:19:00.0869955Z + PATH=/var/lib/jenkins/.local/bin:/var/lib/jenkins/.local/bin:/opt/cache/bin:/usr/local/nvidia/bin:/usr/local/cuda/bin:/opt/conda/envs/py_3.9/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 2025-03-14T04:19:00.0870780Z + [[ linux-jammy-py3.9-gcc11-build == *asan* ]] 2025-03-14T04:19:00.0871078Z + [[ linux-jammy-py3.9-gcc11-build == *-debug* ]] 2025-03-14T04:19:00.0871365Z + [[ linux-jammy-py3.9-gcc11-build != *-bazel-* ]] 2025-03-14T04:19:00.0871812Z + echo 'We are not in debug mode: linux-jammy-py3.9-gcc11-build. Expect the assertion to pass' 2025-03-14T04:19:00.0872267Z We are not in debug mode: linux-jammy-py3.9-gcc11-build. Expect the assertion to pass 2025-03-14T04:19:00.0872599Z + cd test 2025-03-14T04:19:00.0872898Z + python -c 'import torch; torch._C._crash_if_debug_asserts_fail(424242)' 2025-03-14T04:19:01.2869029Z + [[ cpu_inductor_torchbench == \n\o\g\p\u\_\N\O\_\A\V\X\2 ]] 2025-03-14T04:19:01.2869468Z + [[ cpu_inductor_torchbench == \n\o\g\p\u\_\A\V\X\5\1\2 ]] 2025-03-14T04:19:01.2869790Z + DYNAMO_BENCHMARK_FLAGS=() 2025-03-14T04:19:01.2870067Z + [[ cpu_inductor_torchbench == *pr_time_benchmarks* ]] 2025-03-14T04:19:01.2870381Z + [[ cpu_inductor_torchbench == *dynamo_eager* ]] 2025-03-14T04:19:01.2870681Z + [[ cpu_inductor_torchbench == *aot_eager* ]] 2025-03-14T04:19:01.2870977Z + [[ cpu_inductor_torchbench == *aot_inductor* ]] 2025-03-14T04:19:01.2871292Z + [[ cpu_inductor_torchbench == *max_autotune_inductor* ]] 2025-03-14T04:19:01.2872084Z + [[ cpu_inductor_torchbench == *inductor* ]] 2025-03-14T04:19:01.2872393Z + [[ cpu_inductor_torchbench != *perf* ]] 2025-03-14T04:19:01.2872719Z + DYNAMO_BENCHMARK_FLAGS+=(--inductor) 2025-03-14T04:19:01.2873019Z + [[ cpu_inductor_torchbench == *dynamic* ]] 2025-03-14T04:19:01.2873276Z + [[ cpu_inductor_torchbench == *cpu* ]] 2025-03-14T04:19:01.2873611Z + DYNAMO_BENCHMARK_FLAGS+=(--device cpu) 2025-03-14T04:19:01.2878831Z + [[ linux-jammy-py3.9-gcc11-build == *libtorch* ]] 2025-03-14T04:19:01.2879115Z + [[ linux-jammy-py3.9-gcc11-build == *-bazel-* ]] 2025-03-14T04:19:01.2882521Z + cd test 2025-03-14T04:19:01.2882840Z + python -c 'import torch; print(torch.__config__.show())' 2025-03-14T04:19:02.2400814Z PyTorch built with: 2025-03-14T04:19:02.2402554Z - GCC 11.4 2025-03-14T04:19:02.2402939Z - C++ Version: 201703 2025-03-14T04:19:02.2407466Z - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications 2025-03-14T04:19:02.2412018Z - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d) 2025-03-14T04:19:02.2416955Z - OpenMP 201511 (a.k.a. OpenMP 4.5) 2025-03-14T04:19:02.2419362Z - LAPACK is enabled (usually provided by MKL) 2025-03-14T04:19:02.2419692Z - NNPACK is enabled 2025-03-14T04:19:02.2419913Z - CPU capability usage: AVX512 2025-03-14T04:19:02.2422617Z - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=aed0b7a742a2d7b7901790622829cbd2135049a4, CXX_COMPILER=/opt/cache/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Werror -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.8.0, USE_CUDA=OFF, USE_CUDNN=OFF, USE_CUSPARSELT=OFF, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 2025-03-14T04:19:02.2430020Z 2025-03-14T04:19:02.4672795Z + cd test 2025-03-14T04:19:02.4674705Z + python -c 'import torch; print(torch.__config__.parallel_info())' 2025-03-14T04:19:03.4207612Z ATen/Parallel: 2025-03-14T04:19:03.4212101Z at::get_num_threads() : 16 2025-03-14T04:19:03.4216541Z at::get_num_interop_threads() : 16 2025-03-14T04:19:03.4218605Z OpenMP 201511 (a.k.a. OpenMP 4.5) 2025-03-14T04:19:03.4219031Z omp_get_max_threads() : 16 2025-03-14T04:19:03.4219570Z Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications 2025-03-14T04:19:03.4219957Z mkl_get_max_threads() : 16 2025-03-14T04:19:03.4220239Z Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d) 2025-03-14T04:19:03.4220553Z std::thread::hardware_concurrency() : 32 2025-03-14T04:19:03.4220802Z Environment variables: 2025-03-14T04:19:03.4221001Z OMP_NUM_THREADS : [not set] 2025-03-14T04:19:03.4221207Z MKL_NUM_THREADS : [not set] 2025-03-14T04:19:03.4221404Z ATen parallel backend: OpenMP 2025-03-14T04:19:03.4221542Z 2025-03-14T04:19:03.6710479Z + [[ cpu_inductor_torchbench == *numpy_2* ]] 2025-03-14T04:19:03.6711401Z + [[ linux-jammy-py3.9-gcc11-build == *aarch64* ]] 2025-03-14T04:19:03.6711812Z + [[ cpu_inductor_torchbench == *backward* ]] 2025-03-14T04:19:03.6712169Z + [[ cpu_inductor_torchbench == *xla* ]] 2025-03-14T04:19:03.6712422Z + [[ cpu_inductor_torchbench == *executorch* ]] 2025-03-14T04:19:03.6712691Z + [[ cpu_inductor_torchbench == \j\i\t\_\l\e\g\a\c\y ]] 2025-03-14T04:19:03.6713364Z + [[ linux-jammy-py3.9-gcc11-build == *libtorch* ]] 2025-03-14T04:19:03.6713640Z + [[ cpu_inductor_torchbench == distributed ]] 2025-03-14T04:19:03.6713917Z + [[ cpu_inductor_torchbench == *inductor_distributed* ]] 2025-03-14T04:19:03.6714206Z + [[ cpu_inductor_torchbench == *inductor-halide* ]] 2025-03-14T04:19:03.6714610Z + [[ cpu_inductor_torchbench == *inductor-triton-cpu* ]] 2025-03-14T04:19:03.6714913Z + [[ cpu_inductor_torchbench == *inductor-micro-benchmark* ]] 2025-03-14T04:19:03.6715202Z + [[ cpu_inductor_torchbench == *huggingface* ]] 2025-03-14T04:19:03.6715453Z + [[ cpu_inductor_torchbench == *timm* ]] 2025-03-14T04:19:03.6715701Z + [[ cpu_inductor_torchbench == cachebench ]] 2025-03-14T04:19:03.6715964Z + [[ cpu_inductor_torchbench == verify_cachebench ]] 2025-03-14T04:19:03.6716227Z + [[ cpu_inductor_torchbench == *torchbench* ]] 2025-03-14T04:19:03.6716470Z + [[ cpu_inductor_torchbench == *cpu* ]] 2025-03-14T04:19:03.6716701Z + install_torchaudio cpu 2025-03-14T04:19:03.6716907Z + local commit 2025-03-14T04:19:03.6789544Z ++ get_pinned_commit audio 2025-03-14T04:19:03.6791876Z ++ cat .github/ci_commit_pins/audio.txt 2025-03-14T04:19:03.6792354Z + commit=c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:03.6795259Z + [[ cpu == \c\u\d\a ]] 2025-03-14T04:19:03.6795928Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:03.6800461Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:19:03.6803310Z + python3 -m pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:03.9453090Z Collecting git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:03.9453906Z Cloning https://github.com/pytorch/audio.git (to revision c670ad81fda266b6598aeeef434583eb98197ae8) to /tmp/pip-req-build-nj7mw30n 2025-03-14T04:19:03.9494774Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/audio.git /tmp/pip-req-build-nj7mw30n 2025-03-14T04:19:04.6990102Z Running command git rev-parse -q --verify 'sha^c670ad81fda266b6598aeeef434583eb98197ae8' 2025-03-14T04:19:04.7024513Z Running command git fetch -q https://github.com/pytorch/audio.git c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:04.7870095Z Resolved https://github.com/pytorch/audio.git to commit c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:19:04.7874062Z Running command git submodule update --init --recursive -q 2025-03-14T04:19:06.9683127Z Preparing metadata (setup.py) ... [?25l- done 2025-03-14T04:19:06.9717092Z [?25hRequirement already satisfied: torch in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchaudio==2.6.0a0+c670ad8) (2.8.0a0+gitaed0b7a) 2025-03-14T04:19:06.9741177Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (3.16.1) 2025-03-14T04:19:06.9742199Z Requirement already satisfied: typing-extensions>=4.10.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (4.12.2) 2025-03-14T04:19:06.9742968Z Requirement already satisfied: sympy>=1.13.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (1.13.3) 2025-03-14T04:19:06.9743698Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (2.8.8) 2025-03-14T04:19:06.9752034Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (3.1.6) 2025-03-14T04:19:06.9752893Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchaudio==2.6.0a0+c670ad8) (2024.10.0) 2025-03-14T04:19:06.9793943Z Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from sympy>=1.13.3->torch->torchaudio==2.6.0a0+c670ad8) (1.3.0) 2025-03-14T04:19:07.0216204Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from jinja2->torch->torchaudio==2.6.0a0+c670ad8) (3.0.2) 2025-03-14T04:19:07.0266947Z Building wheels for collected packages: torchaudio 2025-03-14T04:20:00.4312631Z Building wheel for torchaudio (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | / done 2025-03-14T04:20:00.4358048Z [?25h Created wheel for torchaudio: filename=torchaudio-2.6.0a0+c670ad8-cp39-cp39-linux_x86_64.whl size=1820583 sha256=43b997a372a33aadd5cfd4440c3035216556790253c19207b5605374064eaf45 2025-03-14T04:20:00.4358863Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/1c/6f/84/4c8de1f050144e10889ee8fe7b3a86ac99233001c78656be9d 2025-03-14T04:20:00.4394154Z Successfully built torchaudio 2025-03-14T04:20:00.9137578Z Installing collected packages: torchaudio 2025-03-14T04:20:01.0830292Z Successfully installed torchaudio-2.6.0a0+c670ad8 2025-03-14T04:20:01.2249083Z + install_torchvision 2025-03-14T04:20:01.2253902Z + local orig_preload 2025-03-14T04:20:01.2258107Z + local commit 2025-03-14T04:20:01.2259024Z ++ get_pinned_commit vision 2025-03-14T04:20:01.2259357Z ++ cat .github/ci_commit_pins/vision.txt 2025-03-14T04:20:01.2262456Z + commit=d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:01.2262791Z + orig_preload= 2025-03-14T04:20:01.2262998Z + '[' -n '' ']' 2025-03-14T04:20:01.2263397Z + pip_install --no-use-pep517 --user git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:01.2263855Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:20:01.2264508Z + python3 -m pip install --progress-bar off --no-use-pep517 --user git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:01.5280603Z Collecting git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:01.5281636Z Cloning https://github.com/pytorch/vision.git (to revision d23a6e1664d20707c11781299611436e1f0c104f) to /tmp/pip-req-build-n9010bmx 2025-03-14T04:20:01.5339931Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/vision.git /tmp/pip-req-build-n9010bmx 2025-03-14T04:20:03.0299674Z Running command git rev-parse -q --verify 'sha^d23a6e1664d20707c11781299611436e1f0c104f' 2025-03-14T04:20:03.0327124Z Running command git fetch -q https://github.com/pytorch/vision.git d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:03.1275783Z Running command git checkout -q d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:03.4025404Z Resolved https://github.com/pytorch/vision.git to commit d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:20:05.4809871Z Preparing metadata (setup.py) ... [?25l- \ done 2025-03-14T04:20:05.4846372Z [?25hRequirement already satisfied: numpy in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchvision==0.19.0a0+d23a6e1) (1.22.4) 2025-03-14T04:20:05.4847178Z Requirement already satisfied: torch in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchvision==0.19.0a0+d23a6e1) (2.8.0a0+gitaed0b7a) 2025-03-14T04:20:05.4851444Z Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torchvision==0.19.0a0+d23a6e1) (11.0.0) 2025-03-14T04:20:05.4904952Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (3.16.1) 2025-03-14T04:20:05.4905711Z Requirement already satisfied: typing-extensions>=4.10.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (4.12.2) 2025-03-14T04:20:05.4907025Z Requirement already satisfied: sympy>=1.13.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (1.13.3) 2025-03-14T04:20:05.4926135Z Requirement already satisfied: networkx in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (2.8.8) 2025-03-14T04:20:05.4931536Z Requirement already satisfied: jinja2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (3.1.6) 2025-03-14T04:20:05.4937805Z Requirement already satisfied: fsspec in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from torch->torchvision==0.19.0a0+d23a6e1) (2024.10.0) 2025-03-14T04:20:05.4955647Z Requirement already satisfied: mpmath<1.4,>=1.1.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from sympy>=1.13.3->torch->torchvision==0.19.0a0+d23a6e1) (1.3.0) 2025-03-14T04:20:05.5504692Z Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from jinja2->torch->torchvision==0.19.0a0+d23a6e1) (3.0.2) 2025-03-14T04:20:05.5559644Z Building wheels for collected packages: torchvision 2025-03-14T04:20:28.9207972Z Building wheel for torchvision (setup.py) ... [?25l- \ | / - \ | / - \ | / - \ | / - \ | / - \ | / - \ | done 2025-03-14T04:20:28.9226986Z [?25h Created wheel for torchvision: filename=torchvision-0.19.0a0+d23a6e1-cp39-cp39-linux_x86_64.whl size=1218773 sha256=4517ca3af0875f6bf8777bec54bf8dc9189f812698d7e6fdfb9b10f5284e7a21 2025-03-14T04:20:28.9227944Z Stored in directory: /var/lib/jenkins/.cache/pip/wheels/76/25/46/00629fe1ec5f276eb28faecc4ae7c48c9ef9e6bbaa0691ad87 2025-03-14T04:20:28.9265434Z Successfully built torchvision 2025-03-14T04:20:29.3880762Z Installing collected packages: torchvision 2025-03-14T04:20:29.7130711Z Successfully installed torchvision-0.19.0a0+d23a6e1 2025-03-14T04:20:29.8274802Z + '[' -n '' ']' 2025-03-14T04:20:29.8276485Z + TORCH_CUDA_ARCH_LIST='8.0;8.6' 2025-03-14T04:20:29.8276990Z + pip_install git+https://github.com/pytorch/ao.git 2025-03-14T04:20:29.8283401Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:20:29.8285772Z + python3 -m pip install --progress-bar off git+https://github.com/pytorch/ao.git 2025-03-14T04:20:30.0971769Z Collecting git+https://github.com/pytorch/ao.git 2025-03-14T04:20:30.0973874Z Cloning https://github.com/pytorch/ao.git to /tmp/pip-req-build-5a3ok1fy 2025-03-14T04:20:30.1013529Z Running command git clone --filter=blob:none --quiet https://github.com/pytorch/ao.git /tmp/pip-req-build-5a3ok1fy 2025-03-14T04:20:30.9671855Z Resolved https://github.com/pytorch/ao.git to commit 9259584f98db0760b27492a63050a2915c753dbe 2025-03-14T04:20:30.9672334Z Running command git submodule update --init --recursive -q 2025-03-14T04:20:35.2181259Z Preparing metadata (setup.py) ... [?25l- done 2025-03-14T04:20:35.2235179Z [?25hBuilding wheels for collected packages: torchao 2025-03-14T04:20:37.4223624Z Building wheel for torchao (setup.py) ... [?25l- \ | done 2025-03-14T04:20:37.4239688Z [?25h Created wheel for torchao: filename=torchao-0.10.0+git9259584f-py3-none-any.whl size=687512 sha256=f3c535cbdf8cf155efd92b97f30432305e1246f60b91009b3af0a71368125c26 2025-03-14T04:20:37.4240463Z Stored in directory: /tmp/pip-ephem-wheel-cache-ovtyv1hb/wheels/7d/5c/37/b607f0d104c0d0de07b506bc734c280ece23dce90e0c5cddc7 2025-03-14T04:20:37.4277404Z Successfully built torchao 2025-03-14T04:20:37.9180637Z Installing collected packages: torchao 2025-03-14T04:20:38.3582198Z Successfully installed torchao-0.10.0+git9259584f 2025-03-14T04:20:38.5539547Z + id=0 2025-03-14T04:20:38.5540155Z + pip_install opencv-python==4.8.0.74 2025-03-14T04:20:38.5540548Z + pip_install_pkg='python3 -m pip install --progress-bar off' 2025-03-14T04:20:38.5540897Z + python3 -m pip install --progress-bar off opencv-python==4.8.0.74 2025-03-14T04:20:38.9165974Z Collecting opencv-python==4.8.0.74 2025-03-14T04:20:38.9295358Z Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (19 kB) 2025-03-14T04:20:38.9365917Z Requirement already satisfied: numpy>=1.17.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from opencv-python==4.8.0.74) (1.22.4) 2025-03-14T04:20:38.9444648Z Downloading opencv_python-4.8.0.74-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (61.7 MB) 2025-03-14T04:20:39.8869400Z Installing collected packages: opencv-python 2025-03-14T04:20:40.6683801Z Successfully installed opencv-python-4.8.0.74 2025-03-14T04:20:40.7604058Z + [[ cpu_inductor_torchbench == *inductor_torchbench_smoketest_perf* ]] 2025-03-14T04:20:40.7608218Z + [[ cpu_inductor_torchbench == *inductor_torchbench_cpu_smoketest_perf* ]] 2025-03-14T04:20:40.7611027Z + [[ cpu_inductor_torchbench == *torchbench_gcp_smoketest* ]] 2025-03-14T04:20:40.7611585Z + checkout_install_torchbench 2025-03-14T04:20:40.7616451Z + local commit 2025-03-14T04:20:40.7618760Z ++ get_pinned_commit torchbench 2025-03-14T04:20:40.7619059Z ++ cat .github/ci_commit_pins/torchbench.txt 2025-03-14T04:20:40.7619369Z + commit=373ffb19dc470f4423a3176a4133f8f4b3cdb5bd 2025-03-14T04:20:40.7619690Z + git clone https://github.com/pytorch/benchmark torchbench 2025-03-14T04:20:40.7630309Z Cloning into 'torchbench'... 2025-03-14T04:20:40.9219209Z remote: Enumerating objects: 35366, done. 2025-03-14T04:20:40.9219676Z remote: Counting objects: 0% (1/5730) 2025-03-14T04:20:40.9219962Z remote: Counting objects: 1% (58/5730) 2025-03-14T04:20:40.9220244Z remote: Counting objects: 2% (115/5730) 2025-03-14T04:20:40.9220520Z remote: Counting objects: 3% (172/5730) 2025-03-14T04:20:40.9220791Z remote: Counting objects: 4% (230/5730) 2025-03-14T04:20:40.9221065Z remote: Counting objects: 5% (287/5730) 2025-03-14T04:20:40.9221452Z remote: Counting objects: 6% (344/5730) 2025-03-14T04:20:40.9221820Z remote: Counting objects: 7% (402/5730) 2025-03-14T04:20:40.9222084Z remote: Counting objects: 8% (459/5730) 2025-03-14T04:20:40.9222347Z remote: Counting objects: 9% (516/5730) 2025-03-14T04:20:40.9222626Z remote: Counting objects: 10% (573/5730) 2025-03-14T04:20:40.9222896Z remote: Counting objects: 11% (631/5730) 2025-03-14T04:20:40.9223156Z remote: Counting objects: 12% (688/5730) 2025-03-14T04:20:40.9223420Z remote: Counting objects: 13% (745/5730) 2025-03-14T04:20:40.9223708Z remote: Counting objects: 14% (803/5730) 2025-03-14T04:20:40.9224128Z remote: Counting objects: 15% (860/5730) 2025-03-14T04:20:40.9224536Z remote: Counting objects: 16% (917/5730) 2025-03-14T04:20:40.9224800Z remote: Counting objects: 17% (975/5730) 2025-03-14T04:20:40.9225083Z remote: Counting objects: 18% (1032/5730) 2025-03-14T04:20:40.9225370Z remote: Counting objects: 19% (1089/5730) 2025-03-14T04:20:40.9225659Z remote: Counting objects: 20% (1146/5730) 2025-03-14T04:20:40.9225945Z remote: Counting objects: 21% (1204/5730) 2025-03-14T04:20:40.9226214Z remote: Counting objects: 22% (1261/5730) 2025-03-14T04:20:40.9226487Z remote: Counting objects: 23% (1318/5730) 2025-03-14T04:20:40.9226755Z remote: Counting objects: 24% (1376/5730) 2025-03-14T04:20:40.9227020Z remote: Counting objects: 25% (1433/5730) 2025-03-14T04:20:40.9227287Z remote: Counting objects: 26% (1490/5730) 2025-03-14T04:20:40.9227556Z remote: Counting objects: 27% (1548/5730) 2025-03-14T04:20:40.9227824Z remote: Counting objects: 28% (1605/5730) 2025-03-14T04:20:40.9228095Z remote: Counting objects: 29% (1662/5730) 2025-03-14T04:20:40.9228363Z remote: Counting objects: 30% (1719/5730) 2025-03-14T04:20:40.9228641Z remote: Counting objects: 31% (1777/5730) 2025-03-14T04:20:40.9228938Z remote: Counting objects: 32% (1834/5730) 2025-03-14T04:20:40.9229320Z remote: Counting objects: 33% (1891/5730) 2025-03-14T04:20:40.9229675Z remote: Counting objects: 34% (1949/5730) 2025-03-14T04:20:40.9229944Z remote: Counting objects: 35% (2006/5730) 2025-03-14T04:20:40.9230207Z remote: Counting objects: 36% (2063/5730) 2025-03-14T04:20:40.9230856Z remote: Counting objects: 37% (2121/5730) 2025-03-14T04:20:40.9231219Z remote: Counting objects: 38% (2178/5730) 2025-03-14T04:20:40.9231598Z remote: Counting objects: 39% (2235/5730) 2025-03-14T04:20:40.9231868Z remote: Counting objects: 40% (2292/5730) 2025-03-14T04:20:40.9232242Z remote: Counting objects: 41% (2350/5730) 2025-03-14T04:20:40.9232512Z remote: Counting objects: 42% (2407/5730) 2025-03-14T04:20:40.9232788Z remote: Counting objects: 43% (2464/5730) 2025-03-14T04:20:40.9233069Z remote: Counting objects: 44% (2522/5730) 2025-03-14T04:20:40.9233343Z remote: Counting objects: 45% (2579/5730) 2025-03-14T04:20:40.9233617Z remote: Counting objects: 46% (2636/5730) 2025-03-14T04:20:40.9233893Z remote: Counting objects: 47% (2694/5730) 2025-03-14T04:20:40.9234167Z remote: Counting objects: 48% (2751/5730) 2025-03-14T04:20:40.9234445Z remote: Counting objects: 49% (2808/5730) 2025-03-14T04:20:40.9234722Z remote: Counting objects: 50% (2865/5730) 2025-03-14T04:20:40.9235001Z remote: Counting objects: 51% (2923/5730) 2025-03-14T04:20:40.9235287Z remote: Counting objects: 52% (2980/5730) 2025-03-14T04:20:40.9235685Z remote: Counting objects: 53% (3037/5730) 2025-03-14T04:20:40.9236038Z remote: Counting objects: 54% (3095/5730) 2025-03-14T04:20:40.9236320Z remote: Counting objects: 55% (3152/5730) 2025-03-14T04:20:40.9236593Z remote: Counting objects: 56% (3209/5730) 2025-03-14T04:20:40.9236869Z remote: Counting objects: 57% (3267/5730) 2025-03-14T04:20:40.9237262Z remote: Counting objects: 58% (3324/5730) 2025-03-14T04:20:40.9237605Z remote: Counting objects: 59% (3381/5730) 2025-03-14T04:20:40.9237883Z remote: Counting objects: 60% (3438/5730) 2025-03-14T04:20:40.9238160Z remote: Counting objects: 61% (3496/5730) 2025-03-14T04:20:40.9238435Z remote: Counting objects: 62% (3553/5730) 2025-03-14T04:20:40.9238711Z remote: Counting objects: 63% (3610/5730) 2025-03-14T04:20:40.9238993Z remote: Counting objects: 64% (3668/5730) 2025-03-14T04:20:40.9239270Z remote: Counting objects: 65% (3725/5730) 2025-03-14T04:20:40.9239547Z remote: Counting objects: 66% (3782/5730) 2025-03-14T04:20:40.9239825Z remote: Counting objects: 67% (3840/5730) 2025-03-14T04:20:40.9240102Z remote: Counting objects: 68% (3897/5730) 2025-03-14T04:20:40.9240388Z remote: Counting objects: 69% (3954/5730) 2025-03-14T04:20:40.9240659Z remote: Counting objects: 70% (4011/5730) 2025-03-14T04:20:40.9240929Z remote: Counting objects: 71% (4069/5730) 2025-03-14T04:20:40.9241198Z remote: Counting objects: 72% (4126/5730) 2025-03-14T04:20:40.9241468Z remote: Counting objects: 73% (4183/5730) 2025-03-14T04:20:40.9241739Z remote: Counting objects: 74% (4241/5730) 2025-03-14T04:20:40.9242010Z remote: Counting objects: 75% (4298/5730) 2025-03-14T04:20:40.9242273Z remote: Counting objects: 76% (4355/5730) 2025-03-14T04:20:40.9242569Z remote: Counting objects: 77% (4413/5730) 2025-03-14T04:20:40.9242836Z remote: Counting objects: 78% (4470/5730) 2025-03-14T04:20:40.9243221Z remote: Counting objects: 79% (4527/5730) 2025-03-14T04:20:40.9243580Z remote: Counting objects: 80% (4584/5730) 2025-03-14T04:20:40.9243848Z remote: Counting objects: 81% (4642/5730) 2025-03-14T04:20:40.9244118Z remote: Counting objects: 82% (4699/5730) 2025-03-14T04:20:40.9244392Z remote: Counting objects: 83% (4756/5730) 2025-03-14T04:20:40.9244654Z remote: Counting objects: 84% (4814/5730) 2025-03-14T04:20:40.9244916Z remote: Counting objects: 85% (4871/5730) 2025-03-14T04:20:40.9245174Z remote: Counting objects: 86% (4928/5730) 2025-03-14T04:20:40.9245431Z remote: Counting objects: 87% (4986/5730) 2025-03-14T04:20:40.9245716Z remote: Counting objects: 88% (5043/5730) 2025-03-14T04:20:40.9245979Z remote: Counting objects: 89% (5100/5730) 2025-03-14T04:20:40.9246242Z remote: Counting objects: 90% (5157/5730) 2025-03-14T04:20:40.9246505Z remote: Counting objects: 91% (5215/5730) 2025-03-14T04:20:40.9246833Z remote: Counting objects: 92% (5272/5730) 2025-03-14T04:20:40.9247101Z remote: Counting objects: 93% (5329/5730) 2025-03-14T04:20:40.9247367Z remote: Counting objects: 94% (5387/5730) 2025-03-14T04:20:40.9247637Z remote: Counting objects: 95% (5444/5730) 2025-03-14T04:20:40.9247965Z remote: Counting objects: 96% (5501/5730) 2025-03-14T04:20:40.9248226Z remote: Counting objects: 97% (5559/5730) 2025-03-14T04:20:40.9248548Z remote: Counting objects: 98% (5616/5730) 2025-03-14T04:20:40.9248939Z remote: Counting objects: 99% (5673/5730) 2025-03-14T04:20:40.9249231Z remote: Counting objects: 100% (5730/5730) 2025-03-14T04:20:40.9249531Z remote: Counting objects: 100% (5730/5730), done. 2025-03-14T04:20:40.9250059Z remote: Compressing objects: 0% (1/629) 2025-03-14T04:20:40.9287324Z remote: Compressing objects: 1% (7/629) 2025-03-14T04:20:40.9307690Z remote: Compressing objects: 2% (13/629) 2025-03-14T04:20:40.9328024Z remote: Compressing objects: 3% (19/629) 2025-03-14T04:20:40.9343319Z remote: Compressing objects: 4% (26/629) 2025-03-14T04:20:40.9367203Z remote: Compressing objects: 5% (32/629) 2025-03-14T04:20:40.9391608Z remote: Compressing objects: 6% (38/629) 2025-03-14T04:20:40.9410385Z remote: Compressing objects: 7% (45/629) 2025-03-14T04:20:40.9415223Z remote: Compressing objects: 8% (51/629) 2025-03-14T04:20:40.9419433Z remote: Compressing objects: 9% (57/629) 2025-03-14T04:20:40.9504045Z remote: Compressing objects: 10% (63/629) 2025-03-14T04:20:40.9551358Z remote: Compressing objects: 11% (70/629) 2025-03-14T04:20:40.9624878Z remote: Compressing objects: 12% (76/629) 2025-03-14T04:20:40.9724094Z remote: Compressing objects: 13% (82/629) 2025-03-14T04:20:40.9784606Z remote: Compressing objects: 14% (89/629) 2025-03-14T04:20:40.9802018Z remote: Compressing objects: 15% (95/629) 2025-03-14T04:20:40.9857050Z remote: Compressing objects: 16% (101/629) 2025-03-14T04:20:40.9904065Z remote: Compressing objects: 17% (107/629) 2025-03-14T04:20:40.9944706Z remote: Compressing objects: 18% (114/629) 2025-03-14T04:20:40.9951397Z remote: Compressing objects: 19% (120/629) 2025-03-14T04:20:40.9995481Z remote: Compressing objects: 20% (126/629) 2025-03-14T04:20:41.0028519Z remote: Compressing objects: 21% (133/629) 2025-03-14T04:20:41.0060144Z remote: Compressing objects: 22% (139/629) 2025-03-14T04:20:41.0082251Z remote: Compressing objects: 23% (145/629) 2025-03-14T04:20:41.0111464Z remote: Compressing objects: 24% (151/629) 2025-03-14T04:20:41.0129634Z remote: Compressing objects: 25% (158/629) 2025-03-14T04:20:41.0149989Z remote: Compressing objects: 26% (164/629) 2025-03-14T04:20:41.0164664Z remote: Compressing objects: 27% (170/629) 2025-03-14T04:20:41.0183941Z remote: Compressing objects: 28% (177/629) 2025-03-14T04:20:41.0201269Z remote: Compressing objects: 29% (183/629) 2025-03-14T04:20:41.0216094Z remote: Compressing objects: 30% (189/629) 2025-03-14T04:20:41.0229756Z remote: Compressing objects: 31% (195/629) 2025-03-14T04:20:41.0245472Z remote: Compressing objects: 32% (202/629) 2025-03-14T04:20:41.0255033Z remote: Compressing objects: 33% (208/629) 2025-03-14T04:20:41.0265107Z remote: Compressing objects: 34% (214/629) 2025-03-14T04:20:41.0279111Z remote: Compressing objects: 35% (221/629) 2025-03-14T04:20:41.0289140Z remote: Compressing objects: 36% (227/629) 2025-03-14T04:20:41.0290196Z remote: Compressing objects: 37% (233/629) 2025-03-14T04:20:41.0297012Z remote: Compressing objects: 38% (240/629) 2025-03-14T04:20:41.0299176Z remote: Compressing objects: 39% (246/629) 2025-03-14T04:20:41.0299653Z remote: Compressing objects: 40% (252/629) 2025-03-14T04:20:41.0300026Z remote: Compressing objects: 41% (258/629) 2025-03-14T04:20:41.0300442Z remote: Compressing objects: 42% (265/629) 2025-03-14T04:20:41.0300813Z remote: Compressing objects: 43% (271/629) 2025-03-14T04:20:41.0301975Z remote: Compressing objects: 44% (277/629) 2025-03-14T04:20:41.0302268Z remote: Compressing objects: 45% (284/629) 2025-03-14T04:20:41.0318760Z remote: Compressing objects: 46% (290/629) 2025-03-14T04:20:41.0322561Z remote: Compressing objects: 47% (296/629) 2025-03-14T04:20:41.0323176Z remote: Compressing objects: 48% (302/629) 2025-03-14T04:20:41.0323465Z remote: Compressing objects: 49% (309/629) 2025-03-14T04:20:41.0323747Z remote: Compressing objects: 50% (315/629) 2025-03-14T04:20:41.0329749Z remote: Compressing objects: 51% (321/629) 2025-03-14T04:20:41.0330304Z remote: Compressing objects: 52% (328/629) 2025-03-14T04:20:41.0330726Z remote: Compressing objects: 53% (334/629) 2025-03-14T04:20:41.0334705Z remote: Compressing objects: 54% (340/629) 2025-03-14T04:20:41.0339942Z remote: Compressing objects: 55% (346/629) 2025-03-14T04:20:41.0340309Z remote: Compressing objects: 56% (353/629) 2025-03-14T04:20:41.0340633Z remote: Compressing objects: 57% (359/629) 2025-03-14T04:20:41.0362764Z remote: Compressing objects: 58% (365/629) 2025-03-14T04:20:41.0367051Z remote: Compressing objects: 59% (372/629) 2025-03-14T04:20:41.0371862Z remote: Compressing objects: 60% (378/629) 2025-03-14T04:20:41.0377710Z remote: Compressing objects: 61% (384/629) 2025-03-14T04:20:41.0379402Z remote: Compressing objects: 62% (390/629) 2025-03-14T04:20:41.0379709Z remote: Compressing objects: 63% (397/629) 2025-03-14T04:20:41.0379999Z remote: Compressing objects: 64% (403/629) 2025-03-14T04:20:41.0380288Z remote: Compressing objects: 65% (409/629) 2025-03-14T04:20:41.0380583Z remote: Compressing objects: 66% (416/629) 2025-03-14T04:20:41.0380861Z remote: Compressing objects: 67% (422/629) 2025-03-14T04:20:41.0381135Z remote: Compressing objects: 68% (428/629) 2025-03-14T04:20:41.0381589Z remote: Compressing objects: 69% (435/629) 2025-03-14T04:20:41.0381894Z remote: Compressing objects: 70% (441/629) 2025-03-14T04:20:41.0382188Z remote: Compressing objects: 71% (447/629) 2025-03-14T04:20:41.0382471Z remote: Compressing objects: 72% (453/629) 2025-03-14T04:20:41.0382752Z remote: Compressing objects: 73% (460/629) 2025-03-14T04:20:41.0383023Z remote: Compressing objects: 74% (466/629) 2025-03-14T04:20:41.0383307Z remote: Compressing objects: 75% (472/629) 2025-03-14T04:20:41.0428020Z remote: Compressing objects: 76% (479/629) 2025-03-14T04:20:41.0432483Z remote: Compressing objects: 77% (485/629) 2025-03-14T04:20:41.0436681Z remote: Compressing objects: 78% (491/629) 2025-03-14T04:20:41.0441461Z remote: Compressing objects: 79% (497/629) 2025-03-14T04:20:41.0446080Z remote: Compressing objects: 80% (504/629) 2025-03-14T04:20:41.0450221Z remote: Compressing objects: 81% (510/629) 2025-03-14T04:20:41.0450726Z remote: Compressing objects: 82% (516/629) 2025-03-14T04:20:41.0451083Z remote: Compressing objects: 83% (523/629) 2025-03-14T04:20:41.0455530Z remote: Compressing objects: 84% (529/629) 2025-03-14T04:20:41.0457950Z remote: Compressing objects: 85% (535/629) 2025-03-14T04:20:41.0458319Z remote: Compressing objects: 86% (541/629) 2025-03-14T04:20:41.0458601Z remote: Compressing objects: 87% (548/629) 2025-03-14T04:20:41.0458909Z remote: Compressing objects: 88% (554/629) 2025-03-14T04:20:41.0459188Z remote: Compressing objects: 89% (560/629) 2025-03-14T04:20:41.0459471Z remote: Compressing objects: 90% (567/629) 2025-03-14T04:20:41.0459748Z remote: Compressing objects: 91% (573/629) 2025-03-14T04:20:41.0460023Z remote: Compressing objects: 92% (579/629) 2025-03-14T04:20:41.0460298Z remote: Compressing objects: 93% (585/629) 2025-03-14T04:20:41.0460575Z remote: Compressing objects: 94% (592/629) 2025-03-14T04:20:41.0460855Z remote: Compressing objects: 95% (598/629) 2025-03-14T04:20:41.0461133Z remote: Compressing objects: 96% (604/629) 2025-03-14T04:20:41.0461411Z remote: Compressing objects: 97% (611/629) 2025-03-14T04:20:41.0462538Z remote: Compressing objects: 98% (617/629) 2025-03-14T04:20:41.0462842Z remote: Compressing objects: 99% (623/629) 2025-03-14T04:20:41.0463120Z remote: Compressing objects: 100% (629/629) 2025-03-14T04:20:41.0463423Z remote: Compressing objects: 100% (629/629), done. 2025-03-14T04:20:41.0532577Z Receiving objects: 0% (1/35366) 2025-03-14T04:20:41.0567615Z Receiving objects: 1% (354/35366) 2025-03-14T04:20:41.0605938Z Receiving objects: 2% (708/35366) 2025-03-14T04:20:41.0635286Z Receiving objects: 3% (1061/35366) 2025-03-14T04:20:41.0664734Z Receiving objects: 4% (1415/35366) 2025-03-14T04:20:41.0693525Z Receiving objects: 5% (1769/35366) 2025-03-14T04:20:41.0730952Z Receiving objects: 6% (2122/35366) 2025-03-14T04:20:41.0763132Z Receiving objects: 7% (2476/35366) 2025-03-14T04:20:41.0788531Z Receiving objects: 8% (2830/35366) 2025-03-14T04:20:41.0846454Z Receiving objects: 9% (3183/35366) 2025-03-14T04:20:41.0898533Z Receiving objects: 10% (3537/35366) 2025-03-14T04:20:41.1046842Z Receiving objects: 11% (3891/35366) 2025-03-14T04:20:41.1207308Z Receiving objects: 12% (4244/35366) 2025-03-14T04:20:41.1341715Z Receiving objects: 13% (4598/35366) 2025-03-14T04:20:41.1428545Z Receiving objects: 14% (4952/35366) 2025-03-14T04:20:41.1484740Z Receiving objects: 15% (5305/35366) 2025-03-14T04:20:41.1509961Z Receiving objects: 16% (5659/35366) 2025-03-14T04:20:41.1538998Z Receiving objects: 17% (6013/35366) 2025-03-14T04:20:41.1617217Z Receiving objects: 18% (6366/35366) 2025-03-14T04:20:41.1632486Z Receiving objects: 19% (6720/35366) 2025-03-14T04:20:41.2934005Z Receiving objects: 20% (7074/35366) 2025-03-14T04:20:42.0425582Z Receiving objects: 21% (7427/35366) 2025-03-14T04:20:42.4402434Z Receiving objects: 21% (7681/35366), 42.08 MiB | 84.15 MiB/s 2025-03-14T04:20:42.5286121Z Receiving objects: 22% (7781/35366), 89.86 MiB | 89.85 MiB/s 2025-03-14T04:20:42.5959372Z Receiving objects: 23% (8135/35366), 89.86 MiB | 89.85 MiB/s 2025-03-14T04:20:42.6847250Z Receiving objects: 24% (8488/35366), 129.60 MiB | 86.39 MiB/s 2025-03-14T04:20:42.7643585Z Receiving objects: 25% (8842/35366), 129.60 MiB | 86.39 MiB/s 2025-03-14T04:20:42.8435238Z Receiving objects: 26% (9196/35366), 129.60 MiB | 86.39 MiB/s 2025-03-14T04:20:42.9091537Z Receiving objects: 27% (9549/35366), 129.60 MiB | 86.39 MiB/s 2025-03-14T04:20:42.9739106Z Receiving objects: 28% (9903/35366), 129.60 MiB | 86.39 MiB/s 2025-03-14T04:20:43.0432546Z Receiving objects: 29% (10257/35366), 129.60 MiB | 86.39 MiB/s 2025-03-14T04:20:43.1596618Z Receiving objects: 29% (10362/35366), 173.77 MiB | 86.88 MiB/s 2025-03-14T04:20:43.2074879Z Receiving objects: 30% (10610/35366), 173.77 MiB | 86.88 MiB/s 2025-03-14T04:20:43.4150449Z Receiving objects: 31% (10964/35366), 173.77 MiB | 86.88 MiB/s 2025-03-14T04:20:43.6169523Z Receiving objects: 32% (11318/35366), 173.77 MiB | 86.88 MiB/s 2025-03-14T04:20:43.6179633Z Receiving objects: 33% (11671/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6192259Z Receiving objects: 34% (12025/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6208174Z Receiving objects: 35% (12379/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6214299Z Receiving objects: 36% (12732/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6227079Z Receiving objects: 37% (13086/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6242040Z Receiving objects: 38% (13440/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6266736Z Receiving objects: 39% (13793/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6267213Z Receiving objects: 40% (14147/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6278157Z Receiving objects: 41% (14501/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6447911Z Receiving objects: 42% (14854/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6452611Z Receiving objects: 43% (15208/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6462870Z Receiving objects: 44% (15562/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6479370Z Receiving objects: 45% (15915/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6486098Z Receiving objects: 46% (16269/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6495680Z Receiving objects: 47% (16623/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6610377Z Receiving objects: 48% (16976/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6611086Z Receiving objects: 49% (17330/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6621387Z Receiving objects: 50% (17683/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6623439Z Receiving objects: 51% (18037/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.6856135Z Receiving objects: 52% (18391/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7179806Z Receiving objects: 53% (18744/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7187417Z Receiving objects: 54% (19098/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7200201Z Receiving objects: 55% (19452/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7208937Z Receiving objects: 56% (19805/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7226059Z Receiving objects: 57% (20159/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7230998Z Receiving objects: 58% (20513/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7241145Z Receiving objects: 59% (20866/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7415099Z Receiving objects: 60% (21220/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7441567Z Receiving objects: 61% (21574/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7449406Z Receiving objects: 62% (21927/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7458335Z Receiving objects: 63% (22281/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7499720Z Receiving objects: 64% (22635/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7607932Z Receiving objects: 65% (22988/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7608507Z Receiving objects: 66% (23342/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7620370Z Receiving objects: 67% (23696/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7620768Z Receiving objects: 68% (24049/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7628451Z Receiving objects: 69% (24403/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7631553Z Receiving objects: 70% (24757/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7736521Z Receiving objects: 71% (25110/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7745234Z Receiving objects: 72% (25464/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7760750Z Receiving objects: 73% (25818/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7784252Z Receiving objects: 74% (26171/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7803719Z Receiving objects: 75% (26525/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7822304Z Receiving objects: 76% (26879/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7836826Z Receiving objects: 77% (27232/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7849862Z Receiving objects: 78% (27586/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7890935Z Receiving objects: 79% (27940/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7946793Z Receiving objects: 80% (28293/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7960335Z Receiving objects: 81% (28647/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.7970805Z Receiving objects: 82% (29001/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8066671Z Receiving objects: 83% (29354/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8069178Z Receiving objects: 84% (29708/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8071577Z Receiving objects: 85% (30062/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8072602Z Receiving objects: 86% (30415/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8074907Z Receiving objects: 87% (30769/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8077989Z Receiving objects: 88% (31123/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8083259Z Receiving objects: 89% (31476/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8083638Z Receiving objects: 90% (31830/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8087926Z Receiving objects: 91% (32184/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8092033Z Receiving objects: 92% (32537/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8100893Z Receiving objects: 93% (32891/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8101253Z Receiving objects: 94% (33245/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8119642Z Receiving objects: 95% (33598/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8178102Z Receiving objects: 96% (33952/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8185815Z Receiving objects: 97% (34306/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8221905Z Receiving objects: 98% (34659/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8255088Z Receiving objects: 99% (35013/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8258885Z remote: Total 35366 (delta 5421), reused 5108 (delta 5101), pack-reused 29636 (from 2) 2025-03-14T04:20:43.8265500Z Receiving objects: 100% (35366/35366), 213.79 MiB | 85.51 MiB/s 2025-03-14T04:20:43.8265906Z Receiving objects: 100% (35366/35366), 233.83 MiB | 83.99 MiB/s, done. 2025-03-14T04:20:43.8312001Z Resolving deltas: 0% (0/19977) 2025-03-14T04:20:43.8335770Z Resolving deltas: 1% (200/19977) 2025-03-14T04:20:43.8349397Z Resolving deltas: 2% (413/19977) 2025-03-14T04:20:43.8421694Z Resolving deltas: 3% (600/19977) 2025-03-14T04:20:43.8472192Z Resolving deltas: 4% (800/19977) 2025-03-14T04:20:43.8495415Z Resolving deltas: 5% (999/19977) 2025-03-14T04:20:43.8495716Z Resolving deltas: 6% (1199/19977) 2025-03-14T04:20:43.8537680Z Resolving deltas: 7% (1399/19977) 2025-03-14T04:20:43.8538112Z Resolving deltas: 8% (1599/19977) 2025-03-14T04:20:43.8538436Z Resolving deltas: 9% (1798/19977) 2025-03-14T04:20:43.8538711Z Resolving deltas: 10% (1998/19977) 2025-03-14T04:20:43.8539049Z Resolving deltas: 11% (2198/19977) 2025-03-14T04:20:43.8539346Z Resolving deltas: 12% (2398/19977) 2025-03-14T04:20:43.8539658Z Resolving deltas: 13% (2598/19977) 2025-03-14T04:20:43.8546411Z Resolving deltas: 14% (2797/19977) 2025-03-14T04:20:43.8554079Z Resolving deltas: 15% (2997/19977) 2025-03-14T04:20:43.8564622Z Resolving deltas: 16% (3197/19977) 2025-03-14T04:20:43.8567797Z Resolving deltas: 17% (3397/19977) 2025-03-14T04:20:43.8583424Z Resolving deltas: 18% (3596/19977) 2025-03-14T04:20:43.8583771Z Resolving deltas: 19% (3796/19977) 2025-03-14T04:20:43.8592937Z Resolving deltas: 20% (3996/19977) 2025-03-14T04:20:43.8606444Z Resolving deltas: 21% (4196/19977) 2025-03-14T04:20:43.8621078Z Resolving deltas: 22% (4395/19977) 2025-03-14T04:20:43.8625574Z Resolving deltas: 23% (4595/19977) 2025-03-14T04:20:43.8633405Z Resolving deltas: 24% (4795/19977) 2025-03-14T04:20:43.8642218Z Resolving deltas: 25% (4995/19977) 2025-03-14T04:20:43.8645926Z Resolving deltas: 26% (5195/19977) 2025-03-14T04:20:43.8656073Z Resolving deltas: 27% (5394/19977) 2025-03-14T04:20:43.8666629Z Resolving deltas: 28% (5594/19977) 2025-03-14T04:20:43.8673254Z Resolving deltas: 29% (5794/19977) 2025-03-14T04:20:43.8682954Z Resolving deltas: 30% (5994/19977) 2025-03-14T04:20:43.8683332Z Resolving deltas: 31% (6193/19977) 2025-03-14T04:20:43.8686692Z Resolving deltas: 32% (6394/19977) 2025-03-14T04:20:43.8692999Z Resolving deltas: 33% (6593/19977) 2025-03-14T04:20:43.8697952Z Resolving deltas: 34% (6793/19977) 2025-03-14T04:20:43.8715253Z Resolving deltas: 35% (6992/19977) 2025-03-14T04:20:43.8731859Z Resolving deltas: 36% (7192/19977) 2025-03-14T04:20:43.8733045Z Resolving deltas: 37% (7392/19977) 2025-03-14T04:20:43.8733294Z Resolving deltas: 38% (7592/19977) 2025-03-14T04:20:43.8753039Z Resolving deltas: 39% (7792/19977) 2025-03-14T04:20:43.8773749Z Resolving deltas: 40% (7991/19977) 2025-03-14T04:20:43.8779336Z Resolving deltas: 41% (8191/19977) 2025-03-14T04:20:43.8797556Z Resolving deltas: 42% (8391/19977) 2025-03-14T04:20:43.8798265Z Resolving deltas: 43% (8591/19977) 2025-03-14T04:20:43.8803021Z Resolving deltas: 44% (8790/19977) 2025-03-14T04:20:43.8810998Z Resolving deltas: 45% (8990/19977) 2025-03-14T04:20:43.8815723Z Resolving deltas: 46% (9190/19977) 2025-03-14T04:20:43.8824304Z Resolving deltas: 47% (9390/19977) 2025-03-14T04:20:43.8830117Z Resolving deltas: 48% (9589/19977) 2025-03-14T04:20:43.8835607Z Resolving deltas: 49% (9789/19977) 2025-03-14T04:20:43.8844581Z Resolving deltas: 50% (9990/19977) 2025-03-14T04:20:43.8849925Z Resolving deltas: 51% (10189/19977) 2025-03-14T04:20:43.8857686Z Resolving deltas: 52% (10389/19977) 2025-03-14T04:20:43.8871205Z Resolving deltas: 53% (10588/19977) 2025-03-14T04:20:43.8877774Z Resolving deltas: 54% (10788/19977) 2025-03-14T04:20:43.8909016Z Resolving deltas: 55% (10988/19977) 2025-03-14T04:20:43.8920148Z Resolving deltas: 56% (11188/19977) 2025-03-14T04:20:43.8927815Z Resolving deltas: 57% (11387/19977) 2025-03-14T04:20:43.8936163Z Resolving deltas: 58% (11587/19977) 2025-03-14T04:20:43.8945968Z Resolving deltas: 59% (11787/19977) 2025-03-14T04:20:43.8954470Z Resolving deltas: 60% (11987/19977) 2025-03-14T04:20:43.8962819Z Resolving deltas: 61% (12186/19977) 2025-03-14T04:20:43.8967801Z Resolving deltas: 62% (12386/19977) 2025-03-14T04:20:43.8976393Z Resolving deltas: 63% (12586/19977) 2025-03-14T04:20:43.8980564Z Resolving deltas: 64% (12786/19977) 2025-03-14T04:20:43.8994336Z Resolving deltas: 65% (12986/19977) 2025-03-14T04:20:43.8997651Z Resolving deltas: 66% (13185/19977) 2025-03-14T04:20:43.9003490Z Resolving deltas: 67% (13385/19977) 2025-03-14T04:20:43.9008834Z Resolving deltas: 68% (13585/19977) 2025-03-14T04:20:43.9017176Z Resolving deltas: 69% (13785/19977) 2025-03-14T04:20:43.9019441Z Resolving deltas: 70% (13984/19977) 2025-03-14T04:20:43.9031646Z Resolving deltas: 71% (14184/19977) 2025-03-14T04:20:43.9041457Z Resolving deltas: 72% (14384/19977) 2025-03-14T04:20:43.9065084Z Resolving deltas: 73% (14584/19977) 2025-03-14T04:20:43.9071567Z Resolving deltas: 74% (14783/19977) 2025-03-14T04:20:43.9085968Z Resolving deltas: 75% (14983/19977) 2025-03-14T04:20:43.9099064Z Resolving deltas: 76% (15183/19977) 2025-03-14T04:20:43.9102798Z Resolving deltas: 77% (15383/19977) 2025-03-14T04:20:43.9108856Z Resolving deltas: 78% (15583/19977) 2025-03-14T04:20:43.9124798Z Resolving deltas: 79% (15782/19977) 2025-03-14T04:20:43.9133052Z Resolving deltas: 80% (15982/19977) 2025-03-14T04:20:43.9144838Z Resolving deltas: 81% (16182/19977) 2025-03-14T04:20:43.9153717Z Resolving deltas: 82% (16382/19977) 2025-03-14T04:20:43.9167486Z Resolving deltas: 83% (16581/19977) 2025-03-14T04:20:43.9179639Z Resolving deltas: 84% (16781/19977) 2025-03-14T04:20:43.9183772Z Resolving deltas: 85% (16981/19977) 2025-03-14T04:20:43.9194381Z Resolving deltas: 86% (17181/19977) 2025-03-14T04:20:43.9217645Z Resolving deltas: 87% (17380/19977) 2025-03-14T04:20:43.9222055Z Resolving deltas: 88% (17580/19977) 2025-03-14T04:20:43.9238460Z Resolving deltas: 89% (17780/19977) 2025-03-14T04:20:43.9246608Z Resolving deltas: 90% (17980/19977) 2025-03-14T04:20:43.9255237Z Resolving deltas: 91% (18180/19977) 2025-03-14T04:20:43.9263868Z Resolving deltas: 92% (18379/19977) 2025-03-14T04:20:43.9269097Z Resolving deltas: 93% (18579/19977) 2025-03-14T04:20:43.9299056Z Resolving deltas: 94% (18779/19977) 2025-03-14T04:20:43.9302784Z Resolving deltas: 95% (18979/19977) 2025-03-14T04:20:43.9308533Z Resolving deltas: 96% (19178/19977) 2025-03-14T04:20:43.9308882Z Resolving deltas: 97% (19378/19977) 2025-03-14T04:20:43.9342631Z Resolving deltas: 98% (19578/19977) 2025-03-14T04:20:43.9389085Z Resolving deltas: 99% (19778/19977) 2025-03-14T04:20:43.9391615Z Resolving deltas: 100% (19977/19977) 2025-03-14T04:20:43.9391881Z Resolving deltas: 100% (19977/19977), done. 2025-03-14T04:20:44.8890205Z + pushd torchbench 2025-03-14T04:20:44.8890489Z ~/workspace/torchbench ~/workspace 2025-03-14T04:20:44.8890776Z + git checkout 373ffb19dc470f4423a3176a4133f8f4b3cdb5bd 2025-03-14T04:20:44.9162745Z Note: switching to '373ffb19dc470f4423a3176a4133f8f4b3cdb5bd'. 2025-03-14T04:20:44.9162997Z 2025-03-14T04:20:44.9163163Z You are in 'detached HEAD' state. You can look around, make experimental 2025-03-14T04:20:44.9163510Z changes and commit them, and you can discard any commits you make in this 2025-03-14T04:20:44.9164032Z state without impacting any branches by switching back to a branch. 2025-03-14T04:20:44.9164224Z 2025-03-14T04:20:44.9164368Z If you want to create a new branch to retain commits you create, you may 2025-03-14T04:20:44.9164690Z do so (now or later) by using -c with the switch command. Example: 2025-03-14T04:20:44.9164866Z 2025-03-14T04:20:44.9164966Z git switch -c 2025-03-14T04:20:44.9165100Z 2025-03-14T04:20:44.9165194Z Or undo this operation with: 2025-03-14T04:20:44.9165318Z 2025-03-14T04:20:44.9165399Z git switch - 2025-03-14T04:20:44.9165499Z 2025-03-14T04:20:44.9165663Z Turn off this advice by setting config variable advice.detachedHead to false 2025-03-14T04:20:44.9165872Z 2025-03-14T04:20:44.9166021Z HEAD is now at 373ffb19 Copy model before benchmark warmup runs (#145858) 2025-03-14T04:20:44.9166309Z + '[' '' ']' 2025-03-14T04:20:44.9166507Z + python install.py --continue_on_fail 2025-03-14T04:20:49.8862151Z checking packages numpy, torch, torchvision, torchaudio are installed, generating constaints...OK 2025-03-14T04:21:14.1890032Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/BERT_pytorch...OK 2025-03-14T04:21:25.1949523Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/Background_Matting...OK 2025-03-14T04:21:37.0887762Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/LearningToPaint...OK 2025-03-14T04:21:48.5337984Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/Super_SloMo...OK 2025-03-14T04:21:58.8400756Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/alexnet...OK 2025-03-14T04:22:15.2348540Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_edgecnn...OK 2025-03-14T04:22:27.9262121Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_gcn...OK 2025-03-14T04:22:40.6294855Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_gin...OK 2025-03-14T04:22:53.2304690Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/basic_gnn_sage...OK 2025-03-14T04:22:53.2305845Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/cm3leon_generate...SKIP - No install.py is found 2025-03-14T04:23:04.6017491Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/dcgan...OK 2025-03-14T04:23:17.1940364Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/demucs...OK 2025-03-14T04:23:28.0991300Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/densenet121...OK 2025-03-14T04:24:10.1893738Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_c4...OK 2025-03-14T04:24:29.7272986Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_dc5...OK 2025-03-14T04:24:47.3410465Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_101_fpn...OK 2025-03-14T04:25:05.7732945Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_c4...OK 2025-03-14T04:25:26.3572163Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_dc5...OK 2025-03-14T04:25:43.8506300Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fasterrcnn_r_50_fpn...OK 2025-03-14T04:26:00.6943025Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_fcos_r_50_fpn...OK 2025-03-14T04:26:18.2806154Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn...OK 2025-03-14T04:26:35.4540914Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_101_c4...OK 2025-03-14T04:26:52.5855831Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_101_fpn...OK 2025-03-14T04:27:10.2489521Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_50_c4...OK 2025-03-14T04:27:27.9339699Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/detectron2_maskrcnn_r_50_fpn...OK 2025-03-14T04:27:39.0856466Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/dlrm...OK 2025-03-14T04:28:06.3084312Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/doctr_det_predictor...OK 2025-03-14T04:28:23.0261371Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/doctr_reco_predictor...OK 2025-03-14T04:28:37.8216330Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/drq...OK 2025-03-14T04:28:56.1980979Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/fastNLP_Bert...OK 2025-03-14T04:29:07.8977964Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/functorch_dp_cifar10...OK 2025-03-14T04:29:19.5367464Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/functorch_maml_omniglot...OK 2025-03-14T04:29:36.5786794Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Albert...OK 2025-03-14T04:29:53.5192031Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bart...OK 2025-03-14T04:30:08.9796229Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bert...OK 2025-03-14T04:30:25.5916805Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Bert_large...OK 2025-03-14T04:30:41.2523108Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_BigBird...OK 2025-03-14T04:30:57.2265448Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_DistilBert...OK 2025-03-14T04:31:13.6798768Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_GPT2...OK 2025-03-14T04:31:36.0966367Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_GPT2_large...OK 2025-03-14T04:31:52.0080652Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Longformer...OK 2025-03-14T04:32:07.2323918Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Reformer...OK 2025-03-14T04:32:26.3012067Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Roberta_base...OK 2025-03-14T04:32:42.1878514Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5...OK 2025-03-14T04:32:59.0643714Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_base...OK 2025-03-14T04:32:59.0644595Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_generate...SKIP - No install.py is found 2025-03-14T04:33:21.0206427Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_T5_large...OK 2025-03-14T04:33:35.3360121Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_Whisper...OK 2025-03-14T04:33:35.3362862Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_clip...SKIP - No install.py is found 2025-03-14T04:33:53.4575005Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/hf_distil_whisper...OK 2025-03-14T04:34:05.3051740Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/lennard_jones...OK 2025-03-14T04:34:17.5445351Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llama...OK 2025-03-14T04:35:00.1288532Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llama_v2_7b_16h...OK 2025-03-14T04:36:10.6949942Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/llava...OK 2025-03-14T04:36:21.7732437Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/maml...OK 2025-03-14T04:36:33.9818639Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/maml_omniglot...OK 2025-03-14T04:36:33.9821411Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/microbench_unbacked_tolist_sum...SKIP - No install.py is found 2025-03-14T04:36:44.9150555Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mnasnet1_0...OK 2025-03-14T04:36:55.6221283Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v2...OK 2025-03-14T04:37:06.3309020Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v2_quantized_qat...OK 2025-03-14T04:37:17.5180358Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/mobilenet_v3_large...OK 2025-03-14T04:37:28.3466954Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/moco...OK 2025-03-14T04:37:55.0932625Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/moondream...OK 2025-03-14T04:37:55.0935832Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/nanogpt...SKIP - No install.py is found 2025-03-14T04:38:07.1300836Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/nvidia_deeprecommender...OK 2025-03-14T04:38:20.1725898Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/opacus_cifar10...OK 2025-03-14T04:38:31.0744822Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/phlippe_densenet...OK 2025-03-14T04:38:41.8733807Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/phlippe_resnet...OK 2025-03-14T04:38:52.6477113Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_equation_of_state...OK 2025-03-14T04:39:03.4286163Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_isoneutral_mixing...OK 2025-03-14T04:39:14.1469570Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pyhpc_turbulent_kinetic_energy...OK 2025-03-14T04:39:30.0247585Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_CycleGAN_and_pix2pix...OK 2025-03-14T04:39:42.7423386Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_stargan...OK 2025-03-14T04:39:56.6452413Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/pytorch_unet...OK 2025-03-14T04:40:07.6239328Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet152...OK 2025-03-14T04:40:19.2955956Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet18...OK 2025-03-14T04:40:31.0306820Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet50...OK 2025-03-14T04:40:41.9647097Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnet50_quantized_qat...OK 2025-03-14T04:40:53.0192220Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/resnext50_32x4d...OK 2025-03-14T04:41:12.6739241Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/sam...OK 2025-03-14T04:41:33.2086861Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/sam_fast...OK 2025-03-14T04:41:44.3473733Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/shufflenet_v2_x1_0...OK 2025-03-14T04:41:44.3479868Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/simple_gpt...SKIP - No install.py is found 2025-03-14T04:41:44.3483321Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/simple_gpt_tp_manual...SKIP - No install.py is found 2025-03-14T04:41:58.0289162Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/soft_actor_critic...OK 2025-03-14T04:42:10.4577190Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/speech_transformer...OK 2025-03-14T04:42:20.5141657Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/squeezenet1_1...OK 2025-03-14T04:42:53.6989323Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/stable_diffusion_text_encoder...OK 2025-03-14T04:43:09.2854279Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/stable_diffusion_unet...OK 2025-03-14T04:43:25.3625531Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/tacotron2...OK 2025-03-14T04:43:43.2780408Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_efficientdet...OK 2025-03-14T04:43:53.8063950Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_efficientnet...OK 2025-03-14T04:44:04.6199829Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_nfnet...OK 2025-03-14T04:44:15.1090040Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_regnet...OK 2025-03-14T04:44:25.4587387Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_resnest...OK 2025-03-14T04:44:35.9992185Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vision_transformer...OK 2025-03-14T04:44:47.0587002Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vision_transformer_large...OK 2025-03-14T04:44:57.7767030Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/timm_vovnet...OK 2025-03-14T04:45:13.8678166Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/torch_multimodal_clip...OK 2025-03-14T04:45:29.1531278Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/tts_angular...OK 2025-03-14T04:45:40.0415042Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/vgg16...OK 2025-03-14T04:45:51.9141057Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/vision_maskrcnn...OK 2025-03-14T04:46:04.4805912Z running setup for /var/lib/jenkins/workspace/torchbench/torchbenchmark/models/yolov3...OK 2025-03-14T04:46:10.1497374Z installed torchbench with package constraints: {'numpy': '1.22.4', 'torch': '2.8.0a0+gitaed0b7a', 'torchvision': '0.19.0a0+d23a6e1', 'torchaudio': '2.6.0a0+c670ad8'} 2025-03-14T04:46:10.4816089Z + pip install transformers==4.38.1 2025-03-14T04:46:10.8319084Z Collecting transformers==4.38.1 2025-03-14T04:46:10.8432911Z Downloading transformers-4.38.1-py3-none-any.whl.metadata (131 kB) 2025-03-14T04:46:10.9838411Z Requirement already satisfied: filelock in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (3.16.1) 2025-03-14T04:46:10.9840426Z Requirement already satisfied: huggingface-hub<1.0,>=0.19.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (0.29.3) 2025-03-14T04:46:10.9846640Z Requirement already satisfied: numpy>=1.17 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (1.22.4) 2025-03-14T04:46:10.9850880Z Requirement already satisfied: packaging>=20.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (24.2) 2025-03-14T04:46:10.9855143Z Requirement already satisfied: pyyaml>=5.1 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (6.0.2) 2025-03-14T04:46:10.9855933Z Requirement already satisfied: regex!=2019.12.17 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (2024.11.6) 2025-03-14T04:46:10.9857915Z Requirement already satisfied: requests in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (2.32.3) 2025-03-14T04:46:11.0789920Z Collecting tokenizers<0.19,>=0.14 (from transformers==4.38.1) 2025-03-14T04:46:11.0803159Z Using cached tokenizers-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB) 2025-03-14T04:46:11.0823472Z Requirement already satisfied: safetensors>=0.4.1 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (0.5.3) 2025-03-14T04:46:11.0824811Z Requirement already satisfied: tqdm>=4.27 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from transformers==4.38.1) (4.67.1) 2025-03-14T04:46:11.0980883Z Requirement already satisfied: fsspec>=2023.5.0 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.1) (2024.10.0) 2025-03-14T04:46:11.0982115Z Requirement already satisfied: typing-extensions>=3.7.4.3 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.19.3->transformers==4.38.1) (4.12.2) 2025-03-14T04:46:11.1114988Z Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (3.4.1) 2025-03-14T04:46:11.1115863Z Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (3.10) 2025-03-14T04:46:11.1120517Z Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (1.26.20) 2025-03-14T04:46:11.1121359Z Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/py_3.9/lib/python3.9/site-packages (from requests->transformers==4.38.1) (2025.1.31) 2025-03-14T04:46:11.1460721Z Downloading transformers-4.38.1-py3-none-any.whl (8.5 MB) 2025-03-14T04:46:11.2051889Z [?25l ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 0.0/8.5 MB ? eta -:--:-- 2025-03-14T04:46:11.2056461Z  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.5/8.5 MB 149.8 MB/s eta 0:00:00 2025-03-14T04:46:11.2065900Z [?25hUsing cached tokenizers-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB) 2025-03-14T04:46:12.0305817Z Installing collected packages: tokenizers, transformers 2025-03-14T04:46:12.0306482Z Attempting uninstall: tokenizers 2025-03-14T04:46:12.0306900Z Found existing installation: tokenizers 0.19.1 2025-03-14T04:46:12.0364652Z Uninstalling tokenizers-0.19.1: 2025-03-14T04:46:12.0365422Z Successfully uninstalled tokenizers-0.19.1 2025-03-14T04:46:12.1028194Z Attempting uninstall: transformers 2025-03-14T04:46:12.1087789Z Found existing installation: transformers 4.44.2 2025-03-14T04:46:12.2169758Z Uninstalling transformers-4.44.2: 2025-03-14T04:46:12.2369035Z Successfully uninstalled transformers-4.44.2 2025-03-14T04:46:15.3287181Z Successfully installed tokenizers-0.15.2 transformers-4.38.1 2025-03-14T04:46:15.4989779Z + echo 'Print all dependencies after TorchBench is installed' 2025-03-14T04:46:15.4990213Z Print all dependencies after TorchBench is installed 2025-03-14T04:46:15.4990480Z + python -mpip freeze 2025-03-14T04:46:15.8373881Z absl-py==2.1.0 2025-03-14T04:46:15.8374454Z accelerate==1.5.1 2025-03-14T04:46:15.8374747Z aiohappyeyeballs==2.6.1 2025-03-14T04:46:15.8375047Z aiohttp==3.11.13 2025-03-14T04:46:15.8375374Z aiosignal==1.3.2 2025-03-14T04:46:15.8375612Z alabaster==0.7.16 2025-03-14T04:46:15.8375797Z annotated-types==0.7.0 2025-03-14T04:46:15.8376016Z antlr4-python3-runtime==4.9.3 2025-03-14T04:46:15.8376241Z anyascii==0.3.2 2025-03-14T04:46:15.8376424Z astroid==3.3.9 2025-03-14T04:46:15.8376604Z asttokens==3.0.0 2025-03-14T04:46:15.8376786Z astunparse==1.6.3 2025-03-14T04:46:15.8376973Z async-timeout==5.0.1 2025-03-14T04:46:15.8377164Z attrs==23.1.0 2025-03-14T04:46:15.8377345Z audioread==3.0.1 2025-03-14T04:46:15.8377530Z babel==2.17.0 2025-03-14T04:46:15.8377701Z backcall==0.2.0 2025-03-14T04:46:15.8377884Z beautifulsoup4==4.13.3 2025-03-14T04:46:15.8378737Z -e git+https://github.com/pytorch/benchmark@373ffb19dc470f4423a3176a4133f8f4b3cdb5bd#egg=bert_pytorch&subdirectory=torchbenchmark/models/BERT_pytorch 2025-03-14T04:46:15.8379232Z black==25.1.0 2025-03-14T04:46:15.8379553Z blinker==1.9.0 2025-03-14T04:46:15.8379757Z blis==1.2.0 2025-03-14T04:46:15.8380006Z blobfile==3.0.0 2025-03-14T04:46:15.8380425Z bokeh==3.4.3 2025-03-14T04:46:15.8380725Z boto3==1.35.42 2025-03-14T04:46:15.8381029Z botocore==1.35.99 2025-03-14T04:46:15.8381338Z breathe==4.34.0 2025-03-14T04:46:15.8381830Z bs4==0.0.1 2025-03-14T04:46:15.8382089Z cachetools==5.5.2 2025-03-14T04:46:15.8382934Z cardboardlint==1.3.1 2025-03-14T04:46:15.8383342Z catalogue==2.0.10 2025-03-14T04:46:15.8383542Z certifi==2025.1.31 2025-03-14T04:46:15.8383742Z cffi==1.17.1 2025-03-14T04:46:15.8383958Z charset-normalizer==3.4.1 2025-03-14T04:46:15.8384262Z click==8.1.8 2025-03-14T04:46:15.8384460Z cloudpathlib==0.21.0 2025-03-14T04:46:15.8384661Z cloudpickle==3.1.1 2025-03-14T04:46:15.8384860Z colorama==0.4.6 2025-03-14T04:46:15.8385056Z comm==0.2.2 2025-03-14T04:46:15.8385310Z confection==0.1.5 2025-03-14T04:46:15.8385510Z contourpy==1.2.1 2025-03-14T04:46:15.8385702Z coremltools==5.0b5 2025-03-14T04:46:15.8385895Z cryptography==44.0.2 2025-03-14T04:46:15.8386091Z csvw==3.5.1 2025-03-14T04:46:15.8386270Z cycler==0.12.1 2025-03-14T04:46:15.8386481Z cymem==2.0.11 2025-03-14T04:46:15.8386669Z Cython==3.0.12 2025-03-14T04:46:15.8386850Z DALL-E==0.1 2025-03-14T04:46:15.8387035Z dataclasses-json==0.6.7 2025-03-14T04:46:15.8387245Z datasets==3.3.2 2025-03-14T04:46:15.8387429Z debugpy==1.8.13 2025-03-14T04:46:15.8387613Z decorator==5.2.1 2025-03-14T04:46:15.8387804Z defusedxml==0.7.1 2025-03-14T04:46:15.8387999Z Deprecated==1.2.18 2025-03-14T04:46:15.8388425Z detectron2 @ git+https://github.com/facebookresearch/detectron2.git@0df2d73d0013db7de629602c23cc120219b4f2b8 2025-03-14T04:46:15.8388855Z diffusers==0.30.3 2025-03-14T04:46:15.8389047Z dill==0.3.8 2025-03-14T04:46:15.8389228Z diskcache==5.6.3 2025-03-14T04:46:15.8389417Z distro==1.9.0 2025-03-14T04:46:15.8389605Z dlinfo==2.0.0 2025-03-14T04:46:15.8389789Z dnspython==2.7.0 2025-03-14T04:46:15.8389987Z docker-pycreds==0.4.0 2025-03-14T04:46:15.8390192Z docutils==0.16 2025-03-14T04:46:15.8390379Z dominate==2.9.1 2025-03-14T04:46:15.8390751Z effdet @ git+https://github.com/rwightman/efficientdet-pytorch.git@d43c9e34cd62d22b4205831bb735f6dd83b8e881 2025-03-14T04:46:15.8391172Z einops==0.8.1 2025-03-14T04:46:15.8391371Z eval_type_backport==0.2.2 2025-03-14T04:46:15.8391597Z exceptiongroup==1.2.2 2025-03-14T04:46:15.8391801Z execnet==2.1.1 2025-03-14T04:46:15.8391988Z executing==2.2.0 2025-03-14T04:46:15.8392176Z exhale==0.2.3 2025-03-14T04:46:15.8392360Z expecttest==0.3.0 2025-03-14T04:46:15.8392560Z fastjsonschema==2.21.1 2025-03-14T04:46:15.8392764Z FastNLP==0.6.0 2025-03-14T04:46:15.8392956Z fbscribelogger==0.1.7 2025-03-14T04:46:15.8393161Z ffmpeg-python==0.2.0 2025-03-14T04:46:15.8393375Z filelock==3.16.1 2025-03-14T04:46:15.8393563Z Flask==3.1.0 2025-03-14T04:46:15.8393738Z flatbuffers==2.0 2025-03-14T04:46:15.8393930Z fonttools==4.56.0 2025-03-14T04:46:15.8394118Z frozenlist==1.5.0 2025-03-14T04:46:15.8394312Z fsspec==2024.10.0 2025-03-14T04:46:15.8394495Z ftfy==6.3.1 2025-03-14T04:46:15.8394830Z functorch @ git+https://github.com/pytorch/functorch.git@b71aa0b4387b86c278132209b99538be48ef4c74 2025-03-14T04:46:15.8395214Z future==1.0.0 2025-03-14T04:46:15.8395422Z fvcore==0.1.5.post20221221 2025-03-14T04:46:15.8395630Z gdown==5.2.0 2025-03-14T04:46:15.8395806Z ghstack==0.8.0 2025-03-14T04:46:15.8395982Z gitdb==4.0.12 2025-03-14T04:46:15.8396153Z GitPython==3.1.44 2025-03-14T04:46:15.8396338Z google-auth==2.38.0 2025-03-14T04:46:15.8396540Z google-auth-oauthlib==1.0.0 2025-03-14T04:46:15.8396742Z greenlet==3.1.1 2025-03-14T04:46:15.8396918Z grpcio==1.71.0 2025-03-14T04:46:15.8397100Z gym==0.26.2 2025-03-14T04:46:15.8397273Z gym-notices==0.0.8 2025-03-14T04:46:15.8397458Z h5py==3.13.0 2025-03-14T04:46:15.8397637Z higher==0.2.1 2025-03-14T04:46:15.8397823Z huggingface-hub==0.29.3 2025-03-14T04:46:15.8398026Z hydra-core==1.3.2 2025-03-14T04:46:15.8398496Z hypothesis==5.35.1 2025-03-14T04:46:15.8398697Z idna==3.10 2025-03-14T04:46:15.8398878Z imageio==2.37.0 2025-03-14T04:46:15.8399063Z imagesize==1.4.1 2025-03-14T04:46:15.8399260Z importlib_metadata==8.6.1 2025-03-14T04:46:15.8399461Z inflect==7.5.0 2025-03-14T04:46:15.8399728Z iniconfig==2.0.0 2025-03-14T04:46:15.8399907Z iopath==0.1.9 2025-03-14T04:46:15.8400086Z ipykernel==6.29.5 2025-03-14T04:46:15.8400303Z ipython==8.12.0 2025-03-14T04:46:15.8400482Z isodate==0.7.2 2025-03-14T04:46:15.8400665Z isort==6.0.1 2025-03-14T04:46:15.8400843Z itsdangerous==2.2.0 2025-03-14T04:46:15.8401033Z jedi==0.19.2 2025-03-14T04:46:15.8401207Z Jinja2==3.1.6 2025-03-14T04:46:15.8401385Z jmespath==1.0.1 2025-03-14T04:46:15.8401564Z joblib==1.4.2 2025-03-14T04:46:15.8401740Z jsonpatch==1.33 2025-03-14T04:46:15.8401921Z jsonpointer==3.0.0 2025-03-14T04:46:15.8402103Z jsonschema==4.23.0 2025-03-14T04:46:15.8402308Z jsonschema-specifications==2024.10.1 2025-03-14T04:46:15.8402553Z junitparser==2.1.1 2025-03-14T04:46:15.8402754Z jupyter-cache==0.6.1 2025-03-14T04:46:15.8402952Z jupyter_client==8.6.3 2025-03-14T04:46:15.8403142Z jupyter_core==5.7.2 2025-03-14T04:46:15.8403330Z kaldi-io==0.9.8 2025-03-14T04:46:15.8403513Z kiwisolver==1.4.7 2025-03-14T04:46:15.8403690Z kornia==0.8.0 2025-03-14T04:46:15.8403869Z kornia_rs==0.1.8 2025-03-14T04:46:15.8404048Z lameenc==1.8.1 2025-03-14T04:46:15.8404225Z langcodes==3.5.0 2025-03-14T04:46:15.8404401Z langdetect==1.0.9 2025-03-14T04:46:15.8404580Z language-tags==1.2.0 2025-03-14T04:46:15.8404782Z language_data==1.3.0 2025-03-14T04:46:15.8404966Z lark==0.12.0 2025-03-14T04:46:15.8405142Z lazy_loader==0.4 2025-03-14T04:46:15.8405315Z libcst==1.7.0 2025-03-14T04:46:15.8405488Z librosa==0.9.2 2025-03-14T04:46:15.8405669Z lintrunner==0.12.7 2025-03-14T04:46:15.8405848Z llvmlite==0.38.1 2025-03-14T04:46:15.8406026Z lxml==5.3.0 2025-03-14T04:46:15.8406207Z marisa-trie==1.2.1 2025-03-14T04:46:15.8406390Z Markdown==3.7 2025-03-14T04:46:15.8406579Z markdown-it-py==2.2.0 2025-03-14T04:46:15.8406789Z MarkupSafe==3.0.2 2025-03-14T04:46:15.8406973Z marshmallow==3.26.1 2025-03-14T04:46:15.8407151Z matplotlib==3.5.3 2025-03-14T04:46:15.8407342Z matplotlib-inline==0.1.7 2025-03-14T04:46:15.8407553Z mccabe==0.7.0 2025-03-14T04:46:15.8407737Z mdit-py-plugins==0.3.5 2025-03-14T04:46:15.8407930Z mdurl==0.1.2 2025-03-14T04:46:15.8408099Z ml_dtypes==0.5.1 2025-03-14T04:46:15.8408275Z MonkeyType==23.3.0 2025-03-14T04:46:15.8408456Z more-itertools==10.6.0 2025-03-14T04:46:15.8408642Z mpmath==1.3.0 2025-03-14T04:46:15.8408812Z msgpack==1.1.0 2025-03-14T04:46:15.8408984Z multidict==6.1.0 2025-03-14T04:46:15.8409161Z multiprocess==0.70.16 2025-03-14T04:46:15.8409350Z murmurhash==1.0.12 2025-03-14T04:46:15.8409514Z musdb==0.4.2 2025-03-14T04:46:15.8409685Z museval==0.4.1 2025-03-14T04:46:15.8409860Z mypy==1.14.0 2025-03-14T04:46:15.8410044Z mypy-extensions==1.0.0 2025-03-14T04:46:15.8410232Z myst-nb==0.17.2 2025-03-14T04:46:15.8410416Z myst-parser==0.18.1 2025-03-14T04:46:15.8410597Z nbclient==0.7.4 2025-03-14T04:46:15.8410777Z nbformat==5.10.4 2025-03-14T04:46:15.8410954Z nest-asyncio==1.6.0 2025-03-14T04:46:15.8411133Z networkx==2.8.8 2025-03-14T04:46:15.8411312Z ninja==1.10.2 2025-03-14T04:46:15.8411482Z nose==1.3.7 2025-03-14T04:46:15.8411643Z numba==0.55.2 2025-03-14T04:46:15.8411812Z numpy==1.22.4 2025-03-14T04:46:15.8411996Z nvidia-cublas-cu12==12.4.5.8 2025-03-14T04:46:15.8412224Z nvidia-cuda-cupti-cu12==12.4.127 2025-03-14T04:46:15.8412460Z nvidia-cuda-nvrtc-cu12==12.4.127 2025-03-14T04:46:15.8412687Z nvidia-cuda-runtime-cu12==12.4.127 2025-03-14T04:46:15.8412914Z nvidia-cudnn-cu12==9.1.0.70 2025-03-14T04:46:15.8413121Z nvidia-cufft-cu12==11.2.1.3 2025-03-14T04:46:15.8413327Z nvidia-curand-cu12==10.3.5.147 2025-03-14T04:46:15.8413544Z nvidia-cusolver-cu12==11.6.1.9 2025-03-14T04:46:15.8413760Z nvidia-cusparse-cu12==12.3.1.170 2025-03-14T04:46:15.8413984Z nvidia-cusparselt-cu12==0.6.2 2025-03-14T04:46:15.8414198Z nvidia-ml-py==12.570.86 2025-03-14T04:46:15.8414399Z nvidia-nccl-cu12==2.21.5 2025-03-14T04:46:15.8414683Z nvidia-nvjitlink-cu12==12.4.127 2025-03-14T04:46:15.8414916Z nvidia-nvtx-cu12==12.4.127 2025-03-14T04:46:15.8415113Z oauthlib==3.2.2 2025-03-14T04:46:15.8415299Z omegaconf==2.3.0 2025-03-14T04:46:15.8415478Z onnx==1.17.0 2025-03-14T04:46:15.8415655Z onnxscript==0.2.2 2025-03-14T04:46:15.8415891Z opacus==1.5.3 2025-03-14T04:46:15.8416071Z opencv-python==4.8.0.74 2025-03-14T04:46:15.8416263Z opt-einsum==3.3.0 2025-03-14T04:46:15.8416442Z optree==0.13.0 2025-03-14T04:46:15.8416621Z packaging==24.2 2025-03-14T04:46:15.8416811Z pandas==2.0.3 2025-03-14T04:46:15.8416986Z parameterized==0.8.1 2025-03-14T04:46:15.8417169Z parso==0.8.4 2025-03-14T04:46:15.8417338Z patch==1.16 2025-03-14T04:46:15.8417501Z pathspec==0.12.1 2025-03-14T04:46:15.8417681Z pexpect==4.9.0 2025-03-14T04:46:15.8417857Z phonemizer==3.3.0 2025-03-14T04:46:15.8418041Z pickleshare==0.7.5 2025-03-14T04:46:15.8418221Z pillow==11.0.0 2025-03-14T04:46:15.8418398Z platformdirs==4.3.6 2025-03-14T04:46:15.8418579Z pluggy==1.5.0 2025-03-14T04:46:15.8418755Z ply==3.11 2025-03-14T04:46:15.8418921Z pooch==1.8.2 2025-03-14T04:46:15.8419095Z portalocker==3.1.1 2025-03-14T04:46:15.8419275Z preshed==3.0.9 2025-03-14T04:46:15.8419446Z prettytable==3.15.1 2025-03-14T04:46:15.8419630Z prompt_toolkit==3.0.50 2025-03-14T04:46:15.8419827Z propcache==0.3.0 2025-03-14T04:46:15.8419998Z protobuf==3.20.2 2025-03-14T04:46:15.8420168Z psutil==7.0.0 2025-03-14T04:46:15.8420337Z ptyprocess==0.7.0 2025-03-14T04:46:15.8420510Z PuLP==2.9.0 2025-03-14T04:46:15.8420681Z pure_eval==0.2.3 2025-03-14T04:46:15.8420859Z pwlf==2.2.1 2025-03-14T04:46:15.8421027Z py-cpuinfo==9.0.0 2025-03-14T04:46:15.8421201Z pyaml==25.1.0 2025-03-14T04:46:15.8421370Z pyarrow==19.0.1 2025-03-14T04:46:15.8421539Z pyasn1==0.6.1 2025-03-14T04:46:15.8421714Z pyasn1_modules==0.4.1 2025-03-14T04:46:15.8421903Z pyclipper==1.3.0.post6 2025-03-14T04:46:15.8422090Z pycocotools==2.0.8 2025-03-14T04:46:15.8422263Z pycparser==2.22 2025-03-14T04:46:15.8422447Z pycryptodomex==3.21.0 2025-03-14T04:46:15.8422637Z pydantic==2.10.6 2025-03-14T04:46:15.8422822Z pydantic_core==2.27.2 2025-03-14T04:46:15.8423007Z pyDOE==0.3.8 2025-03-14T04:46:15.8423179Z pydot==3.0.4 2025-03-14T04:46:15.8423351Z pygame==2.6.1 2025-03-14T04:46:15.8423520Z PyGithub==2.3.0 2025-03-14T04:46:15.8423696Z Pygments==2.15.0 2025-03-14T04:46:15.8423888Z PyJWT==2.10.1 2025-03-14T04:46:15.8424174Z pylint==3.3.5 2025-03-14T04:46:15.8424376Z PyNaCl==1.5.0 2025-03-14T04:46:15.8424558Z pynvml==12.0.0 2025-03-14T04:46:15.8424739Z pyparsing==3.2.1 2025-03-14T04:46:15.8424935Z pypdfium2==4.30.1 2025-03-14T04:46:15.8425129Z pysbd==0.3.4 2025-03-14T04:46:15.8425315Z PySocks==1.7.1 2025-03-14T04:46:15.8425485Z pytest==8.3.5 2025-03-14T04:46:15.8425664Z pytest-benchmark==5.1.0 2025-03-14T04:46:15.8425867Z pytest-cpp==2.3.0 2025-03-14T04:46:15.8426072Z pytest-flakefinder==1.1.0 2025-03-14T04:46:15.8426302Z pytest-rerunfailures==14.0 2025-03-14T04:46:15.8426530Z pytest-subtests==0.13.1 2025-03-14T04:46:15.8426741Z pytest-xdist==3.3.1 2025-03-14T04:46:15.8426959Z python-dateutil==2.9.0.post0 2025-03-14T04:46:15.8427184Z python-doctr==0.10.0 2025-03-14T04:46:15.8427387Z python-etcd==0.4.5 2025-03-14T04:46:15.8427886Z pytorch-labs-segment-anything-fast @ git+https://github.com/pytorch-labs/segment-anything-fast.git@e6aadeb86f3ae1f58c3f98e2a91e251716e0f2aa 2025-03-14T04:46:15.8428632Z -e git+https://github.com/pytorch/pytorch_sphinx_theme.git@4125c834e1aa0945fde6ef58ff2f77f7abedc460#egg=pytorch_sphinx_theme 2025-03-14T04:46:15.8429093Z pytz==2025.1 2025-03-14T04:46:15.8429279Z PyWavelets==1.4.1 2025-03-14T04:46:15.8429474Z PyYAML==6.0.2 2025-03-14T04:46:15.8429658Z pyzmq==26.3.0 2025-03-14T04:46:15.8429861Z pyzstd==0.16.2 2025-03-14T04:46:15.8430045Z RapidFuzz==3.12.2 2025-03-14T04:46:15.8430237Z rdflib==7.1.3 2025-03-14T04:46:15.8430414Z redis==5.2.1 2025-03-14T04:46:15.8430600Z referencing==0.36.2 2025-03-14T04:46:15.8430790Z regex==2024.11.6 2025-03-14T04:46:15.8430979Z requests==2.32.3 2025-03-14T04:46:15.8431172Z requests-oauthlib==2.0.0 2025-03-14T04:46:15.8431573Z resampy==0.4.3 2025-03-14T04:46:15.8431804Z rfc3986==1.5.0 2025-03-14T04:46:15.8432000Z rich==13.9.4 2025-03-14T04:46:15.8432189Z rpds-py==0.23.1 2025-03-14T04:46:15.8432379Z rsa==4.9 2025-03-14T04:46:15.8432564Z s3transfer==0.10.4 2025-03-14T04:46:15.8432759Z safetensors==0.5.3 2025-03-14T04:46:15.8433016Z scikit-image==0.19.3 2025-03-14T04:46:15.8433220Z scikit-learn==1.6.1 2025-03-14T04:46:15.8433413Z scipy==1.10.1 2025-03-14T04:46:15.8433597Z segments==2.3.0 2025-03-14T04:46:15.8433802Z sentencepiece==0.2.0 2025-03-14T04:46:15.8433985Z sentry-sdk==2.22.0 2025-03-14T04:46:15.8434162Z setproctitle==1.3.5 2025-03-14T04:46:15.8434348Z shapely==2.0.7 2025-03-14T04:46:15.8434513Z shellingham==1.5.4 2025-03-14T04:46:15.8434693Z simplejson==3.20.1 2025-03-14T04:46:15.8434869Z six==1.17.0 2025-03-14T04:46:15.8435034Z smart-open==7.1.0 2025-03-14T04:46:15.8435263Z smmap==5.0.2 2025-03-14T04:46:15.8435469Z snowballstemmer==2.2.0 2025-03-14T04:46:15.8435662Z sortedcontainers==2.4.0 2025-03-14T04:46:15.8435858Z soundfile==0.13.1 2025-03-14T04:46:15.8436037Z soupsieve==2.6 2025-03-14T04:46:15.8436208Z soxr==0.5.0.post1 2025-03-14T04:46:15.8436380Z spacy==3.8.3 2025-03-14T04:46:15.8436549Z spacy-legacy==3.0.12 2025-03-14T04:46:15.8436733Z spacy-loggers==1.0.5 2025-03-14T04:46:15.8436903Z Sphinx==5.3.0 2025-03-14T04:46:15.8437088Z sphinx-copybutton==0.5.0 2025-03-14T04:46:15.8437286Z sphinx-panels==0.4.1 2025-03-14T04:46:15.8437483Z sphinxcontrib-applehelp==2.0.0 2025-03-14T04:46:15.8437706Z sphinxcontrib-devhelp==2.0.0 2025-03-14T04:46:15.8437922Z sphinxcontrib-htmlhelp==2.1.0 2025-03-14T04:46:15.8438136Z sphinxcontrib-jsmath==1.0.1 2025-03-14T04:46:15.8438343Z sphinxcontrib-katex==0.8.6 2025-03-14T04:46:15.8438548Z sphinxcontrib-qthelp==2.0.0 2025-03-14T04:46:15.8438769Z sphinxcontrib-serializinghtml==2.0.0 2025-03-14T04:46:15.8438994Z SQLAlchemy==2.0.39 2025-03-14T04:46:15.8439169Z srsly==2.5.1 2025-03-14T04:46:15.8439338Z stack-data==0.6.3 2025-03-14T04:46:15.8439513Z stempeg==0.2.3 2025-03-14T04:46:15.8439684Z submitit==1.5.2 2025-03-14T04:46:15.8439857Z sympy==1.13.3 2025-03-14T04:46:15.8440028Z tabulate==0.9.0 2025-03-14T04:46:15.8440205Z tb-nightly==2.13.0a20230426 2025-03-14T04:46:15.8440400Z tensorboard==2.13.0 2025-03-14T04:46:15.8440590Z tensorboard-data-server==0.7.2 2025-03-14T04:46:15.8440804Z tensorboardX==2.6.2.2 2025-03-14T04:46:15.8440991Z termcolor==2.5.0 2025-03-14T04:46:15.8441166Z thinc==8.3.4 2025-03-14T04:46:15.8441337Z threadpoolctl==3.6.0 2025-03-14T04:46:15.8441519Z thriftpy2==0.5.2 2025-03-14T04:46:15.8441694Z tifffile==2024.8.30 2025-03-14T04:46:15.8442045Z timm @ git+https://github.com/huggingface/pytorch-image-models.git@730b907b4d45a4713cbc425cbf224c46089fd514 2025-03-14T04:46:15.8442413Z tlparse==0.3.30 2025-03-14T04:46:15.8442589Z tokenizers==0.15.2 2025-03-14T04:46:15.8442753Z tomli==2.2.1 2025-03-14T04:46:15.8442924Z tomlkit==0.13.2 2025-03-14T04:46:15.8443425Z torch @ file:///var/lib/jenkins/workspace/dist/torch-2.8.0a0%2Bgitaed0b7a-cp39-cp39-linux_x86_64.whl#sha256=70b47dc351bf5a859f8225ee88934d219f3ed496ecea95a101a28f8ac92d2f63 2025-03-14T04:46:15.8444109Z torch_geometric @ git+https://github.com/pyg-team/pytorch_geometric.git@cabcd4097442ba60aa1efa11e1619dd9bb8fb527 2025-03-14T04:46:15.8444573Z torchao @ git+https://github.com/pytorch/ao.git@9259584f98db0760b27492a63050a2915c753dbe 2025-03-14T04:46:15.8445003Z torchaudio @ git+https://github.com/pytorch/audio.git@c670ad81fda266b6598aeeef434583eb98197ae8 2025-03-14T04:46:15.8445507Z torchmultimodal @ git+https://github.com/facebookresearch/multimodal.git@6569fcc03450c2360b50d772bf9b18ec3487fcf4 2025-03-14T04:46:15.8446013Z torchvision @ git+https://github.com/pytorch/vision.git@d23a6e1664d20707c11781299611436e1f0c104f 2025-03-14T04:46:15.8446352Z tornado==6.4.2 2025-03-14T04:46:15.8446531Z tqdm==4.67.1 2025-03-14T04:46:15.8446695Z traitlets==5.14.3 2025-03-14T04:46:15.8446872Z transformers==4.38.1 2025-03-14T04:46:15.8447050Z treetable==0.2.5 2025-03-14T04:46:15.8447250Z triton @ file:///var/lib/jenkins/triton/python 2025-03-14T04:46:15.8447588Z typeguard==4.4.2 2025-03-14T04:46:15.8447773Z typer==0.15.2 2025-03-14T04:46:15.8447951Z typing-inspect==0.9.0 2025-03-14T04:46:15.8448150Z typing_extensions==4.12.2 2025-03-14T04:46:15.8448346Z tzdata==2025.1 2025-03-14T04:46:15.8448511Z Unidecode==1.3.8 2025-03-14T04:46:15.8448751Z unittest-xml-reporting==3.2.0 2025-03-14T04:46:15.8448971Z uritemplate==4.1.1 2025-03-14T04:46:15.8449142Z urllib3==1.26.20 2025-03-14T04:46:15.8449309Z visdom==0.2.4 2025-03-14T04:46:15.8449473Z wandb==0.19.8 2025-03-14T04:46:15.8449637Z wasabi==1.1.3 2025-03-14T04:46:15.8449799Z wcwidth==0.2.13 2025-03-14T04:46:15.8449966Z weasel==0.4.1 2025-03-14T04:46:15.8450135Z websocket-client==1.8.0 2025-03-14T04:46:15.8450319Z Werkzeug==3.1.3 2025-03-14T04:46:15.8450488Z wrapt==1.17.2 2025-03-14T04:46:15.8450649Z xdoctest==1.1.0 2025-03-14T04:46:15.8450806Z xxhash==3.5.0 2025-03-14T04:46:15.8450973Z xyzservices==2025.1.0 2025-03-14T04:46:15.8451153Z yacs==0.1.8 2025-03-14T04:46:15.8451317Z yarl==1.18.3 2025-03-14T04:46:15.8451486Z z3-solver==4.12.6.0 2025-03-14T04:46:15.8451660Z zipp==3.21.0 2025-03-14T04:46:15.8821392Z + popd 2025-03-14T04:46:15.8866500Z ~/workspace 2025-03-14T04:46:15.8883636Z + [[ cpu_inductor_torchbench != *cpu* ]] 2025-03-14T04:46:15.8946024Z ++ pwd 2025-03-14T04:46:15.8946391Z + PYTHONPATH=/var/lib/jenkins/workspace/torchbench 2025-03-14T04:46:15.8946744Z + test_dynamo_benchmark torchbench 0 2025-03-14T04:46:15.8946961Z ++ pwd 2025-03-14T04:46:15.8947191Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2025-03-14T04:46:15.8947466Z + local suite=torchbench 2025-03-14T04:46:15.8947658Z + shift 2025-03-14T04:46:15.8947821Z + local shard_id=0 2025-03-14T04:46:15.8947994Z + shift 2025-03-14T04:46:15.8948189Z + [[ cpu_inductor_torchbench == *perf_compare* ]] 2025-03-14T04:46:15.8948440Z + [[ cpu_inductor_torchbench == *perf* ]] 2025-03-14T04:46:15.8948671Z + [[ cpu_inductor_torchbench == *cpu* ]] 2025-03-14T04:46:15.8948902Z + local dt=float32 2025-03-14T04:46:15.8951386Z + [[ cpu_inductor_torchbench == *amp* ]] 2025-03-14T04:46:15.8954920Z + [[ cpu_inductor_torchbench == *freezing* ]] 2025-03-14T04:46:15.8983040Z + test_single_dynamo_benchmark inference torchbench 0 --inference --float32 2025-03-14T04:46:15.8985669Z ++ pwd 2025-03-14T04:46:15.8986073Z + TEST_REPORTS_DIR=/var/lib/jenkins/workspace/test/test-reports 2025-03-14T04:46:15.8986652Z + mkdir -p /var/lib/jenkins/workspace/test/test-reports 2025-03-14T04:46:15.8986967Z + local name=inference 2025-03-14T04:46:15.8987215Z + shift 2025-03-14T04:46:15.8987409Z + local suite=torchbench 2025-03-14T04:46:15.8987636Z + shift 2025-03-14T04:46:15.8987856Z + local shard_id=0 2025-03-14T04:46:15.8988081Z + shift 2025-03-14T04:46:15.8988299Z + partition_flags=() 2025-03-14T04:46:15.8988547Z + local partition_flags 2025-03-14T04:46:15.8988771Z + [[ -n 2 ]] 2025-03-14T04:46:15.8989003Z + [[ -n 0 ]] 2025-03-14T04:46:15.8989359Z + partition_flags=(--total-partitions "$NUM_TEST_SHARDS" --partition-id "$shard_id") 2025-03-14T04:46:15.8989778Z + [[ cpu_inductor_torchbench == *perf_compare* ]] 2025-03-14T04:46:15.8990046Z + [[ cpu_inductor_torchbench == *perf* ]] 2025-03-14T04:46:15.8990294Z + [[ cpu_inductor_torchbench == *_avx2* ]] 2025-03-14T04:46:15.8990554Z + [[ cpu_inductor_torchbench == *_avx512* ]] 2025-03-14T04:46:15.8991298Z + python benchmarks/dynamo/torchbench.py --ci --accuracy --timing --explain --print-compilation-time --inductor --device cpu --inference --float32 --total-partitions 2 --partition-id 0 --output /var/lib/jenkins/workspace/test/test-reports/inference_torchbench.csv 2025-03-14T04:46:21.2706719Z 2025-03-14T04:46:23.5812030Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:46:23.5903691Z loading model: 0it [00:02, ?it/s] 2025-03-14T04:46:23.5904766Z cpu eval BERT_pytorch 2025-03-14T04:46:24.8667963Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:46:25.4279029Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:46:26.3547367Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:46:49.6233206Z Compilation time (from dynamo_timed): 21.041204989 2025-03-14T04:46:49.6288151Z pass 2025-03-14T04:46:49.6290340Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:46:49.6291978Z TIMING: _recursive_pre_grad_passes:0.00817 _recursive_joint_graph_passes:0.3852 _recursive_post_grad_passes:0.11992 async_compile.wait:1.67509 code_gen:13.82744 inductor_compile:15.35056 backend_compile:18.49922 entire_frame_compile:21.0412 gc:0.00231 total_wall_time:21.0412 2025-03-14T04:46:49.6293139Z STATS: call_* op count: 543 | FakeTensor.__torch_dispatch__:1438 | FakeTensorMode.__torch_dispatch__:15555 | ProxyTorchDispatchMode.__torch_dispatch__:6318 2025-03-14T04:46:49.6293720Z Dynamo produced 1 graphs covering 543 ops with 0 graph breaks (0 unique) 2025-03-14T04:46:54.5734692Z 2025-03-14T04:46:58.6323199Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:46:58.6324482Z loading model: 0it [00:04, ?it/s] 2025-03-14T04:46:58.6333330Z cpu eval Background_Matting 2025-03-14T04:46:58.6890422Z Compilation time (from dynamo_timed): 0 2025-03-14T04:46:58.6894801Z pass_due_to_skip 2025-03-14T04:46:58.6897120Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:46:58.6897630Z TIMING: total_wall_time:0 2025-03-14T04:46:58.6902158Z STATS: call_* op count: 0 2025-03-14T04:46:58.6906806Z Dynamo produced 0 graphs covering 0 ops with 0 graph breaks (0 unique) 2025-03-14T04:47:02.4792921Z 2025-03-14T04:47:04.7372926Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:47:04.7373377Z loading model: 0it [00:02, ?it/s] 2025-03-14T04:47:04.7373738Z cpu eval LearningToPaint 2025-03-14T04:47:04.9123224Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:47:05.0246963Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:47:05.0713267Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:47:17.7977202Z Compilation time (from dynamo_timed): 11.838154129 2025-03-14T04:47:17.7977611Z pass 2025-03-14T04:47:17.7977990Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:47:17.7978868Z TIMING: _recursive_pre_grad_passes:0.0055 _recursive_joint_graph_passes:0.10612 _recursive_post_grad_passes:0.03381 async_compile.wait:1.61489 code_gen:8.78148 inductor_compile:9.25901 backend_compile:10.76549 entire_frame_compile:11.83815 gc:0.00126 total_wall_time:11.83815 2025-03-14T04:47:17.7980032Z STATS: call_* op count: 71 | FakeTensorMode.__torch_dispatch__:4376 | ProxyTorchDispatchMode.__torch_dispatch__:1906 | FakeTensor.__torch_dispatch__:590 2025-03-14T04:47:17.7980634Z Dynamo produced 1 graphs covering 71 ops with 0 graph breaks (0 unique) 2025-03-14T04:47:22.6622389Z 2025-03-14T04:47:23.5293574Z loading model: 0it [00:00, ?it/s]Downloading: "https://download.pytorch.org/models/vgg16-397923af.pth" to /var/lib/jenkins/.cache/torch/hub/checkpoints/vgg16-397923af.pth 2025-03-14T04:47:23.5550306Z 2025-03-14T04:47:23.5551917Z 2025-03-14T04:47:23.6552686Z 0% 0.00/528M [00:00, code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:09.4813878Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:09.4814021Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:09.4814094Z 2025-03-14T04:53:09.4814512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:09.4814680Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T04:53:09.4814855Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:09.4815042Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:09.4815114Z 2025-03-14T04:53:09.4815513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:09.4815761Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:09.4815828Z 2025-03-14T04:53:09.4816265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:09.4816460Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:09.4816617Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:09.4816758Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:09.4816832Z 2025-03-14T04:53:09.4817206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:09.4817382Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:09.4817448Z 2025-03-14T04:53:09.4817771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:09.4817916Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:09.4817994Z 2025-03-14T04:53:09.4818308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:09.4818447Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:09.4818573Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:09.4818728Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:09.4818793Z 2025-03-14T04:53:09.4819117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:09.4819243Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:09.4819370Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:09.4819515Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:09.4819590Z 2025-03-14T04:53:09.4819900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:09.4820032Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:09.4820125Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:09.4820255Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:09.4820321Z 2025-03-14T04:53:09.4820638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:09.4820783Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:09.4820885Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:09.4821014Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:09.4821088Z 2025-03-14T04:53:09.4821443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:09.4821648Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:09.4821769Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:09.4821844Z 2025-03-14T04:53:09.4822147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:09.4822337Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:09.4822459Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:09.4822525Z 2025-03-14T04:53:09.4822830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:09.4822983Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:09.4823109Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:09.4823177Z 2025-03-14T04:53:09.4823485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:09.4823666Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:09.4823789Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:09.4823856Z 2025-03-14T04:53:09.4824298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:09.4824453Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:09.4824531Z 2025-03-14T04:53:09.4824891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:09.4825052Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:09.4825119Z 2025-03-14T04:53:09.4825490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:09.4825646Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:09.4825779Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:09.4825934Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:09.4826079Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:09.4826145Z 2025-03-14T04:53:09.4826500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:09.4826640Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:09.4826774Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:09.4826930Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:09.4827077Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:09.4827145Z 2025-03-14T04:53:09.4827497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:09.4827615Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:09.4827826Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:09.4827959Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:09.4828034Z 2025-03-14T04:53:09.4828360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:09.4828521Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:09.4828686Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:09.4828826Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:09.4828891Z 2025-03-14T04:53:09.4829211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:09.4829309Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:09.4829434Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:09.4829499Z 2025-03-14T04:53:09.4829810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:09.4829917Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:09.4830031Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:09.4830097Z 2025-03-14T04:53:09.4830405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:09.4830530Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:09.4830660Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:09.4830732Z 2025-03-14T04:53:09.4831029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:09.4831147Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:09.4831271Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:09.4831344Z 2025-03-14T04:53:09.4831690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:09.4831877Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:09.4831942Z 2025-03-14T04:53:09.4832280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:09.4832440Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:09.4832512Z 2025-03-14T04:53:09.4832892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:09.4833072Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:09.4833137Z 2025-03-14T04:53:09.4833621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:09.4833794Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:09.4833867Z 2025-03-14T04:53:09.4834161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.4834342Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:09.4834407Z 2025-03-14T04:53:09.4834841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:09.4834953Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:09.4835064Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:09.4835180Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:09.4835254Z 2025-03-14T04:53:09.4835711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:09.4835885Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:09.4836124Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:09.4836198Z 2025-03-14T04:53:09.4836653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:09.4836825Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:09.4836889Z 2025-03-14T04:53:09.4837193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.4837356Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:09.4837424Z 2025-03-14T04:53:09.4837807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:09.4837953Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:09.4838025Z 2025-03-14T04:53:09.4838327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:09.4838482Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:09.4838548Z 2025-03-14T04:53:09.4838925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:09.4839068Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:09.4839142Z 2025-03-14T04:53:09.4839622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:09.4839767Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:09.4839887Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:09.4840124Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:09.4840260Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:09.4840334Z 2025-03-14T04:53:09.4840698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:09.4840856Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:09.4840922Z 2025-03-14T04:53:09.4841469Z 2025-03-14T04:53:09.4841573Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:09.4931527Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:09.4932280Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:53:09.4932592Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4932978Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4933379Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4933763Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4934129Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4934482Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4934822Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4935154Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4935474Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4935780Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4936067Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4936404Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4936740Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4937049Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4937361Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4937644Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4938029Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4938417Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4938788Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4939205Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4939574Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:09.4940042Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4940444Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4940863Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4941272Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4941588Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4941994Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4942383Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4942761Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4943101Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4943433Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4943814Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4944237Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4944602Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4944940Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4945270Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4945657Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4946036Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4946444Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4946812Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4947188Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4947566Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4947940Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4948291Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4948641Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4948951Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4949327Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4949690Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4950055Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4950392Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4950706Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4951082Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4951454Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4951811Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4952148Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4952465Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4952833Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4953206Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4953594Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4953939Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4954286Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4954664Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4955032Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4955381Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4955726Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4956036Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4956414Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4956787Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4957143Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4957487Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4957816Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:09.4958209Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4958604Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4958973Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4959325Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4959641Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4960005Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4960412Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4960770Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4961710Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4962025Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4962393Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4962731Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4963038Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4963350Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4963626Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4963979Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4964315Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4964624Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4964945Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4965251Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4965623Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4965989Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4966344Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4966681Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4966994Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4967405Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4967771Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4968131Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4968505Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4968826Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4969205Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4969581Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4969934Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4970287Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4970607Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4970981Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4971358Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4971711Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4972062Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4972375Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4972758Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4973121Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4973479Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4973832Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4974143Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4974568Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4974943Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4975295Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4975606Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4975897Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4976236Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4976576Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4976901Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4977211Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4977503Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4977860Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4978209Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4978537Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4978862Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4979149Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4979517Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4979868Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4980187Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4980501Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4980830Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:09.4981193Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4981747Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4982112Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4982464Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4982772Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4983138Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4983472Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4983799Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4984149Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4984472Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4984831Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4985192Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4985538Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4985859Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4986154Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4986492Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4986835Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4987160Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4987492Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4987849Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4988206Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4988609Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4988937Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4989270Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4989564Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4989922Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4990273Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4990611Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4990934Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4991234Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4991591Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4991938Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4992272Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4992594Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4993011Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4993370Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4993726Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4994054Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4994416Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4994715Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.4995108Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4995459Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4995786Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4996115Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4996406Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.4996768Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4997122Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4997456Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4997783Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4998076Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.4998432Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.4998783Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.4999118Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.4999439Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.4999748Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5000081Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5000417Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5000743Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5001083Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5001375Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5001746Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5002082Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5002393Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5002703Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5002981Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5003320Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5003654Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5003964Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5004272Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5004553Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5004888Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5005223Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5005551Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5005860Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5006152Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5006499Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5006839Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5007191Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5007502Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5007821Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5008161Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5008502Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5008824Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5009138Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5009432Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5009771Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5010117Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5010436Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5010754Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5011037Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5011383Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5011714Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5012041Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5012362Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5012648Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5012996Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5013358Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5013688Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5013996Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5014314Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5014650Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5014995Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5015320Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5015634Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5015926Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5016261Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5016607Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5016920Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5017236Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5017519Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5017862Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5018206Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5018523Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5018839Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5019120Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5019469Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5019832Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5020160Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5020516Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5020812Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5021166Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5021510Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5021837Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5022152Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5022450Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5022791Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5023136Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5023468Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5023789Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5024159Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5024541Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5024903Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5025236Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5025569Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5025853Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5026238Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5026576Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5026932Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5027248Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5027542Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5027898Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5028240Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5028572Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5028889Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5029183Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5029528Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5029874Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5030203Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5030516Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5030813Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5031158Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5031503Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5031825Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5032146Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5032439Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5032817Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5033153Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5033496Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5033816Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5034103Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5034456Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5034800Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5035123Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5035428Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5035716Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5036056Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5036388Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5036707Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5037007Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5037297Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5037629Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5037964Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5038277Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5038590Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5038910Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5039248Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5039612Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5039929Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5040249Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5040543Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5040885Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5041210Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5041532Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5041837Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5042117Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5042461Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5042790Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5043106Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5043407Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5043692Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5044023Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5044358Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5044675Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5045020Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5045307Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5045676Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5046016Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5046332Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5046649Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5046933Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5047284Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5047625Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5047939Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5048256Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5048536Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5048884Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5049216Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5049543Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5049855Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5050146Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5050492Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5050829Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5051183Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5051488Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5051774Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5052173Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5052522Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5052847Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5053168Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5053469Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5053820Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5054159Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5054493Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5054815Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5055100Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5055450Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5055798Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5056137Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5056458Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5056747Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5057107Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5057455Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5057817Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5058128Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5058460Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5058798Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5059144Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5059472Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5059780Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5060072Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5060411Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5060758Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5061080Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5061403Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5061690Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5062040Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5062389Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5062706Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5063026Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5063311Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5063657Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5064050Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5064462Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5064829Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5065141Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5065515Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5065857Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5066188Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5066503Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5066800Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5067142Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5067493Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5067812Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5068131Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5068423Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5068763Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5069110Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5069429Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5069749Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5070032Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5070421Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5070766Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5071129Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5071446Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5071731Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5072079Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5072442Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5072790Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5073096Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5073388Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5073733Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5074078Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5074409Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5074717Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5075008Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5075350Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5075695Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5076016Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5076333Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5076626Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5077004Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5077355Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5077704Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5078025Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5078315Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5078662Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5078996Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5079327Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5079644Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5079932Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5080279Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5080615Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5080948Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5081274Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5081739Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5082090Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5082457Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5082820Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5083151Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5083535Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5083903Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5084315Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5084654Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5084987Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5085291Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5085659Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5086022Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5086373Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5086709Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5087013Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5087386Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5087742Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5088089Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5088419Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5088724Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5089091Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5089448Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5089794Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5090155Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5090464Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5090868Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5091235Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5091573Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5091919Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5092305Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:09.5092639Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:09.5092971Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:09.5093356Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:09.5093740Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:09.5094108Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:09.5094476Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:09.5094553Z 2025-03-14T04:53:09.5094858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5095350Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5095430Z 2025-03-14T04:53:09.5095724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5097273Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5097353Z 2025-03-14T04:53:09.5097649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:53:09.5097835Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:53:09.5097903Z 2025-03-14T04:53:09.5098282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:53:09.5098528Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:53:09.5098605Z 2025-03-14T04:53:09.5098873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5099315Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5099391Z 2025-03-14T04:53:09.5099659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5101196Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5101265Z 2025-03-14T04:53:09.5101568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5101714Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:53:09.5101779Z 2025-03-14T04:53:09.5102033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5102471Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5102547Z 2025-03-14T04:53:09.5102812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5104467Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5104577Z 2025-03-14T04:53:09.5104892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5105049Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:53:09.5105119Z 2025-03-14T04:53:09.5105397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5105834Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5105912Z 2025-03-14T04:53:09.5106178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5107757Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5107836Z 2025-03-14T04:53:09.5108094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5108546Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:09.5108613Z 2025-03-14T04:53:09.5108889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5110480Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5110558Z 2025-03-14T04:53:09.5110890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5111047Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:53:09.5111150Z 2025-03-14T04:53:09.5111443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5111606Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:53:09.5111673Z 2025-03-14T04:53:09.5111939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5112375Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5112449Z 2025-03-14T04:53:09.5112723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5114309Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5114385Z 2025-03-14T04:53:09.5114678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5114836Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:53:09.5114903Z 2025-03-14T04:53:09.5115165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5115603Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5115676Z 2025-03-14T04:53:09.5115947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5117552Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5117630Z 2025-03-14T04:53:09.5117924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5118119Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:53:09.5118189Z 2025-03-14T04:53:09.5118452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5118891Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5118966Z 2025-03-14T04:53:09.5119240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5120827Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5120905Z 2025-03-14T04:53:09.5121193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5121356Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:53:09.5121439Z 2025-03-14T04:53:09.5121729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5121877Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:53:09.5121949Z 2025-03-14T04:53:09.5122197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5122625Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5122690Z 2025-03-14T04:53:09.5122963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5124522Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5124620Z 2025-03-14T04:53:09.5124917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5125053Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:53:09.5125125Z 2025-03-14T04:53:09.5125372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5125800Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5125866Z 2025-03-14T04:53:09.5126135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5127655Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5127722Z 2025-03-14T04:53:09.5128016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5128151Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:53:09.5128224Z 2025-03-14T04:53:09.5128470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5128900Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5128965Z 2025-03-14T04:53:09.5129237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5130787Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5130854Z 2025-03-14T04:53:09.5131138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5131322Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:53:09.5131395Z 2025-03-14T04:53:09.5131678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5131839Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:53:09.5131903Z 2025-03-14T04:53:09.5132163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5132587Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5132663Z 2025-03-14T04:53:09.5132924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5134459Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5134534Z 2025-03-14T04:53:09.5134819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5134972Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:53:09.5135038Z 2025-03-14T04:53:09.5135294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5135723Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5135797Z 2025-03-14T04:53:09.5136060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5137613Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5137717Z 2025-03-14T04:53:09.5138001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5138154Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:53:09.5138218Z 2025-03-14T04:53:09.5138477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5138960Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5139035Z 2025-03-14T04:53:09.5139340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5140926Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5141004Z 2025-03-14T04:53:09.5141280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5141784Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:09.5141857Z 2025-03-14T04:53:09.5142145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5143826Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5143898Z 2025-03-14T04:53:09.5144313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5144480Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:53:09.5144555Z 2025-03-14T04:53:09.5144907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5145075Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:53:09.5145141Z 2025-03-14T04:53:09.5145425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5145886Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5145955Z 2025-03-14T04:53:09.5146255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5147868Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5147945Z 2025-03-14T04:53:09.5148267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5148430Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:53:09.5148510Z 2025-03-14T04:53:09.5148788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5149290Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5149361Z 2025-03-14T04:53:09.5149646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5151299Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5151381Z 2025-03-14T04:53:09.5151690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5151878Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:53:09.5151955Z 2025-03-14T04:53:09.5152223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5152693Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5152762Z 2025-03-14T04:53:09.5153054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5154612Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5154688Z 2025-03-14T04:53:09.5154978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5155133Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:53:09.5155206Z 2025-03-14T04:53:09.5155491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5155648Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:53:09.5155712Z 2025-03-14T04:53:09.5155969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5156423Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5156501Z 2025-03-14T04:53:09.5156770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5158403Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5158509Z 2025-03-14T04:53:09.5158820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5158971Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:53:09.5159037Z 2025-03-14T04:53:09.5159303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5159765Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5159840Z 2025-03-14T04:53:09.5160115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5161716Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5161790Z 2025-03-14T04:53:09.5162091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5162246Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:53:09.5162312Z 2025-03-14T04:53:09.5162577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5163018Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5163092Z 2025-03-14T04:53:09.5163367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5164993Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5165071Z 2025-03-14T04:53:09.5165358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5165561Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:53:09.5165629Z 2025-03-14T04:53:09.5165925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5166078Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:53:09.5166152Z 2025-03-14T04:53:09.5166413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5166851Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5166921Z 2025-03-14T04:53:09.5167198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5168792Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5168861Z 2025-03-14T04:53:09.5169157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5169302Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:53:09.5169375Z 2025-03-14T04:53:09.5169635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5170078Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5170146Z 2025-03-14T04:53:09.5170424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5172030Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5172124Z 2025-03-14T04:53:09.5172423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5172568Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:53:09.5172642Z 2025-03-14T04:53:09.5172895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5173351Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5173417Z 2025-03-14T04:53:09.5173696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5175287Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5175356Z 2025-03-14T04:53:09.5175649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5175807Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:53:09.5175882Z 2025-03-14T04:53:09.5176170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5176329Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:53:09.5176395Z 2025-03-14T04:53:09.5176661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5177091Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5177170Z 2025-03-14T04:53:09.5177443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5179067Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5179174Z 2025-03-14T04:53:09.5179466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5179614Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:53:09.5179680Z 2025-03-14T04:53:09.5179944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5180371Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5180451Z 2025-03-14T04:53:09.5180732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5182437Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5182524Z 2025-03-14T04:53:09.5182812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5182959Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:53:09.5183026Z 2025-03-14T04:53:09.5183288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5183720Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5183799Z 2025-03-14T04:53:09.5184111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5185756Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5185877Z 2025-03-14T04:53:09.5186137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5186589Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:09.5186669Z 2025-03-14T04:53:09.5186944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5188599Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5188675Z 2025-03-14T04:53:09.5188981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5189134Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:53:09.5189217Z 2025-03-14T04:53:09.5189525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5189681Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:53:09.5189750Z 2025-03-14T04:53:09.5190013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5190454Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5190523Z 2025-03-14T04:53:09.5190805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5192407Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5192484Z 2025-03-14T04:53:09.5192785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5192962Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:53:09.5193039Z 2025-03-14T04:53:09.5193297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5193728Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5193794Z 2025-03-14T04:53:09.5194070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5195625Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5195701Z 2025-03-14T04:53:09.5195995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5196133Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:53:09.5196206Z 2025-03-14T04:53:09.5196458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5196894Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5196961Z 2025-03-14T04:53:09.5197241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5198803Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5198884Z 2025-03-14T04:53:09.5199185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5199328Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:53:09.5199431Z 2025-03-14T04:53:09.5199720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5199870Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:53:09.5199935Z 2025-03-14T04:53:09.5200192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5200606Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5200678Z 2025-03-14T04:53:09.5200947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5202464Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5202541Z 2025-03-14T04:53:09.5202824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5202964Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:53:09.5203028Z 2025-03-14T04:53:09.5203284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5203700Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5203774Z 2025-03-14T04:53:09.5204043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5205592Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5205668Z 2025-03-14T04:53:09.5205958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5206133Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:53:09.5206198Z 2025-03-14T04:53:09.5206458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5206875Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5206950Z 2025-03-14T04:53:09.5207214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5208725Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5208800Z 2025-03-14T04:53:09.5209080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5209239Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:53:09.5209305Z 2025-03-14T04:53:09.5209592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5209732Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:53:09.5209805Z 2025-03-14T04:53:09.5210054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5210474Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5210542Z 2025-03-14T04:53:09.5210810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5212350Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5212447Z 2025-03-14T04:53:09.5212739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5212873Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:53:09.5212945Z 2025-03-14T04:53:09.5213192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5213616Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5213682Z 2025-03-14T04:53:09.5213958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5215499Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5215567Z 2025-03-14T04:53:09.5215858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5215991Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:53:09.5216063Z 2025-03-14T04:53:09.5216311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5216739Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5216804Z 2025-03-14T04:53:09.5217076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5218646Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5218713Z 2025-03-14T04:53:09.5219004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5219187Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:53:09.5219263Z 2025-03-14T04:53:09.5219545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5219694Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:53:09.5219759Z 2025-03-14T04:53:09.5220018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5220422Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5220499Z 2025-03-14T04:53:09.5220762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5222260Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5222336Z 2025-03-14T04:53:09.5222622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5222761Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:53:09.5222827Z 2025-03-14T04:53:09.5223084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5223505Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5223580Z 2025-03-14T04:53:09.5223849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5225560Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5225669Z 2025-03-14T04:53:09.5225955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5226096Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:53:09.5226164Z 2025-03-14T04:53:09.5226443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5226925Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5227000Z 2025-03-14T04:53:09.5227279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5228879Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5228960Z 2025-03-14T04:53:09.5229263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5229423Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:53:09.5229491Z 2025-03-14T04:53:09.5229831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5229979Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:53:09.5230057Z 2025-03-14T04:53:09.5230328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5230804Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5230881Z 2025-03-14T04:53:09.5231172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5232810Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5232909Z 2025-03-14T04:53:09.5233218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5233359Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:53:09.5233435Z 2025-03-14T04:53:09.5233702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5234160Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5234239Z 2025-03-14T04:53:09.5234516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5236137Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5236210Z 2025-03-14T04:53:09.5236521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5236670Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:53:09.5236743Z 2025-03-14T04:53:09.5237000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5237463Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5237541Z 2025-03-14T04:53:09.5237811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5239402Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5239501Z 2025-03-14T04:53:09.5239804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5239962Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:53:09.5240029Z 2025-03-14T04:53:09.5240339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5240485Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:53:09.5240560Z 2025-03-14T04:53:09.5240822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5241265Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5241334Z 2025-03-14T04:53:09.5241615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5243182Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5243259Z 2025-03-14T04:53:09.5243559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5243696Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:53:09.5243768Z 2025-03-14T04:53:09.5244029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5244464Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5244531Z 2025-03-14T04:53:09.5244812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5246425Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5246531Z 2025-03-14T04:53:09.5246833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5246971Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:53:09.5247047Z 2025-03-14T04:53:09.5247306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5247741Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5247813Z 2025-03-14T04:53:09.5248090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5249666Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5249746Z 2025-03-14T04:53:09.5250051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5250194Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:53:09.5250266Z 2025-03-14T04:53:09.5250548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5250697Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:53:09.5250763Z 2025-03-14T04:53:09.5251019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5251431Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5251501Z 2025-03-14T04:53:09.5251762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5253285Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5253392Z 2025-03-14T04:53:09.5253674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5253819Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:53:09.5253885Z 2025-03-14T04:53:09.5254143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5254557Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5254629Z 2025-03-14T04:53:09.5254892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5256417Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5256491Z 2025-03-14T04:53:09.5256776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5256917Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:53:09.5256982Z 2025-03-14T04:53:09.5257244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5257671Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5257744Z 2025-03-14T04:53:09.5258008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5259553Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5259663Z 2025-03-14T04:53:09.5259941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5260091Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:53:09.5260154Z 2025-03-14T04:53:09.5260445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5260586Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:53:09.5260658Z 2025-03-14T04:53:09.5260907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5261324Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5261389Z 2025-03-14T04:53:09.5261658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5263179Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5263248Z 2025-03-14T04:53:09.5263542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5263685Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:53:09.5263760Z 2025-03-14T04:53:09.5264023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5264545Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5264620Z 2025-03-14T04:53:09.5264904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5266589Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5266690Z 2025-03-14T04:53:09.5267004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5267158Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:53:09.5267235Z 2025-03-14T04:53:09.5267499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5267955Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5268025Z 2025-03-14T04:53:09.5268312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5269969Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5270041Z 2025-03-14T04:53:09.5270348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5270512Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:53:09.5270594Z 2025-03-14T04:53:09.5270892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5271048Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:53:09.5271119Z 2025-03-14T04:53:09.5271391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5271828Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5271904Z 2025-03-14T04:53:09.5272226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5273819Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5273933Z 2025-03-14T04:53:09.5274235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5274390Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:53:09.5274459Z 2025-03-14T04:53:09.5274731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5275163Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5275241Z 2025-03-14T04:53:09.5275524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5277106Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5277187Z 2025-03-14T04:53:09.5277478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5277624Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:53:09.5277692Z 2025-03-14T04:53:09.5277954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5278386Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5278461Z 2025-03-14T04:53:09.5278735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5280313Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5280418Z 2025-03-14T04:53:09.5280707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5280876Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:53:09.5280943Z 2025-03-14T04:53:09.5281243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5281390Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:53:09.5281570Z 2025-03-14T04:53:09.5281834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5282268Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5282344Z 2025-03-14T04:53:09.5282622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5284201Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5284273Z 2025-03-14T04:53:09.5284570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5284717Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:53:09.5284787Z 2025-03-14T04:53:09.5285053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5285483Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5285557Z 2025-03-14T04:53:09.5285919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5287495Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5287622Z 2025-03-14T04:53:09.5287918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5288068Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:53:09.5288138Z 2025-03-14T04:53:09.5288401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5288836Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5288913Z 2025-03-14T04:53:09.5289184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5290751Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5290828Z 2025-03-14T04:53:09.5291115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5291281Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:53:09.5291348Z 2025-03-14T04:53:09.5291647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5291790Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:53:09.5291865Z 2025-03-14T04:53:09.5292122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5292586Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5292654Z 2025-03-14T04:53:09.5292933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5294509Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5294587Z 2025-03-14T04:53:09.5294892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5295035Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:53:09.5295111Z 2025-03-14T04:53:09.5295369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5295808Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5295878Z 2025-03-14T04:53:09.5296157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5297738Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5297817Z 2025-03-14T04:53:09.5298122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5298264Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:53:09.5298338Z 2025-03-14T04:53:09.5298592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5299033Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5299100Z 2025-03-14T04:53:09.5299424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5301007Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5301108Z 2025-03-14T04:53:09.5301402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5301554Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:53:09.5301631Z 2025-03-14T04:53:09.5301920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5302070Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:53:09.5302136Z 2025-03-14T04:53:09.5302395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5302823Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5302901Z 2025-03-14T04:53:09.5303169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5304897Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5304985Z 2025-03-14T04:53:09.5305307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5305456Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:53:09.5305522Z 2025-03-14T04:53:09.5305787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5306290Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5306373Z 2025-03-14T04:53:09.5306669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5308425Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5308509Z 2025-03-14T04:53:09.5308832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5308993Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:53:09.5309068Z 2025-03-14T04:53:09.5309352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5309828Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5309909Z 2025-03-14T04:53:09.5310201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5311908Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5311990Z 2025-03-14T04:53:09.5312295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5312460Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:53:09.5312524Z 2025-03-14T04:53:09.5312811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5312952Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:53:09.5313025Z 2025-03-14T04:53:09.5313304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5313722Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5313825Z 2025-03-14T04:53:09.5314086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5315616Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5315685Z 2025-03-14T04:53:09.5315972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5316106Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:53:09.5316178Z 2025-03-14T04:53:09.5316425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5316859Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5316935Z 2025-03-14T04:53:09.5317196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5318750Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5318819Z 2025-03-14T04:53:09.5319118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5319255Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:53:09.5319328Z 2025-03-14T04:53:09.5319583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5320057Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5320135Z 2025-03-14T04:53:09.5320405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5322022Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5322092Z 2025-03-14T04:53:09.5322385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5322546Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:53:09.5322612Z 2025-03-14T04:53:09.5322907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5323052Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:53:09.5323129Z 2025-03-14T04:53:09.5323385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5323816Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5323885Z 2025-03-14T04:53:09.5324161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5325691Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5325765Z 2025-03-14T04:53:09.5326049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5326181Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:53:09.5326252Z 2025-03-14T04:53:09.5326527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5326951Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5327047Z 2025-03-14T04:53:09.5327318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5328817Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5328894Z 2025-03-14T04:53:09.5329182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5329326Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:53:09.5329395Z 2025-03-14T04:53:09.5329638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5330058Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5330123Z 2025-03-14T04:53:09.5330385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5331840Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5331914Z 2025-03-14T04:53:09.5332188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5332332Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:53:09.5332402Z 2025-03-14T04:53:09.5332676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5332855Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:53:09.5332922Z 2025-03-14T04:53:09.5333180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5333651Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5333725Z 2025-03-14T04:53:09.5333986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5335528Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5335604Z 2025-03-14T04:53:09.5335887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5336032Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:53:09.5336097Z 2025-03-14T04:53:09.5336350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5336769Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5336844Z 2025-03-14T04:53:09.5337104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5338621Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5338696Z 2025-03-14T04:53:09.5338980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5339121Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:53:09.5339186Z 2025-03-14T04:53:09.5339473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5339892Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5339995Z 2025-03-14T04:53:09.5340253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5341767Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5341841Z 2025-03-14T04:53:09.5342119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5342273Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:53:09.5342338Z 2025-03-14T04:53:09.5342627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5342766Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:53:09.5342838Z 2025-03-14T04:53:09.5343089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5343508Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5343573Z 2025-03-14T04:53:09.5343843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5345450Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5345525Z 2025-03-14T04:53:09.5345855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5345992Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:53:09.5346068Z 2025-03-14T04:53:09.5346317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5346777Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5346842Z 2025-03-14T04:53:09.5347114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5348637Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5348709Z 2025-03-14T04:53:09.5349003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5349139Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:53:09.5349218Z 2025-03-14T04:53:09.5349464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5349896Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5349962Z 2025-03-14T04:53:09.5350230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5351750Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5351821Z 2025-03-14T04:53:09.5352107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5352285Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:53:09.5352360Z 2025-03-14T04:53:09.5352643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5352790Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:53:09.5352882Z 2025-03-14T04:53:09.5353142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5353564Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5353631Z 2025-03-14T04:53:09.5353908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5355425Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5355501Z 2025-03-14T04:53:09.5355786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5355929Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:53:09.5355996Z 2025-03-14T04:53:09.5356254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5356679Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5356743Z 2025-03-14T04:53:09.5357014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5358528Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5358605Z 2025-03-14T04:53:09.5358922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5359066Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:53:09.5359139Z 2025-03-14T04:53:09.5359387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5359853Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5359918Z 2025-03-14T04:53:09.5360187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5361732Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5361810Z 2025-03-14T04:53:09.5362109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5362257Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:53:09.5362331Z 2025-03-14T04:53:09.5362625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5362778Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:53:09.5362843Z 2025-03-14T04:53:09.5363100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5363515Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5363591Z 2025-03-14T04:53:09.5363855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5365409Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5365482Z 2025-03-14T04:53:09.5365759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5365966Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:53:09.5366029Z 2025-03-14T04:53:09.5366304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5366722Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5366794Z 2025-03-14T04:53:09.5367055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5368547Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5368620Z 2025-03-14T04:53:09.5368909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5369058Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:53:09.5369126Z 2025-03-14T04:53:09.5369387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5369814Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5369885Z 2025-03-14T04:53:09.5370153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5371656Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5371730Z 2025-03-14T04:53:09.5372048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5372209Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:53:09.5372304Z 2025-03-14T04:53:09.5372591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5372736Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:53:09.5372810Z 2025-03-14T04:53:09.5373059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5373483Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5373547Z 2025-03-14T04:53:09.5373817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5375340Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5375406Z 2025-03-14T04:53:09.5375695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5375837Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:53:09.5375909Z 2025-03-14T04:53:09.5376156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5376592Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5376660Z 2025-03-14T04:53:09.5376934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5378501Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5378569Z 2025-03-14T04:53:09.5378863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5379034Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:53:09.5379108Z 2025-03-14T04:53:09.5379357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5379788Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5379856Z 2025-03-14T04:53:09.5380127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5381800Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5381880Z 2025-03-14T04:53:09.5382185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5382358Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:53:09.5382438Z 2025-03-14T04:53:09.5382740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5382902Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:53:09.5382972Z 2025-03-14T04:53:09.5383249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5383696Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5383778Z 2025-03-14T04:53:09.5384147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5385832Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5385959Z 2025-03-14T04:53:09.5386250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5386400Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:53:09.5386469Z 2025-03-14T04:53:09.5386733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5387170Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5387246Z 2025-03-14T04:53:09.5387521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5389117Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5389198Z 2025-03-14T04:53:09.5389496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5389649Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:53:09.5389719Z 2025-03-14T04:53:09.5389996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5390433Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5390508Z 2025-03-14T04:53:09.5390782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5392394Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5392473Z 2025-03-14T04:53:09.5392797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5392968Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:53:09.5393036Z 2025-03-14T04:53:09.5393329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5393483Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:53:09.5393550Z 2025-03-14T04:53:09.5393807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5394239Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5394316Z 2025-03-14T04:53:09.5394584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5396170Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5396248Z 2025-03-14T04:53:09.5396536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5396682Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:53:09.5396748Z 2025-03-14T04:53:09.5397014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5397449Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5397525Z 2025-03-14T04:53:09.5397804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5399339Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5399442Z 2025-03-14T04:53:09.5399727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5399871Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:53:09.5399936Z 2025-03-14T04:53:09.5400188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5400616Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5400691Z 2025-03-14T04:53:09.5400953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5402485Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5402563Z 2025-03-14T04:53:09.5402841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5403004Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:53:09.5403069Z 2025-03-14T04:53:09.5403353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5403500Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:53:09.5403575Z 2025-03-14T04:53:09.5403823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5404251Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5404316Z 2025-03-14T04:53:09.5404584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5406141Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5406245Z 2025-03-14T04:53:09.5406536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5406675Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:53:09.5406753Z 2025-03-14T04:53:09.5407003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5407435Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5407503Z 2025-03-14T04:53:09.5407776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5409306Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5409382Z 2025-03-14T04:53:09.5409672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5409810Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:53:09.5409880Z 2025-03-14T04:53:09.5410133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5410586Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5410652Z 2025-03-14T04:53:09.5410922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5412477Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5412577Z 2025-03-14T04:53:09.5412864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5413020Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:53:09.5413094Z 2025-03-14T04:53:09.5413374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5413525Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:53:09.5413589Z 2025-03-14T04:53:09.5414035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:09.5414195Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:09.5414270Z 2025-03-14T04:53:09.5414567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.5414716Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:09.5414782Z 2025-03-14T04:53:09.5415226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:09.5415380Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:09.5415456Z 2025-03-14T04:53:09.5415750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.5415899Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:09.5415964Z 2025-03-14T04:53:09.5416348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:09.5416532Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:09.5416639Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:09.5416761Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:09.5416834Z 2025-03-14T04:53:09.5417164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:09.5417300Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:09.5417373Z 2025-03-14T04:53:09.5417699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:09.5417825Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:09.5417891Z 2025-03-14T04:53:09.5418305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:09.5418520Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:09.5418637Z 2025-03-14T04:53:09.5419059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:09.5419194Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:09.5419620Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:09.5419752Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:09.5419867Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:09.5419940Z 2025-03-14T04:53:09.5420240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:09.5420377Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T04:53:09.5420442Z 2025-03-14T04:53:09.5420704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5421476Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:09.5421551Z 2025-03-14T04:53:09.5421826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:09.5422026Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T04:53:09.5422092Z 2025-03-14T04:53:09.5422485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:09.5423347Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:09.5423418Z 2025-03-14T04:53:09.5423787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:09.5424774Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:09.5424860Z 2025-03-14T04:53:09.5425218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:09.5425427Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:09.5425580Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:09.5425648Z 2025-03-14T04:53:09.5426074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:09.5426236Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T04:53:09.5426420Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:09.5426596Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:09.5426676Z 2025-03-14T04:53:09.5427073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:09.5427286Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:09.5427351Z 2025-03-14T04:53:09.5427786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:09.5427942Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:09.5428099Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:09.5428240Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:09.5428315Z 2025-03-14T04:53:09.5428686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:09.5428865Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:09.5428930Z 2025-03-14T04:53:09.5429250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:09.5429396Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:09.5429470Z 2025-03-14T04:53:09.5429785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:09.5429928Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:09.5430054Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:09.5430204Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:09.5430269Z 2025-03-14T04:53:09.5430593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:09.5430714Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:09.5430876Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:09.5431025Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:09.5431098Z 2025-03-14T04:53:09.5431407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:09.5431563Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:09.5431652Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:09.5431811Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:09.5431875Z 2025-03-14T04:53:09.5432195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:09.5432342Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:09.5432442Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:09.5432570Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:09.5432645Z 2025-03-14T04:53:09.5433006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:09.5433161Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:09.5433284Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:09.5433349Z 2025-03-14T04:53:09.5433655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:09.5433811Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:09.5433930Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:09.5433994Z 2025-03-14T04:53:09.5434297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:09.5434453Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:09.5434573Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:09.5434641Z 2025-03-14T04:53:09.5434946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:09.5435126Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:09.5435249Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:09.5435315Z 2025-03-14T04:53:09.5435659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:09.5435801Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:09.5435874Z 2025-03-14T04:53:09.5436202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:09.5436348Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:09.5436414Z 2025-03-14T04:53:09.5436760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:09.5436930Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:09.5437064Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:09.5437215Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:09.5437392Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:09.5437458Z 2025-03-14T04:53:09.5437805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:09.5437942Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:09.5438074Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:09.5438227Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:09.5438370Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:09.5438436Z 2025-03-14T04:53:09.5438771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:09.5438899Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:09.5439059Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:09.5439195Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:09.5439260Z 2025-03-14T04:53:09.5439602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:09.5439721Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:09.5439895Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:09.5440028Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:09.5440102Z 2025-03-14T04:53:09.5440414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:09.5440522Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:09.5440640Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:09.5440713Z 2025-03-14T04:53:09.5441021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:09.5441124Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:09.5441238Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:09.5441312Z 2025-03-14T04:53:09.5441615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:09.5441740Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:09.5441867Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:09.5441940Z 2025-03-14T04:53:09.5442237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:09.5442355Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:09.5442518Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:09.5442594Z 2025-03-14T04:53:09.5442937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:09.5443155Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:09.5443221Z 2025-03-14T04:53:09.5443566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:09.5443725Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:09.5443799Z 2025-03-14T04:53:09.5444182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:09.5444364Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:09.5444428Z 2025-03-14T04:53:09.5444921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:09.5445058Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:09.5445131Z 2025-03-14T04:53:09.5445425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.5445572Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:09.5445636Z 2025-03-14T04:53:09.5446075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:09.5446190Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:09.5446307Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:09.5446422Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:09.5446496Z 2025-03-14T04:53:09.5446949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:09.5447122Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:09.5447364Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:09.5447430Z 2025-03-14T04:53:09.5447886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:09.5448057Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:09.5448128Z 2025-03-14T04:53:09.5448424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.5448584Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:09.5448650Z 2025-03-14T04:53:09.5449076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:09.5449223Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:09.5449296Z 2025-03-14T04:53:09.5449624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:09.5449778Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:09.5449842Z 2025-03-14T04:53:09.5450230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:09.5450369Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:09.5450442Z 2025-03-14T04:53:09.5450924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:09.5451068Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:09.5451192Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:09.5451355Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:09.5451486Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:09.5451560Z 2025-03-14T04:53:09.5451925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:09.5452056Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:09.5452122Z 2025-03-14T04:53:09.5452129Z 2025-03-14T04:53:09.5452232Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:09.5544294Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:09.5545103Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:53:09.5545445Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5545884Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5546291Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5546673Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5547052Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5547420Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5547833Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5548245Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5548639Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5549014Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5549385Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5549822Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5550237Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5550624Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5551031Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5551389Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5551806Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5552222Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5552619Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5552993Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5553368Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:09.5553813Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5554230Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5554636Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5555045Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5555359Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5555757Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5556165Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5556557Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5556923Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5557248Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5557680Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5558089Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5558516Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5558878Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5559197Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5559588Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5559990Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5560381Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5560745Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5561067Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5561457Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5561832Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5562175Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5562520Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5562839Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5563223Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5563592Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5563952Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5564308Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5564662Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5565053Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5565460Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5565824Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5566164Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5566497Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5566877Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5567263Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5567626Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5567967Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5568296Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5568673Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5569051Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5569402Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5569761Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5570082Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5570467Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5570839Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5571188Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5571535Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5571895Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:09.5572292Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5572703Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5573070Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5573385Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5573696Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5574079Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5574442Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5574794Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5575133Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5575447Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5575817Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5576182Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5576525Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5576877Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5577186Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5577555Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5577930Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5578272Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5578657Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5578967Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5579376Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5579741Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5580098Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5580449Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5580758Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5581136Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5581738Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5582102Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5582444Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5582765Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5583132Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5583478Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5583811Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5584162Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5584470Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5584815Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5585157Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5585565Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5585886Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5586167Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5586557Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5586899Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5587221Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5587538Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5587824Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5588168Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5588508Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5588850Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5589177Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5589489Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5589866Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5590218Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5590565Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5590891Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5591199Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5591556Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5591919Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5592291Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5592634Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5592970Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5593329Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5593692Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5594029Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5594363Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5594680Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:53:09.5595058Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5595426Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5595787Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5596136Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5596437Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5596813Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5597170Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5597511Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5597834Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5598144Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5598488Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5598876Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5599212Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5599574Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5599876Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5600224Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5600583Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5600921Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5601246Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5601533Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5601880Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5602227Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5602549Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5602870Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5603157Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5603505Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5603844Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5604173Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5604487Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5604783Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5605131Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5605503Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5605829Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5606174Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5606466Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5606809Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5607155Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5607473Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5607793Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5608102Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5608463Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5608822Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5609153Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5609493Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5609797Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5610164Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5610514Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5610853Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5611190Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5611497Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5611902Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5612243Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5612618Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5612945Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5613254Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5613613Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5613965Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5614302Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5614619Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5614916Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5615265Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5615619Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5615946Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5616272Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5616570Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5616939Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5617288Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5617615Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5617938Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5618228Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5618633Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5618982Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5619346Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5619667Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5619971Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5620322Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5620667Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5621004Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5621321Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5621621Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5621970Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5622324Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5622650Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5622974Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5623272Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5623619Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5623970Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5624348Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5624682Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5625023Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5625395Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5625784Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5626126Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5626456Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5626757Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5627120Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5627471Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5627810Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5628131Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5628439Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5628796Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5629154Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5629495Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5629817Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5630121Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5630473Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5630832Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5631166Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5631531Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5631821Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5632173Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5632557Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5632886Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5633221Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5633514Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5633875Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5634223Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5634563Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5634893Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5635186Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5635546Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5635886Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5636217Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5636535Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5636837Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5637188Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5637542Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5637881Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5638236Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5638537Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5638920Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5639274Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5639600Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5639932Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5640227Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5640591Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5640947Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5641275Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5641604Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5641900Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5642266Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5642608Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5642949Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5643271Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5643576Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5643937Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5644297Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5644661Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5644982Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5645315Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5645674Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5646037Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5646366Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5646695Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5647002Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5647359Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5647723Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5648064Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5648391Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5648686Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5649056Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5649406Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5649743Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5650071Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5650364Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5650730Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5651122Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5651464Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5651799Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5652136Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5652499Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5652866Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5653208Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5653529Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5653831Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5654185Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5654546Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5654872Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5655200Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5655494Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5655868Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5656236Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5656564Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5656891Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5657182Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5657546Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5657935Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5658272Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5658625Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5658927Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5659300Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5659665Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5660008Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5660333Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5660639Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5661006Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5661361Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5661696Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5662032Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5662338Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5662705Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5663063Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5663398Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5663730Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5664030Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5664502Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5664853Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5665225Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5665558Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5665856Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5666224Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5666572Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5666911Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5667232Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5667540Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5667894Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5668254Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5668596Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5668913Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5669217Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5669567Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5669920Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5670252Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5670585Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5670918Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5671281Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5671670Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5672004Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5672333Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5672631Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5672992Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5673345Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5673683Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5674004Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5674308Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5674664Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5675009Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5675345Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5675663Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5675974Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5676328Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5676689Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5677021Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5677393Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5677697Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5678060Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5678454Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5678787Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5679124Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5679422Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5679783Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5680146Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5680481Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5680805Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5681094Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5681572Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5681918Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5682248Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5682565Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5682858Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5683200Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5683545Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5683873Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5684249Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5684546Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5684936Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5685281Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5685599Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5685919Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5686207Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5686558Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5686903Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5687226Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5687549Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5687836Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5688188Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5688523Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5688855Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5689162Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5689459Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5689805Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5690140Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5690525Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5690837Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5691162Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5691505Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5691850Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5692171Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5692491Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5692792Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5693134Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5693479Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5693803Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5694118Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5694411Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5694759Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5695098Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5695425Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5695744Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5696034Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5696384Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5696757Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5697087Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5697436Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5697731Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5698072Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5698422Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5698751Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5699065Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5699357Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5699701Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5700052Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5700433Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5700823Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5701131Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5701524Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5701930Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5702309Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5702653Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5702939Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:53:09.5703323Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5703752Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5704187Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5704609Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5704929Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:53:09.5705327Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5705726Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5706153Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5706518Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5706836Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:53:09.5707206Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:53:09.5707572Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:53:09.5707918Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:53:09.5708256Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:53:09.5708631Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:09.5708983Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:09.5709318Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:09.5709711Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:09.5710098Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:09.5710469Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:09.5710870Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:09.5710953Z 2025-03-14T04:53:09.5711266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5711813Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5711889Z 2025-03-14T04:53:09.5712197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5713700Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5713779Z 2025-03-14T04:53:09.5714067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:53:09.5714218Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:53:09.5714283Z 2025-03-14T04:53:09.5714650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:53:09.5714898Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:53:09.5714966Z 2025-03-14T04:53:09.5715226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5715640Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5715717Z 2025-03-14T04:53:09.5715984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5717560Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5717640Z 2025-03-14T04:53:09.5717934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5718110Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:53:09.5718176Z 2025-03-14T04:53:09.5718444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5718868Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5718945Z 2025-03-14T04:53:09.5719215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5720745Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5720829Z 2025-03-14T04:53:09.5721131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5721287Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:53:09.5721360Z 2025-03-14T04:53:09.5721629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5722088Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5722165Z 2025-03-14T04:53:09.5722441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5724020Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5724101Z 2025-03-14T04:53:09.5724392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5724856Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:09.5724965Z 2025-03-14T04:53:09.5725248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5726896Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5726980Z 2025-03-14T04:53:09.5727283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5727436Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:53:09.5727514Z 2025-03-14T04:53:09.5727810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5727981Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:53:09.5728053Z 2025-03-14T04:53:09.5728321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5728760Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5728839Z 2025-03-14T04:53:09.5729113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5730696Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5730777Z 2025-03-14T04:53:09.5731072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5731267Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:53:09.5731337Z 2025-03-14T04:53:09.5731601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5732067Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5732143Z 2025-03-14T04:53:09.5732412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5733977Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5734054Z 2025-03-14T04:53:09.5734347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5734496Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:53:09.5734566Z 2025-03-14T04:53:09.5734831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5735272Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5735352Z 2025-03-14T04:53:09.5735622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5737189Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5737265Z 2025-03-14T04:53:09.5737546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5737709Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:53:09.5737775Z 2025-03-14T04:53:09.5738104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5738254Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:53:09.5738363Z 2025-03-14T04:53:09.5738618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5739049Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5739114Z 2025-03-14T04:53:09.5739391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5740934Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5741005Z 2025-03-14T04:53:09.5741321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5741470Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:53:09.5741546Z 2025-03-14T04:53:09.5741813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5742278Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5742346Z 2025-03-14T04:53:09.5742634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5744312Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5744391Z 2025-03-14T04:53:09.5744701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5744882Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:53:09.5744966Z 2025-03-14T04:53:09.5745231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5745728Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5745794Z 2025-03-14T04:53:09.5746066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5747587Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5747657Z 2025-03-14T04:53:09.5747946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5748105Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:53:09.5748181Z 2025-03-14T04:53:09.5748462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5748629Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:53:09.5748695Z 2025-03-14T04:53:09.5748954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5749373Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5749446Z 2025-03-14T04:53:09.5749719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5751390Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5751493Z 2025-03-14T04:53:09.5751950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5752128Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:53:09.5752222Z 2025-03-14T04:53:09.5752483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5752923Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5752990Z 2025-03-14T04:53:09.5753265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5754778Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5754857Z 2025-03-14T04:53:09.5755146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5755298Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:53:09.5755364Z 2025-03-14T04:53:09.5755624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5756057Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5756123Z 2025-03-14T04:53:09.5756393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5757912Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5757990Z 2025-03-14T04:53:09.5758275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5758726Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:09.5758828Z 2025-03-14T04:53:09.5759092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5760690Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5760764Z 2025-03-14T04:53:09.5761043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5761198Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:53:09.5761263Z 2025-03-14T04:53:09.5761553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5761708Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:53:09.5761781Z 2025-03-14T04:53:09.5762032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5762465Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5762532Z 2025-03-14T04:53:09.5762803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5764333Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5764411Z 2025-03-14T04:53:09.5764703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5764877Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:53:09.5764952Z 2025-03-14T04:53:09.5765201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5765637Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5765749Z 2025-03-14T04:53:09.5766024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5767524Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5767598Z 2025-03-14T04:53:09.5767889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5768031Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:53:09.5768104Z 2025-03-14T04:53:09.5768355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5768796Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5768864Z 2025-03-14T04:53:09.5769136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5770641Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5770719Z 2025-03-14T04:53:09.5771005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5771160Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:53:09.5771232Z 2025-03-14T04:53:09.5771545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5771705Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:53:09.5771770Z 2025-03-14T04:53:09.5772057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5772475Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5772548Z 2025-03-14T04:53:09.5772822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5774423Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5774500Z 2025-03-14T04:53:09.5774788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5774937Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:53:09.5775003Z 2025-03-14T04:53:09.5775261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5775688Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5775761Z 2025-03-14T04:53:09.5776023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5777549Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5777626Z 2025-03-14T04:53:09.5777910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5778095Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:53:09.5778165Z 2025-03-14T04:53:09.5778421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5778875Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5778953Z 2025-03-14T04:53:09.5779220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5780750Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5780828Z 2025-03-14T04:53:09.5781113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5781280Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:53:09.5781347Z 2025-03-14T04:53:09.5781753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5781910Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:53:09.5781992Z 2025-03-14T04:53:09.5782242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5782670Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5782738Z 2025-03-14T04:53:09.5783014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5784645Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5784725Z 2025-03-14T04:53:09.5785122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5785272Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:53:09.5785406Z 2025-03-14T04:53:09.5785673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5786133Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5786205Z 2025-03-14T04:53:09.5786496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5788120Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5788199Z 2025-03-14T04:53:09.5788516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5788667Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:53:09.5788746Z 2025-03-14T04:53:09.5789011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5789478Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5789552Z 2025-03-14T04:53:09.5789841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5791472Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5791547Z 2025-03-14T04:53:09.5791887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5792052Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:53:09.5792128Z 2025-03-14T04:53:09.5792425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5792659Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:53:09.5792729Z 2025-03-14T04:53:09.5793006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5793453Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5793524Z 2025-03-14T04:53:09.5793812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5795405Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5795488Z 2025-03-14T04:53:09.5795792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5795947Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:53:09.5796014Z 2025-03-14T04:53:09.5796290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5796739Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5796807Z 2025-03-14T04:53:09.5797098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5798688Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5798803Z 2025-03-14T04:53:09.5799105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5799256Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:53:09.5799364Z 2025-03-14T04:53:09.5799637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5800100Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5800168Z 2025-03-14T04:53:09.5800456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5802050Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5802129Z 2025-03-14T04:53:09.5802404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5802860Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:53:09.5802940Z 2025-03-14T04:53:09.5803215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5804872Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5804953Z 2025-03-14T04:53:09.5805249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5805405Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:53:09.5805473Z 2025-03-14T04:53:09.5805810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5805963Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:53:09.5806040Z 2025-03-14T04:53:09.5806310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5806781Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5806851Z 2025-03-14T04:53:09.5807134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5808730Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5808810Z 2025-03-14T04:53:09.5809115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5809260Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:53:09.5809336Z 2025-03-14T04:53:09.5809600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5810054Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5810123Z 2025-03-14T04:53:09.5810406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5812004Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5812084Z 2025-03-14T04:53:09.5812391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5812534Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:53:09.5812642Z 2025-03-14T04:53:09.5812909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5813358Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5813468Z 2025-03-14T04:53:09.5813754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5815346Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5815425Z 2025-03-14T04:53:09.5815726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5815879Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:53:09.5815955Z 2025-03-14T04:53:09.5816251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5816438Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:53:09.5816509Z 2025-03-14T04:53:09.5816781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5817210Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5817285Z 2025-03-14T04:53:09.5817562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5819160Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5819239Z 2025-03-14T04:53:09.5819569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5819718Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:53:09.5819787Z 2025-03-14T04:53:09.5820061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5820531Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5820609Z 2025-03-14T04:53:09.5820891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5822494Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5822575Z 2025-03-14T04:53:09.5822881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5823035Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:53:09.5823107Z 2025-03-14T04:53:09.5823388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5823835Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5823915Z 2025-03-14T04:53:09.5824252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5825905Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5825984Z 2025-03-14T04:53:09.5826278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5826474Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:53:09.5826544Z 2025-03-14T04:53:09.5826848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5826998Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:53:09.5827115Z 2025-03-14T04:53:09.5827377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5827817Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5827887Z 2025-03-14T04:53:09.5828172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5829745Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5829811Z 2025-03-14T04:53:09.5830105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5830240Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:53:09.5830316Z 2025-03-14T04:53:09.5830565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5830989Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5831054Z 2025-03-14T04:53:09.5831323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5832816Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5832885Z 2025-03-14T04:53:09.5833209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5833345Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:53:09.5833421Z 2025-03-14T04:53:09.5833671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5834127Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5834193Z 2025-03-14T04:53:09.5834475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5835993Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5836061Z 2025-03-14T04:53:09.5836352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5836498Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:53:09.5836571Z 2025-03-14T04:53:09.5836851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5837006Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:53:09.5837071Z 2025-03-14T04:53:09.5837326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5837740Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5837814Z 2025-03-14T04:53:09.5838088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5839623Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5839704Z 2025-03-14T04:53:09.5839990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5840133Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:53:09.5840229Z 2025-03-14T04:53:09.5840490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5840912Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5840986Z 2025-03-14T04:53:09.5841268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5842826Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5842904Z 2025-03-14T04:53:09.5843200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5843345Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:53:09.5843413Z 2025-03-14T04:53:09.5843678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5844127Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5844196Z 2025-03-14T04:53:09.5844482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5846099Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5846179Z 2025-03-14T04:53:09.5846501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5846665Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:53:09.5846736Z 2025-03-14T04:53:09.5847043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5847230Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:53:09.5847299Z 2025-03-14T04:53:09.5847570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5848006Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5848081Z 2025-03-14T04:53:09.5848358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5849965Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5850048Z 2025-03-14T04:53:09.5850347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5850498Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:53:09.5850566Z 2025-03-14T04:53:09.5850839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5851278Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5851355Z 2025-03-14T04:53:09.5851636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5853274Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5853357Z 2025-03-14T04:53:09.5853660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5853806Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:53:09.5853913Z 2025-03-14T04:53:09.5854178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5854618Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5854695Z 2025-03-14T04:53:09.5854971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5856616Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5856710Z 2025-03-14T04:53:09.5857009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5857168Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:53:09.5857241Z 2025-03-14T04:53:09.5857546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5857695Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:53:09.5857776Z 2025-03-14T04:53:09.5858038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5858498Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5858565Z 2025-03-14T04:53:09.5858844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5860429Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5860505Z 2025-03-14T04:53:09.5860801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5860969Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:53:09.5861045Z 2025-03-14T04:53:09.5861300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5861739Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5861806Z 2025-03-14T04:53:09.5862092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5863610Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5863687Z 2025-03-14T04:53:09.5863987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5864201Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:53:09.5864284Z 2025-03-14T04:53:09.5864553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5865009Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5865077Z 2025-03-14T04:53:09.5865363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5866919Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5867002Z 2025-03-14T04:53:09.5867292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5867440Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:53:09.5867549Z 2025-03-14T04:53:09.5867835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5867984Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:53:09.5868051Z 2025-03-14T04:53:09.5868304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5868713Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5868787Z 2025-03-14T04:53:09.5869050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5870553Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5870630Z 2025-03-14T04:53:09.5870912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5871053Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:53:09.5871118Z 2025-03-14T04:53:09.5871373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5871788Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5871861Z 2025-03-14T04:53:09.5872122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5873658Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5873733Z 2025-03-14T04:53:09.5874018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5874187Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:53:09.5874252Z 2025-03-14T04:53:09.5874513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5874937Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5875011Z 2025-03-14T04:53:09.5875278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5876823Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5876902Z 2025-03-14T04:53:09.5877199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5877356Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:53:09.5877424Z 2025-03-14T04:53:09.5877729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5877870Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:53:09.5877947Z 2025-03-14T04:53:09.5878212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5878657Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5878727Z 2025-03-14T04:53:09.5879017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5880625Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5880725Z 2025-03-14T04:53:09.5881040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5881189Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:53:09.5881269Z 2025-03-14T04:53:09.5881665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5882100Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5882167Z 2025-03-14T04:53:09.5882438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5883955Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5884023Z 2025-03-14T04:53:09.5884318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5884457Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:53:09.5884533Z 2025-03-14T04:53:09.5884780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5885212Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5885278Z 2025-03-14T04:53:09.5885549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5887124Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5887194Z 2025-03-14T04:53:09.5887481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5887678Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:53:09.5887751Z 2025-03-14T04:53:09.5888034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5888183Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:53:09.5888249Z 2025-03-14T04:53:09.5888506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5888930Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5889000Z 2025-03-14T04:53:09.5889273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5890778Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5890853Z 2025-03-14T04:53:09.5891133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5891279Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:53:09.5891345Z 2025-03-14T04:53:09.5891599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5892028Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5892096Z 2025-03-14T04:53:09.5892364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5893909Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5894012Z 2025-03-14T04:53:09.5894297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5894442Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:53:09.5894513Z 2025-03-14T04:53:09.5894762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5895193Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5895259Z 2025-03-14T04:53:09.5895533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5897042Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5897117Z 2025-03-14T04:53:09.5897427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5897586Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:53:09.5897665Z 2025-03-14T04:53:09.5897970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5898127Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:53:09.5898198Z 2025-03-14T04:53:09.5898466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5898912Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5898991Z 2025-03-14T04:53:09.5899276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5900920Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5901065Z 2025-03-14T04:53:09.5901378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5901529Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:53:09.5901596Z 2025-03-14T04:53:09.5901880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5902341Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5902422Z 2025-03-14T04:53:09.5902712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5904380Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5904468Z 2025-03-14T04:53:09.5904771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5904924Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:53:09.5904994Z 2025-03-14T04:53:09.5905267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5905724Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5905803Z 2025-03-14T04:53:09.5906081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5907787Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5907899Z 2025-03-14T04:53:09.5908200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5908368Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:53:09.5908439Z 2025-03-14T04:53:09.5908749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5908905Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:53:09.5908983Z 2025-03-14T04:53:09.5909248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5909697Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5909769Z 2025-03-14T04:53:09.5910052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5911685Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5911758Z 2025-03-14T04:53:09.5912068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5912216Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:53:09.5912296Z 2025-03-14T04:53:09.5912564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5913016Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5913090Z 2025-03-14T04:53:09.5913375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5914988Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5915089Z 2025-03-14T04:53:09.5915389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5915526Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:53:09.5915599Z 2025-03-14T04:53:09.5915857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5916296Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5916366Z 2025-03-14T04:53:09.5916643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5918204Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5918273Z 2025-03-14T04:53:09.5918564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5918714Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:53:09.5918790Z 2025-03-14T04:53:09.5919081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5919233Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:53:09.5919299Z 2025-03-14T04:53:09.5919566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5919990Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5920067Z 2025-03-14T04:53:09.5920335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5921927Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5922048Z 2025-03-14T04:53:09.5922347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5922494Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:53:09.5922561Z 2025-03-14T04:53:09.5922836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5923270Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5923345Z 2025-03-14T04:53:09.5923621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5925249Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5925328Z 2025-03-14T04:53:09.5925625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5925774Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:53:09.5925840Z 2025-03-14T04:53:09.5926108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5926543Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5926618Z 2025-03-14T04:53:09.5926899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5928509Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5928626Z 2025-03-14T04:53:09.5928910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5929073Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:53:09.5929143Z 2025-03-14T04:53:09.5929461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5929605Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:53:09.5929683Z 2025-03-14T04:53:09.5929936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5930381Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5930457Z 2025-03-14T04:53:09.5930726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5932311Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5932382Z 2025-03-14T04:53:09.5932682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5932829Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:53:09.5932898Z 2025-03-14T04:53:09.5933160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5933592Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5933667Z 2025-03-14T04:53:09.5933973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5935502Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5935610Z 2025-03-14T04:53:09.5935895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5936038Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:53:09.5936102Z 2025-03-14T04:53:09.5936361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5936776Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5936847Z 2025-03-14T04:53:09.5937105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5938620Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5938694Z 2025-03-14T04:53:09.5938973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5939128Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:53:09.5939193Z 2025-03-14T04:53:09.5939480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5939622Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:53:09.5939694Z 2025-03-14T04:53:09.5939942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5940388Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5940455Z 2025-03-14T04:53:09.5940722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5942230Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5942332Z 2025-03-14T04:53:09.5942619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5942755Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:53:09.5942826Z 2025-03-14T04:53:09.5943070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5943490Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5943554Z 2025-03-14T04:53:09.5943831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5945487Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5945572Z 2025-03-14T04:53:09.5945881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5946022Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:53:09.5946099Z 2025-03-14T04:53:09.5946362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5946813Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5946883Z 2025-03-14T04:53:09.5947205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5948839Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5948941Z 2025-03-14T04:53:09.5949248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5949407Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:53:09.5949486Z 2025-03-14T04:53:09.5949782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5949940Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:53:09.5950014Z 2025-03-14T04:53:09.5950290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5950740Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5950824Z 2025-03-14T04:53:09.5951103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5952744Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5952828Z 2025-03-14T04:53:09.5953133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5953287Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:53:09.5953358Z 2025-03-14T04:53:09.5953629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5954120Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5954199Z 2025-03-14T04:53:09.5954473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5956123Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5956202Z 2025-03-14T04:53:09.5956505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5956658Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:53:09.5956726Z 2025-03-14T04:53:09.5957000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5957447Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5957528Z 2025-03-14T04:53:09.5957808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5959425Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5959506Z 2025-03-14T04:53:09.5959807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5959976Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:53:09.5960044Z 2025-03-14T04:53:09.5960353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5960503Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:53:09.5960579Z 2025-03-14T04:53:09.5960847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5961322Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5961431Z 2025-03-14T04:53:09.5961722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5963346Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5963417Z 2025-03-14T04:53:09.5963732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5963878Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:53:09.5963957Z 2025-03-14T04:53:09.5964226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5964678Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5964754Z 2025-03-14T04:53:09.5965036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5966654Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5966726Z 2025-03-14T04:53:09.5967044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5967187Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:53:09.5967262Z 2025-03-14T04:53:09.5967531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5968016Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5968095Z 2025-03-14T04:53:09.5968372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5970009Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5970077Z 2025-03-14T04:53:09.5970382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5970546Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:53:09.5970615Z 2025-03-14T04:53:09.5970917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5971066Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:53:09.5971142Z 2025-03-14T04:53:09.5971426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5971904Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5971976Z 2025-03-14T04:53:09.5972263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5973866Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5973944Z 2025-03-14T04:53:09.5974252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5974395Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:53:09.5974470Z 2025-03-14T04:53:09.5974771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5975221Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5975321Z 2025-03-14T04:53:09.5975606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5977205Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5977286Z 2025-03-14T04:53:09.5977595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5977736Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:53:09.5977814Z 2025-03-14T04:53:09.5978075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5978526Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5978597Z 2025-03-14T04:53:09.5978882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5980486Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5980567Z 2025-03-14T04:53:09.5980868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5981023Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:53:09.5981101Z 2025-03-14T04:53:09.5981396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5981751Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:53:09.5981829Z 2025-03-14T04:53:09.5982103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5982540Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5982661Z 2025-03-14T04:53:09.5982944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5984667Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5984759Z 2025-03-14T04:53:09.5985086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5985245Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:53:09.5985312Z 2025-03-14T04:53:09.5985591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5986046Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5986126Z 2025-03-14T04:53:09.5986409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5988060Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5988139Z 2025-03-14T04:53:09.5988442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5988601Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:53:09.5988670Z 2025-03-14T04:53:09.5988979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5989434Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.5989540Z 2025-03-14T04:53:09.5989818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5991474Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5991556Z 2025-03-14T04:53:09.5991850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.5992020Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:53:09.5992089Z 2025-03-14T04:53:09.5992395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5992550Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:53:09.5992629Z 2025-03-14T04:53:09.5992893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5993346Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.5993416Z 2025-03-14T04:53:09.5993702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5995345Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5995419Z 2025-03-14T04:53:09.5995723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5995901Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:53:09.5995979Z 2025-03-14T04:53:09.5996240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.5996724Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.5996792Z 2025-03-14T04:53:09.5997079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.5998694Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.5998766Z 2025-03-14T04:53:09.5999075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.5999222Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:53:09.5999298Z 2025-03-14T04:53:09.5999558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6000020Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.6000090Z 2025-03-14T04:53:09.6000373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6001990Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6002063Z 2025-03-14T04:53:09.6002365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.6002535Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:53:09.6002643Z 2025-03-14T04:53:09.6002944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6003106Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:53:09.6003228Z 2025-03-14T04:53:09.6003501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6003945Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.6004013Z 2025-03-14T04:53:09.6004301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6005894Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6005974Z 2025-03-14T04:53:09.6006275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6006432Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:53:09.6006501Z 2025-03-14T04:53:09.6006773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6007231Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.6007300Z 2025-03-14T04:53:09.6007587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6009203Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6009283Z 2025-03-14T04:53:09.6009636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6009790Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:53:09.6009869Z 2025-03-14T04:53:09.6010134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6010627Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.6010696Z 2025-03-14T04:53:09.6010980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6012585Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6012665Z 2025-03-14T04:53:09.6012964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.6013129Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:53:09.6013205Z 2025-03-14T04:53:09.6013499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6013661Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:53:09.6013729Z 2025-03-14T04:53:09.6014000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6014446Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.6014522Z 2025-03-14T04:53:09.6014799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6016411Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6016487Z 2025-03-14T04:53:09.6016769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6016946Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:53:09.6017011Z 2025-03-14T04:53:09.6017266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6017701Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.6017776Z 2025-03-14T04:53:09.6018047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6019609Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6019688Z 2025-03-14T04:53:09.6019985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6020136Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:53:09.6020209Z 2025-03-14T04:53:09.6020482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6020930Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.6021009Z 2025-03-14T04:53:09.6021290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6022903Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6022982Z 2025-03-14T04:53:09.6023308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.6023482Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:53:09.6023583Z 2025-03-14T04:53:09.6023890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6024047Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:53:09.6024220Z 2025-03-14T04:53:09.6024504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6024977Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:53:09.6025050Z 2025-03-14T04:53:09.6025355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6027024Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6027097Z 2025-03-14T04:53:09.6027421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6027577Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:53:09.6027658Z 2025-03-14T04:53:09.6027933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6028422Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:53:09.6028495Z 2025-03-14T04:53:09.6028798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6030507Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6030584Z 2025-03-14T04:53:09.6030938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6031139Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:53:09.6031219Z 2025-03-14T04:53:09.6031499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6032005Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:53:09.6032081Z 2025-03-14T04:53:09.6032385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:53:09.6034007Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:53:09.6034076Z 2025-03-14T04:53:09.6034366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:53:09.6034530Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:53:09.6034606Z 2025-03-14T04:53:09.6034902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:53:09.6035063Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:53:09.6035132Z 2025-03-14T04:53:09.6035615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:09.6035781Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:09.6035860Z 2025-03-14T04:53:09.6036172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.6036330Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:09.6036400Z 2025-03-14T04:53:09.6036866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:09.6037032Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:09.6037102Z 2025-03-14T04:53:09.6037444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.6037601Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:09.6037680Z 2025-03-14T04:53:09.6038107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:09.6038307Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:09.6038414Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:09.6038553Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:09.6038632Z 2025-03-14T04:53:09.6038976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:09.6039109Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:09.6039188Z 2025-03-14T04:53:09.6039533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:09.6039671Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:09.6039739Z 2025-03-14T04:53:09.6040146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:09.6040371Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:09.6040472Z 2025-03-14T04:53:09.6040918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:09.6041053Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:09.6041491Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:09.6041630Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:09.6041749Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:09.6041825Z 2025-03-14T04:53:09.6042133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:09.6042275Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T04:53:09.6042341Z 2025-03-14T04:53:09.6042614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:09.6043406Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:09.6043482Z 2025-03-14T04:53:09.6043764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:09.6043986Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T04:53:09.6044061Z 2025-03-14T04:53:09.6044457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:09.6045361Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:09.6045428Z 2025-03-14T04:53:09.6045799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:09.6046601Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:09.6046677Z 2025-03-14T04:53:09.6047023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:09.6047178Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:09.6047326Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:09.6047392Z 2025-03-14T04:53:09.6047818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:09.6047979Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T04:53:09.6048156Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:09.6048334Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:09.6048405Z 2025-03-14T04:53:09.6048808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:09.6049016Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:09.6049084Z 2025-03-14T04:53:09.6049514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:09.6049665Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:09.6049827Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:09.6049973Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:09.6050052Z 2025-03-14T04:53:09.6050474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:09.6050656Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:09.6050749Z 2025-03-14T04:53:09.6051072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:09.6051213Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:09.6051289Z 2025-03-14T04:53:09.6051601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:09.6051739Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:09.6051868Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:09.6052019Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:09.6052085Z 2025-03-14T04:53:09.6052415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:09.6052554Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:09.6052680Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:09.6052837Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:09.6052904Z 2025-03-14T04:53:09.6053231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:09.6053360Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:09.6053461Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:09.6053587Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:09.6053662Z 2025-03-14T04:53:09.6053982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:09.6054138Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:09.6054231Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:09.6054372Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:09.6054440Z 2025-03-14T04:53:09.6054816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:09.6054978Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:09.6055105Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:09.6055172Z 2025-03-14T04:53:09.6055487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:09.6055655Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:09.6055775Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:09.6055840Z 2025-03-14T04:53:09.6056145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:09.6056345Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:09.6056469Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:09.6056536Z 2025-03-14T04:53:09.6056847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:09.6057060Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:09.6057180Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:09.6057246Z 2025-03-14T04:53:09.6057591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:09.6057732Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:09.6057806Z 2025-03-14T04:53:09.6058140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:09.6058284Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:09.6058352Z 2025-03-14T04:53:09.6058703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:09.6058844Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:09.6058977Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:09.6059127Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:09.6059276Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:09.6059342Z 2025-03-14T04:53:09.6059694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:09.6059842Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:09.6059963Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:09.6060117Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:09.6060253Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:09.6060327Z 2025-03-14T04:53:09.6060655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:09.6060783Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:09.6060944Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:09.6061084Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:09.6061152Z 2025-03-14T04:53:09.6061491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:09.6061606Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:09.6061781Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:09.6061914Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:09.6061988Z 2025-03-14T04:53:09.6062331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:09.6062442Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:09.6062562Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:09.6062668Z 2025-03-14T04:53:09.6062986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:09.6063092Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:09.6063210Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:09.6063286Z 2025-03-14T04:53:09.6063594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:09.6063721Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:09.6063852Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:09.6063926Z 2025-03-14T04:53:09.6064309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:09.6064444Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:09.6064572Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:09.6064651Z 2025-03-14T04:53:09.6065006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:09.6065201Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:09.6065274Z 2025-03-14T04:53:09.6065624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:09.6065788Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:09.6065868Z 2025-03-14T04:53:09.6066246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:09.6066424Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:09.6066490Z 2025-03-14T04:53:09.6066978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:09.6067113Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:09.6067187Z 2025-03-14T04:53:09.6067479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.6067628Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:09.6067693Z 2025-03-14T04:53:09.6068129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:09.6068251Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:09.6068357Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:09.6068521Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:09.6068589Z 2025-03-14T04:53:09.6069049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:09.6069250Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:09.6069492Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:09.6069562Z 2025-03-14T04:53:09.6070036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:09.6070209Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:09.6070286Z 2025-03-14T04:53:09.6070585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:09.6070781Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:09.6070851Z 2025-03-14T04:53:09.6071246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:09.6071396Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:09.6071472Z 2025-03-14T04:53:09.6071770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:09.6071931Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:09.6072001Z 2025-03-14T04:53:09.6072387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:09.6072534Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:09.6072610Z 2025-03-14T04:53:09.6073096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:09.6073245Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:09.6073371Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:09.6073538Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:09.6073673Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:09.6073750Z 2025-03-14T04:53:09.6074123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:09.6074253Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:09.6074320Z 2025-03-14T04:53:28.1729525Z 2025-03-14T04:53:28.1730584Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:28.1733201Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:28.1735053Z l_features_res4_ = L_features_res4_ 2025-03-14T04:53:28.1735473Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:28.1736016Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:28.1736514Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:28.1737061Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:28.1737799Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:28.1738484Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:28.1739048Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:28.1739427Z 2025-03-14T04:53:28.1740029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:28.1740869Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:28.1741153Z 2025-03-14T04:53:28.1741556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1742064Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:28.1742328Z 2025-03-14T04:53:28.1742866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:28.1743511Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:28.1743787Z 2025-03-14T04:53:28.1744293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1744829Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:28.1745104Z 2025-03-14T04:53:28.1745625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:28.1746263Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:28.1746619Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:28.1746905Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:28.1747157Z 2025-03-14T04:53:28.1747607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:28.1748151Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:28.1748468Z 2025-03-14T04:53:28.1748924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:28.1749457Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:28.1749743Z 2025-03-14T04:53:28.1750212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:28.1750885Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:28.1751235Z 2025-03-14T04:53:28.1751745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:28.1752344Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:28.1752855Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:28.1753352Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:28.1753647Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:28.1753887Z 2025-03-14T04:53:28.1754295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:28.1754777Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:53:28.1755029Z 2025-03-14T04:53:28.1755393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:28.1756314Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:28.1757016Z 2025-03-14T04:53:28.1757381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:28.1757898Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:28.1758200Z 2025-03-14T04:53:28.1758673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:28.1759740Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:28.1760486Z 2025-03-14T04:53:28.1760936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:28.1761979Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:28.1762691Z 2025-03-14T04:53:28.1763117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:28.1763692Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:28.1764041Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:28.1764302Z 2025-03-14T04:53:28.1764807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:28.1765430Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:53:28.1765813Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:28.1766212Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:28.1766514Z 2025-03-14T04:53:28.1766999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:28.1767655Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:28.1767976Z 2025-03-14T04:53:28.1768491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:28.1769122Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:28.1769474Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:28.1769815Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:28.1770076Z 2025-03-14T04:53:28.1770538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:28.1771133Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:28.1771425Z 2025-03-14T04:53:28.1771825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:28.1772331Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:28.1772590Z 2025-03-14T04:53:28.1772989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:28.1773488Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:28.1773798Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:28.1774123Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:28.1774386Z 2025-03-14T04:53:28.1774792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:28.1775285Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:28.1775617Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:28.1775945Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:28.1776204Z 2025-03-14T04:53:28.1776630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:28.1777119Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:28.1777385Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:28.1777652Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:28.1777898Z 2025-03-14T04:53:28.1778297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:28.1778810Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:28.1779103Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:28.1779378Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:28.1779627Z 2025-03-14T04:53:28.1780060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:28.1780559Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:28.1780883Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:28.1781124Z 2025-03-14T04:53:28.1781839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:28.1782370Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:28.1782703Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:28.1782951Z 2025-03-14T04:53:28.1783365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:28.1783931Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:28.1784482Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:28.1784830Z 2025-03-14T04:53:28.1785234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:28.1785780Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:28.1786143Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:28.1786383Z 2025-03-14T04:53:28.1786817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:28.1787369Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:28.1787638Z 2025-03-14T04:53:28.1788065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:28.1788655Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:28.1789055Z 2025-03-14T04:53:28.1789664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:28.1790229Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:28.1790557Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:28.1790951Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:28.1791315Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:28.1791582Z 2025-03-14T04:53:28.1792027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:28.1792580Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:28.1792905Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:28.1793247Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:28.1793600Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:28.1793861Z 2025-03-14T04:53:28.1794292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:28.1794808Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:28.1795145Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:28.1795501Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:28.1795757Z 2025-03-14T04:53:28.1796191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:28.1796707Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:28.1797050Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:28.1797416Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:28.1797677Z 2025-03-14T04:53:28.1798091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:28.1798564Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:28.1798842Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:28.1799077Z 2025-03-14T04:53:28.1799474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:28.1799926Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:28.1800188Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:28.1800419Z 2025-03-14T04:53:28.1800813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:28.1801291Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:28.1801587Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:28.1801833Z 2025-03-14T04:53:28.1802222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:28.1802773Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:28.1803092Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:28.1803344Z 2025-03-14T04:53:28.1803773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:28.1804394Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:28.1804691Z 2025-03-14T04:53:28.1805114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:28.1805659Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:28.1805946Z 2025-03-14T04:53:28.1806418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:28.1807013Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:28.1807300Z 2025-03-14T04:53:28.1820375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:28.1821384Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:28.1821659Z 2025-03-14T04:53:28.1822088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1822605Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:28.1822891Z 2025-03-14T04:53:28.1823433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:28.1824159Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:28.1824440Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:28.1824726Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:28.1824978Z 2025-03-14T04:53:28.1825556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:28.1826261Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:28.1826743Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:28.1827110Z 2025-03-14T04:53:28.1827676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:28.1828373Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:28.1828668Z 2025-03-14T04:53:28.1829071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1829596Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:28.1829880Z 2025-03-14T04:53:28.1830848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:28.1831461Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:28.1831782Z 2025-03-14T04:53:28.1832182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:28.1832688Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:28.1832961Z 2025-03-14T04:53:28.1833435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:28.1834024Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:28.1834297Z 2025-03-14T04:53:28.1834882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:28.1835577Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:28.1835900Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:28.1836241Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:28.1836595Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:28.1836859Z 2025-03-14T04:53:28.1837338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:28.1837889Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:28.1838129Z 2025-03-14T04:53:28.1838223Z 2025-03-14T04:53:28.1838329Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:28.1839648Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:53:28.1840932Z l_features_res4_ = L_features_res4_ 2025-03-14T04:53:28.1841336Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:53:28.1841867Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:53:28.1842353Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:53:28.1842883Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:53:28.1843467Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:53:28.1844030Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:53:28.1844626Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:53:28.1844999Z 2025-03-14T04:53:28.1845540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:28.1846202Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:53:28.1846476Z 2025-03-14T04:53:28.1846866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1847353Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:28.1847611Z 2025-03-14T04:53:28.1848129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:53:28.1848761Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:53:28.1849032Z 2025-03-14T04:53:28.1849411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1849894Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:53:28.1850153Z 2025-03-14T04:53:28.1850615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:53:28.1851215Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:53:28.1851550Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:53:28.1851818Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:53:28.1852055Z 2025-03-14T04:53:28.1852472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:53:28.1852982Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:53:28.1853226Z 2025-03-14T04:53:28.1853641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:53:28.1854138Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:53:28.1854382Z 2025-03-14T04:53:28.1854852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:53:28.1855494Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:53:28.1855827Z 2025-03-14T04:53:28.1856333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:53:28.1856926Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:53:28.1857429Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:53:28.1857929Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:53:28.1858266Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:53:28.1858504Z 2025-03-14T04:53:28.1858893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:28.1859393Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:53:28.1859638Z 2025-03-14T04:53:28.1859988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:53:28.1860898Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:53:28.1861603Z 2025-03-14T04:53:28.1861966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:53:28.1862480Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:53:28.1862783Z 2025-03-14T04:53:28.1863252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:53:28.1864418Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:53:28.1865193Z 2025-03-14T04:53:28.1865651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:53:28.1866683Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:53:28.1867411Z 2025-03-14T04:53:28.1867849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:53:28.1868407Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:53:28.1868760Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:53:28.1869026Z 2025-03-14T04:53:28.1869544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:53:28.1870183Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:53:28.1870574Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:53:28.1870977Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:53:28.1871281Z 2025-03-14T04:53:28.1871820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:28.1872496Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:53:28.1872856Z 2025-03-14T04:53:28.1873382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:28.1874034Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:53:28.1874396Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:28.1874743Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:28.1875010Z 2025-03-14T04:53:28.1875482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:28.1876082Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:53:28.1876382Z 2025-03-14T04:53:28.1876788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:28.1877301Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:28.1877566Z 2025-03-14T04:53:28.1877974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:28.1878484Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:28.1878792Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:28.1879117Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:28.1879381Z 2025-03-14T04:53:28.1879784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:28.1880278Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:28.1880574Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:28.1880896Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:28.1881155Z 2025-03-14T04:53:28.1881779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:28.1882281Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:28.1882553Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:28.1882821Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:53:28.1883070Z 2025-03-14T04:53:28.1883478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:28.1883990Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:28.1884282Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:28.1884551Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:53:28.1884796Z 2025-03-14T04:53:28.1885224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:28.1885829Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:28.1886161Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:28.1886402Z 2025-03-14T04:53:28.1886866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:28.1887369Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:28.1887690Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:28.1887920Z 2025-03-14T04:53:28.1888305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:28.1888813Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:28.1889134Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:53:28.1889369Z 2025-03-14T04:53:28.1889758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:28.1890294Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:28.1890649Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:53:28.1890886Z 2025-03-14T04:53:28.1891311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:28.1891842Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:28.1892103Z 2025-03-14T04:53:28.1892522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:28.1893041Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:28.1893300Z 2025-03-14T04:53:28.1893733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:28.1894269Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:28.1894590Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:53:28.1894921Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:28.1895269Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:53:28.1895530Z 2025-03-14T04:53:28.1895967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:28.1896506Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:28.1896820Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:53:28.1897159Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:28.1897500Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:53:28.1897762Z 2025-03-14T04:53:28.1898179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:28.1898743Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:28.1899078Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:28.1899419Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:53:28.1899704Z 2025-03-14T04:53:28.1900122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:28.1900627Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:28.1900964Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:28.1901307Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:53:28.1901561Z 2025-03-14T04:53:28.1901965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:28.1902434Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:28.1902710Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:28.1902956Z 2025-03-14T04:53:28.1903358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:28.1903830Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:28.1904167Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:28.1904409Z 2025-03-14T04:53:28.1904821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:28.1905337Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:28.1905660Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:28.1905916Z 2025-03-14T04:53:28.1906315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:28.1906795Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:28.1907088Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:28.1907338Z 2025-03-14T04:53:28.1907781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:28.1908374Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:28.1908680Z 2025-03-14T04:53:28.1909112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:28.1909671Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:28.1909962Z 2025-03-14T04:53:28.1910445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:28.1911060Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:28.1911358Z 2025-03-14T04:53:28.1911979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:28.1912671Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:28.1912934Z 2025-03-14T04:53:28.1913324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1913853Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:53:28.1914121Z 2025-03-14T04:53:28.1914645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:28.1915251Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:53:28.1915527Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:28.1915805Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:28.1916041Z 2025-03-14T04:53:28.1916595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:28.1917286Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:28.1917748Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:53:28.1918101Z 2025-03-14T04:53:28.1918656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:28.1919347Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:28.1919635Z 2025-03-14T04:53:28.1920028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:28.1920546Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:28.1920817Z 2025-03-14T04:53:28.1921283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:28.1921856Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:28.1922114Z 2025-03-14T04:53:28.1922494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:28.1922987Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:53:28.1923248Z 2025-03-14T04:53:28.1923708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:28.1924275Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:28.1924533Z 2025-03-14T04:53:28.1925094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:28.1925760Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:53:28.1926071Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:28.1926431Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:28.1926774Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:28.1927029Z 2025-03-14T04:53:28.1927516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:28.1928047Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:28.1928284Z 2025-03-14T04:53:30.7418852Z 2025-03-14T04:53:30.7422060Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:30.7423867Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T04:53:30.7425107Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:53:30.7427591Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:53:30.7428098Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:53:30.7433212Z 2025-03-14T04:53:30.7437109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:53:30.7438057Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:53:30.7439748Z 2025-03-14T04:53:30.7440385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:53:30.7441149Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:53:30.7446645Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:53:30.7448750Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:53:30.7449211Z 2025-03-14T04:53:30.7449968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:30.7450739Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:53:30.7451193Z 2025-03-14T04:53:30.7451659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:30.7452182Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:53:30.7452458Z 2025-03-14T04:53:30.7452877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:30.7453381Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:30.7453701Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:30.7454026Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:53:30.7454294Z 2025-03-14T04:53:30.7454703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:30.7455205Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:30.7455505Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:30.7456164Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:53:30.7456447Z 2025-03-14T04:53:30.7456854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:30.7457447Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:30.7457722Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:53:30.7457992Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:53:30.7458238Z 2025-03-14T04:53:30.7458853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:30.7459393Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:30.7459701Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:53:30.7459988Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:53:30.7460244Z 2025-03-14T04:53:30.7460727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:30.7461262Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:30.7461602Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:53:30.7461850Z 2025-03-14T04:53:30.7462255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:30.7462814Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:30.7463150Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:53:30.7463393Z 2025-03-14T04:53:30.7463794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:30.7464447Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:30.7464782Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:53:30.7465037Z 2025-03-14T04:53:30.7465444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:30.7465995Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:30.7466354Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:53:30.7466599Z 2025-03-14T04:53:30.7467039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:30.7467588Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:30.7467857Z 2025-03-14T04:53:30.7468290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:30.7468829Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:30.7469090Z 2025-03-14T04:53:30.7469532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:30.7470133Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:30.7470471Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:53:30.7470813Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:30.7471168Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:53:30.7471482Z 2025-03-14T04:53:30.7471930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:30.7472484Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:30.7472810Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:53:30.7473142Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:30.7473495Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:53:30.7473760Z 2025-03-14T04:53:30.7474204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:30.7474699Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:30.7475037Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:30.7475377Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:53:30.7475631Z 2025-03-14T04:53:30.7476051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:30.7476555Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:30.7476894Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:30.7477248Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:53:30.7477503Z 2025-03-14T04:53:30.7477908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:30.7478372Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:30.7478640Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:30.7478879Z 2025-03-14T04:53:30.7479276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:30.7479736Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:30.7479993Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:30.7480226Z 2025-03-14T04:53:30.7480617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:30.7481095Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:30.7481389Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:30.7481881Z 2025-03-14T04:53:30.7482280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:30.7482752Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:30.7483044Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:30.7483293Z 2025-03-14T04:53:30.7483790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:30.7484375Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:30.7484712Z 2025-03-14T04:53:30.7485132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:30.7485682Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:53:30.7485971Z 2025-03-14T04:53:30.7486439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:53:30.7487051Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:53:30.7487340Z 2025-03-14T04:53:30.7487906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:53:30.7488597Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:53:30.7488847Z 2025-03-14T04:53:30.7489232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:30.7489719Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:53:30.7489976Z 2025-03-14T04:53:30.7490503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:53:30.7491166Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:53:30.7491500Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:53:30.7491775Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:53:30.7492007Z 2025-03-14T04:53:30.7492549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:53:30.7493220Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:53:30.7493718Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T04:53:30.7494068Z 2025-03-14T04:53:30.7494612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:53:30.7495293Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:53:30.7495581Z 2025-03-14T04:53:30.7495966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:53:30.7496473Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:53:30.7496746Z 2025-03-14T04:53:30.7497257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:53:30.7497841Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:53:30.7498110Z 2025-03-14T04:53:30.7498494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:53:30.7499037Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T04:53:30.7499298Z 2025-03-14T04:53:30.7499756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:53:30.7500324Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:53:30.7500583Z 2025-03-14T04:53:30.7501156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:53:30.7501817Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:53:30.7502127Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:30.7502453Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:53:30.7502793Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:53:30.7503048Z 2025-03-14T04:53:30.7503503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:53:30.7504126Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:53:30.7504367Z 2025-03-14T04:53:56.3319266Z 2025-03-14T04:53:56.3320275Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:56.3322183Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:56.3323674Z l_stack0_ = L_stack0_ 2025-03-14T04:53:56.3324141Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:56.3324852Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:56.3325529Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:56.3326378Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:56.3327169Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3327806Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3328428Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3329399Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3329719Z 2025-03-14T04:53:56.3330313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:53:56.3331352Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:53:56.3331686Z 2025-03-14T04:53:56.3332097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:56.3333097Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:56.3333824Z 2025-03-14T04:53:56.3334241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:56.3335271Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:56.3336023Z 2025-03-14T04:53:56.3336402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3336869Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3337128Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:56.3337363Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:56.3337639Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3337903Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:56.3338152Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:56.3338374Z 2025-03-14T04:53:56.3338746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:56.3339689Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3340412Z 2025-03-14T04:53:56.3340877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:56.3341449Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:56.3341723Z 2025-03-14T04:53:56.3342122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:56.3342646Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:56.3342923Z 2025-03-14T04:53:56.3343321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:56.3343820Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:56.3344318Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3344659Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:56.3344934Z 2025-03-14T04:53:56.3345358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:56.3345958Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:56.3346258Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:56.3346577Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:56.3346843Z 2025-03-14T04:53:56.3347239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:56.3347738Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3348001Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:56.3348264Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:56.3348504Z 2025-03-14T04:53:56.3348909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:56.3349420Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:56.3349709Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:56.3349972Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:56.3350215Z 2025-03-14T04:53:56.3350652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:56.3351174Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:56.3351507Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:56.3351743Z 2025-03-14T04:53:56.3352145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:56.3352653Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:56.3352981Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:56.3353219Z 2025-03-14T04:53:56.3358771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:56.3359377Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:56.3359718Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:56.3359963Z 2025-03-14T04:53:56.3360385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:56.3360938Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:56.3361292Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:56.3361526Z 2025-03-14T04:53:56.3361958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:56.3362502Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:56.3362777Z 2025-03-14T04:53:56.3363316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:56.3363851Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:56.3364168Z 2025-03-14T04:53:56.3364611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:56.3365170Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:56.3365489Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:56.3365828Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:56.3366219Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:56.3366483Z 2025-03-14T04:53:56.3366929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:56.3367480Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:56.3367803Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:56.3368136Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:56.3368495Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:56.3368751Z 2025-03-14T04:53:56.3369183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:56.3369700Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:56.3370037Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:56.3370387Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:56.3370651Z 2025-03-14T04:53:56.3371083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:56.3371601Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:56.3371941Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:56.3372446Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:56.3372814Z 2025-03-14T04:53:56.3373310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:56.3373785Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:56.3374054Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:56.3374299Z 2025-03-14T04:53:56.3374873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:56.3375373Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:56.3375639Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:56.3375879Z 2025-03-14T04:53:56.3376279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:56.3376825Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:56.3377131Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:56.3377387Z 2025-03-14T04:53:56.3377791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:56.3378529Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:56.3378835Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:56.3379091Z 2025-03-14T04:53:56.3379535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:56.3380135Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:56.3380439Z 2025-03-14T04:53:56.3380877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:56.3381723Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:56.3382036Z 2025-03-14T04:53:56.3382495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:56.3383123Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:56.3383500Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:56.3383802Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:56.3384203Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:56.3384551Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:56.3384826Z 2025-03-14T04:53:56.3385241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3385824Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3386184Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:56.3386445Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:56.3386829Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3387198Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:56.3387466Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:56.3387707Z 2025-03-14T04:53:56.3388149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:56.3388734Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:56.3389045Z 2025-03-14T04:53:56.3389509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:56.3390133Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:56.3390515Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:56.3390821Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:56.3391262Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:56.3391600Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:56.3391877Z 2025-03-14T04:53:56.3392459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:56.3393257Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:56.3393616Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:56.3393972Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:56.3394328Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:56.3394628Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:56.3394872Z 2025-03-14T04:53:56.3395309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:56.3395833Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:56.3396072Z 2025-03-14T04:53:56.3396232Z 2025-03-14T04:53:56.3396323Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:56.3397694Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:56.3399005Z l_stack0_ = L_stack0_ 2025-03-14T04:53:56.3399395Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:56.3399964Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:56.3400515Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:56.3401066Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:56.3401540Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3401937Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3402325Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3402714Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3403006Z 2025-03-14T04:53:56.3403527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:53:56.3404154Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:53:56.3404418Z 2025-03-14T04:53:56.3404855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:56.3405810Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:56.3406577Z 2025-03-14T04:53:56.3406992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:56.3408014Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:56.3408765Z 2025-03-14T04:53:56.3409145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3409620Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3409879Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:56.3410121Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:56.3410405Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3410674Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:56.3410924Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:56.3411151Z 2025-03-14T04:53:56.3411531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:56.3412462Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3413183Z 2025-03-14T04:53:56.3413653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:56.3414234Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:56.3414512Z 2025-03-14T04:53:56.3414912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:56.3415446Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:56.3415733Z 2025-03-14T04:53:56.3416138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:56.3416650Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:56.3416964Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3417294Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:56.3417568Z 2025-03-14T04:53:56.3417990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:56.3418518Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:56.3418871Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:56.3419209Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:56.3419487Z 2025-03-14T04:53:56.3419911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:56.3420507Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3420795Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:56.3421074Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:56.3421407Z 2025-03-14T04:53:56.3422009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:56.3422779Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:56.3423090Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:56.3423370Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:56.3423627Z 2025-03-14T04:53:56.3424061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:56.3424682Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:56.3425045Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:56.3425372Z 2025-03-14T04:53:56.3425843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:56.3426386Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:56.3426724Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:56.3426966Z 2025-03-14T04:53:56.3427366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:56.3427882Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:56.3428217Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:56.3428459Z 2025-03-14T04:53:56.3428861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:56.3429409Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:56.3429768Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:56.3430007Z 2025-03-14T04:53:56.3430441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:56.3430982Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:56.3431244Z 2025-03-14T04:53:56.3431673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:56.3432207Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:56.3432469Z 2025-03-14T04:53:56.3432914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:56.3433525Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:56.3433853Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:56.3434195Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:56.3434589Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:56.3434858Z 2025-03-14T04:53:56.3435306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:56.3435861Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:56.3436191Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:56.3436511Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:56.3436850Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:56.3437108Z 2025-03-14T04:53:56.3437546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:56.3438053Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:56.3438378Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:56.3438722Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:56.3438977Z 2025-03-14T04:53:56.3439403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:56.3439915Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:56.3440276Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:56.3440628Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:56.3440889Z 2025-03-14T04:53:56.3441293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:56.3441755Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:56.3442019Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:56.3442256Z 2025-03-14T04:53:56.3442651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:56.3443112Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:56.3443370Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:56.3443604Z 2025-03-14T04:53:56.3443997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:56.3444481Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:56.3444770Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:56.3445021Z 2025-03-14T04:53:56.3445409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:56.3445879Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:56.3446212Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:56.3446463Z 2025-03-14T04:53:56.3446899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:56.3447525Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:56.3447820Z 2025-03-14T04:53:56.3448242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:56.3448802Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:56.3449091Z 2025-03-14T04:53:56.3449546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:56.3450162Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:56.3450534Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:56.3450838Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:56.3451146Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:56.3451464Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:56.3451718Z 2025-03-14T04:53:56.3452098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3452658Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3453009Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:56.3453253Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:56.3453615Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3453969Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:56.3454220Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:56.3454443Z 2025-03-14T04:53:56.3454865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:56.3455424Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:56.3455715Z 2025-03-14T04:53:56.3456162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:56.3456764Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:56.3457124Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:56.3457422Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:56.3457729Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:56.3458050Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:56.3458312Z 2025-03-14T04:53:56.3458868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:56.3459610Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:56.3459960Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:56.3460301Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:56.3460644Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:56.3460973Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:56.3461219Z 2025-03-14T04:53:56.3461658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:56.3462180Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:56.3462417Z 2025-03-14T04:53:56.3462564Z 2025-03-14T04:53:56.3462660Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:56.3464049Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:56.3465557Z l_stack0_ = L_stack0_ 2025-03-14T04:53:56.3465957Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:56.3466536Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:56.3467109Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:56.3467679Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:56.3468177Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3468597Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3469011Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3469452Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3469753Z 2025-03-14T04:53:56.3470302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:53:56.3470957Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:53:56.3471235Z 2025-03-14T04:53:56.3471646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:56.3472642Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:56.3473374Z 2025-03-14T04:53:56.3473846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:56.3474875Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:56.3475674Z 2025-03-14T04:53:56.3476074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3476746Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3477034Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:56.3477277Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:56.3477564Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3477832Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:56.3478091Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:56.3478321Z 2025-03-14T04:53:56.3478859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:56.3479896Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3480860Z 2025-03-14T04:53:56.3481337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:56.3482112Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:56.3482396Z 2025-03-14T04:53:56.3482810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:56.3483351Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:56.3483638Z 2025-03-14T04:53:56.3484054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:56.3484565Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:56.3484872Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3485204Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:56.3485475Z 2025-03-14T04:53:56.3485892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:56.3486405Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:56.3486701Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:56.3487017Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:56.3487281Z 2025-03-14T04:53:56.3487677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:56.3488165Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3488426Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:56.3488781Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:56.3489029Z 2025-03-14T04:53:56.3489430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:56.3490017Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:56.3490308Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:56.3490571Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:56.3490813Z 2025-03-14T04:53:56.3491227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:56.3491738Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:56.3492069Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:56.3492307Z 2025-03-14T04:53:56.3492694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:56.3493197Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:56.3493519Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:56.3493753Z 2025-03-14T04:53:56.3494141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:56.3494641Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:56.3494970Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:56.3495212Z 2025-03-14T04:53:56.3495602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:56.3496133Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:56.3496480Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:56.3496717Z 2025-03-14T04:53:56.3497143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:56.3497675Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:56.3497931Z 2025-03-14T04:53:56.3498350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:56.3498863Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:56.3499117Z 2025-03-14T04:53:56.3499545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:56.3500093Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:56.3500417Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:56.3500748Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:56.3501091Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:56.3501348Z 2025-03-14T04:53:56.3501818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:56.3502355Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:56.3502669Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:56.3503032Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:56.3503372Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:56.3503630Z 2025-03-14T04:53:56.3504064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:56.3504667Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:56.3505017Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:56.3505385Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:56.3505638Z 2025-03-14T04:53:56.3506058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:56.3506566Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:56.3506896Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:56.3507243Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:56.3507494Z 2025-03-14T04:53:56.3507907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:56.3508375Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:56.3508635Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:56.3508869Z 2025-03-14T04:53:56.3509264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:56.3509722Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:56.3509984Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:56.3510217Z 2025-03-14T04:53:56.3510611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:56.3511082Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:56.3511376Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:56.3511625Z 2025-03-14T04:53:56.3512017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:56.3512489Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:56.3512780Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:56.3513022Z 2025-03-14T04:53:56.3513451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:56.3514027Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:56.3514317Z 2025-03-14T04:53:56.3514803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:56.3515363Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:56.3515647Z 2025-03-14T04:53:56.3516089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:56.3516751Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:56.3517117Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:56.3517408Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:56.3517720Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:56.3518034Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:56.3518299Z 2025-03-14T04:53:56.3518681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3519241Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3519594Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:56.3519842Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:56.3520212Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3520574Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:56.3520825Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:56.3521048Z 2025-03-14T04:53:56.3521479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:56.3522018Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:56.3522302Z 2025-03-14T04:53:56.3522735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:56.3523321Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:56.3523671Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:56.3523953Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:56.3524244Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:56.3524553Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:56.3524810Z 2025-03-14T04:53:56.3525346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:56.3526034Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:56.3526379Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:56.3526720Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:56.3527069Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:56.3527364Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:56.3527608Z 2025-03-14T04:53:56.3528088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:56.3528609Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:56.3528847Z 2025-03-14T04:53:56.3529023Z 2025-03-14T04:53:56.3529115Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:56.3530470Z def forward(self, L_stack0_: "f32[3261, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:56.3531773Z l_stack0_ = L_stack0_ 2025-03-14T04:53:56.3532158Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:53:56.3532714Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:53:56.3533267Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:53:56.3533811Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:53:56.3534282Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3534683Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3535084Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3535463Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:56.3535754Z 2025-03-14T04:53:56.3536280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T04:53:56.3536893Z mean: "f32[3261, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T04:53:56.3537161Z 2025-03-14T04:53:56.3537554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:53:56.3538515Z scores: "f32[3261, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:53:56.3539225Z 2025-03-14T04:53:56.3539633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:53:56.3540630Z proposal_deltas: "f32[3261, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:53:56.3541373Z 2025-03-14T04:53:56.3541787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3542250Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3542501Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:56.3542771Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:56.3543046Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:56.3543308Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:56.3543554Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:56.3543774Z 2025-03-14T04:53:56.3544205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:56.3545168Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3545905Z 2025-03-14T04:53:56.3546380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:56.3546975Z deltas: "f32[3261, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:53:56.3547254Z 2025-03-14T04:53:56.3547668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:56.3548189Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:56.3548463Z 2025-03-14T04:53:56.3548870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:56.3549372Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:56.3549679Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3550001Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:56.3550263Z 2025-03-14T04:53:56.3550673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:56.3551163Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:56.3551459Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:56.3551776Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:56.3552038Z 2025-03-14T04:53:56.3552436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:56.3552918Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:56.3553180Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:56.3553437Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:56.3553676Z 2025-03-14T04:53:56.3554078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:56.3554588Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:56.3554871Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:56.3555181Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:56.3555428Z 2025-03-14T04:53:56.3555836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:56.3556401Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:56.3556730Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:56.3556968Z 2025-03-14T04:53:56.3557358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:56.3557867Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:56.3558194Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:56.3558429Z 2025-03-14T04:53:56.3558813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:56.3559312Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:56.3559636Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:56.3559868Z 2025-03-14T04:53:56.3560257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:56.3560790Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:56.3561133Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:56.3561365Z 2025-03-14T04:53:56.3561786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:56.3562313Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:56.3562571Z 2025-03-14T04:53:56.3562988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:56.3563509Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:56.3563761Z 2025-03-14T04:53:56.3564190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:56.3564724Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:56.3565042Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:56.3565372Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:56.3565708Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:56.3565969Z 2025-03-14T04:53:56.3566403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:56.3566932Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:56.3567243Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:56.3567566Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:56.3567948Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:56.3568211Z 2025-03-14T04:53:56.3568632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:56.3569135Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:56.3569503Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:56.3569844Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:56.3570097Z 2025-03-14T04:53:56.3570515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:56.3571019Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:56.3571350Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:56.3571700Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:56.3571955Z 2025-03-14T04:53:56.3572356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:56.3572827Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:56.3573091Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:56.3573333Z 2025-03-14T04:53:56.3573731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:56.3574187Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:56.3574446Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:56.3574683Z 2025-03-14T04:53:56.3575076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:56.3575555Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:56.3575851Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:56.3576111Z 2025-03-14T04:53:56.3576508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:56.3576984Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:56.3577273Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:56.3577517Z 2025-03-14T04:53:56.3577960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:56.3578548Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:56.3578845Z 2025-03-14T04:53:56.3579273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:56.3579838Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:56.3580131Z 2025-03-14T04:53:56.3580588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:56.3581399Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:56.3581967Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:56.3582265Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:56.3582584Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:56.3582997Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:56.3583272Z 2025-03-14T04:53:56.3583669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:56.3584299Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3584654Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:56.3584899Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:56.3585276Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:56.3585641Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:56.3585901Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:56.3586130Z 2025-03-14T04:53:56.3586563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:56.3587133Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:53:56.3587430Z 2025-03-14T04:53:56.3587881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:56.3588490Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:56.3588865Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:56.3589162Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:56.3589472Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:56.3589799Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:56.3590069Z 2025-03-14T04:53:56.3590627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:56.3591329Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:56.3591681Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:56.3592032Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:56.3592381Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:56.3592681Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:56.3592933Z 2025-03-14T04:53:56.3593384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:56.3593912Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:56.3594151Z 2025-03-14T04:53:57.9740992Z 2025-03-14T04:53:57.9741626Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:57.9743070Z def forward(self, L_predictions_0_: "f32[3261, 81][81, 1]cpu", L_predictions_1_: "f32[3261, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:57.9743957Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:53:57.9744485Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:53:57.9744826Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9745254Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9745679Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9746121Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9746536Z 2025-03-14T04:53:57.9747053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:57.9747549Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:57.9747817Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:57.9748060Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:57.9748359Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:57.9748665Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:57.9749011Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:57.9749245Z 2025-03-14T04:53:57.9749634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:57.9750612Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9751342Z 2025-03-14T04:53:57.9751947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:57.9752554Z deltas: "f32[3261, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:53:57.9752838Z 2025-03-14T04:53:57.9753249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:57.9753791Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:57.9754081Z 2025-03-14T04:53:57.9754503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:57.9755022Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:57.9755340Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:57.9755672Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:57.9755945Z 2025-03-14T04:53:57.9756366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:57.9756880Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:57.9757186Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:57.9757512Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:57.9757785Z 2025-03-14T04:53:57.9758259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:57.9758768Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:57.9759120Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:57.9759386Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:57.9759631Z 2025-03-14T04:53:57.9760039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:57.9760559Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:57.9760858Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:57.9761124Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:57.9761373Z 2025-03-14T04:53:57.9761817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:57.9762337Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:57.9762676Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:57.9762914Z 2025-03-14T04:53:57.9763311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:57.9763823Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:57.9764154Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:57.9764397Z 2025-03-14T04:53:57.9764797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:57.9765310Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:57.9765638Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:57.9765882Z 2025-03-14T04:53:57.9766279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:57.9766825Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:57.9767177Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:57.9767415Z 2025-03-14T04:53:57.9767863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:57.9768390Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:57.9768647Z 2025-03-14T04:53:57.9769062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:57.9769585Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:57.9769837Z 2025-03-14T04:53:57.9770264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:57.9770801Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:57.9771118Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:57.9771485Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:57.9771838Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:57.9772102Z 2025-03-14T04:53:57.9772577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:57.9773123Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:57.9773438Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:57.9773765Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:57.9774117Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:57.9774375Z 2025-03-14T04:53:57.9774807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:57.9775312Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:57.9775642Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:57.9775982Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:57.9776234Z 2025-03-14T04:53:57.9776654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:57.9777155Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:57.9777485Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:57.9777837Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:57.9778090Z 2025-03-14T04:53:57.9778511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:57.9778981Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:57.9779247Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:57.9779484Z 2025-03-14T04:53:57.9779876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:57.9780331Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:57.9780592Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:57.9780826Z 2025-03-14T04:53:57.9781218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:57.9781986Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:57.9782288Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:57.9782549Z 2025-03-14T04:53:57.9782941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:57.9783468Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:57.9783761Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:57.9784014Z 2025-03-14T04:53:57.9784620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:57.9785239Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:57.9785557Z 2025-03-14T04:53:57.9785988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:57.9786628Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:57.9786930Z 2025-03-14T04:53:57.9787392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:57.9788032Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:57.9788417Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:57.9788724Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:57.9789038Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:57.9789373Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:57.9789649Z 2025-03-14T04:53:57.9790049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:57.9790631Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9790996Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:57.9791254Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:57.9791758Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9792261Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:57.9792521Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:57.9792754Z 2025-03-14T04:53:57.9793197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:57.9793846Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:53:57.9794349Z 2025-03-14T04:53:57.9795006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:57.9795830Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:57.9796221Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:57.9796534Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:57.9796856Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:57.9797199Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:57.9797477Z 2025-03-14T04:53:57.9798070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:57.9798844Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:57.9799380Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:57.9799934Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:57.9800312Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:57.9800632Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:57.9800897Z 2025-03-14T04:53:57.9801421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:57.9801957Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:57.9802203Z 2025-03-14T04:53:57.9802341Z 2025-03-14T04:53:57.9802438Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:57.9803264Z def forward(self, L_predictions_0_: "f32[3261, 81][81, 1]cpu", L_predictions_1_: "f32[3261, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:57.9804064Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:53:57.9804305Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:53:57.9804634Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9805048Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9805453Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9805859Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9806158Z 2025-03-14T04:53:57.9806550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:57.9807023Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:57.9807282Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:57.9807518Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:57.9807798Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:57.9808070Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:57.9808319Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:57.9808547Z 2025-03-14T04:53:57.9808929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:57.9809882Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9810605Z 2025-03-14T04:53:57.9811078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:57.9811665Z deltas: "f32[3261, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:53:57.9811945Z 2025-03-14T04:53:57.9812362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:57.9812880Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:57.9813158Z 2025-03-14T04:53:57.9813618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:57.9814116Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:57.9814424Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:57.9814740Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:57.9815035Z 2025-03-14T04:53:57.9815443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:57.9815935Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:57.9816229Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:57.9816542Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:57.9816804Z 2025-03-14T04:53:57.9817201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:57.9817679Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:57.9817933Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:57.9818190Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:57.9818419Z 2025-03-14T04:53:57.9818818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:57.9819328Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:57.9819612Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:57.9819876Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:57.9820120Z 2025-03-14T04:53:57.9820534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:57.9821047Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:57.9821377Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:57.9821617Z 2025-03-14T04:53:57.9822005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:57.9822513Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:57.9822834Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:57.9823068Z 2025-03-14T04:53:57.9823460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:57.9823966Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:57.9824404Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:57.9824661Z 2025-03-14T04:53:57.9825077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:57.9825638Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:57.9825995Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:57.9826232Z 2025-03-14T04:53:57.9826663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:57.9827238Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:57.9827503Z 2025-03-14T04:53:57.9827922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:57.9828487Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:57.9828757Z 2025-03-14T04:53:57.9829207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:57.9829752Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:57.9830083Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:57.9830427Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:57.9830786Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:57.9831057Z 2025-03-14T04:53:57.9831516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:57.9832076Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:57.9832404Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:57.9832841Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:57.9833288Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:57.9833551Z 2025-03-14T04:53:57.9833980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:57.9834485Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:57.9834822Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:57.9835323Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:57.9835591Z 2025-03-14T04:53:57.9836011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:57.9836514Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:57.9836841Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:57.9837261Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:57.9837557Z 2025-03-14T04:53:57.9837958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:57.9838428Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:57.9838687Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:57.9838925Z 2025-03-14T04:53:57.9839321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:57.9839784Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:57.9840044Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:57.9840279Z 2025-03-14T04:53:57.9840715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:57.9841188Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:57.9841480Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:57.9841768Z 2025-03-14T04:53:57.9842160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:57.9842633Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:57.9842923Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:57.9843172Z 2025-03-14T04:53:57.9843608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:57.9844187Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:57.9844477Z 2025-03-14T04:53:57.9844897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:57.9845448Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:57.9845735Z 2025-03-14T04:53:57.9846179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:57.9846791Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:57.9847158Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:57.9847455Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:57.9847759Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:57.9848077Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:57.9848346Z 2025-03-14T04:53:57.9848727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:57.9849278Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9849627Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:57.9849871Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:57.9850261Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9850618Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:57.9850865Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:57.9851085Z 2025-03-14T04:53:57.9851504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:57.9852103Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:53:57.9852426Z 2025-03-14T04:53:57.9852862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:57.9853470Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:57.9853830Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:57.9855231Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:57.9855566Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:57.9855888Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:57.9856189Z 2025-03-14T04:53:57.9856746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:57.9857428Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:57.9857772Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:57.9858106Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:57.9858448Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:57.9858744Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:57.9858984Z 2025-03-14T04:53:57.9859424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:57.9859945Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:57.9860177Z 2025-03-14T04:53:57.9860325Z 2025-03-14T04:53:57.9860426Z class GraphModule(torch.nn.Module): 2025-03-14T04:53:57.9861228Z def forward(self, L_predictions_0_: "f32[3261, 81][81, 1]cpu", L_predictions_1_: "f32[3261, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1261 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1261 - s0, 4][4, 1]cpu"): 2025-03-14T04:53:57.9862018Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:53:57.9862247Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:53:57.9862564Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9862964Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9863363Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9863756Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:53:57.9864064Z 2025-03-14T04:53:57.9864622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:57.9865135Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:57.9865402Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:53:57.9865647Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:53:57.9865932Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:53:57.9866199Z getitem_2: "Sym(1261 - s0)" = size_1[0] 2025-03-14T04:53:57.9866456Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:53:57.9866691Z 2025-03-14T04:53:57.9867085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:53:57.9868146Z proposal_boxes: "f32[3261, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9868900Z 2025-03-14T04:53:57.9869386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:53:57.9870034Z deltas: "f32[3261, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:53:57.9870328Z 2025-03-14T04:53:57.9870747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:53:57.9871298Z boxes: "f32[3261, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:53:57.9871593Z 2025-03-14T04:53:57.9872016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:53:57.9872537Z getitem_4: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:53:57.9872856Z getitem_5: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:57.9873190Z widths: "f32[3261][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:53:57.9873466Z 2025-03-14T04:53:57.9873889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:53:57.9874409Z getitem_6: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:53:57.9874713Z getitem_7: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:53:57.9875042Z heights: "f32[3261][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:53:57.9875318Z 2025-03-14T04:53:57.9875738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:53:57.9876244Z getitem_8: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:53:57.9876516Z mul: "f32[3261][1]cpu" = 0.5 * widths 2025-03-14T04:53:57.9876778Z ctr_x: "f32[3261][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:53:57.9877016Z 2025-03-14T04:53:57.9877412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:53:57.9877917Z getitem_9: "f32[3261][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:53:57.9878199Z mul_1: "f32[3261][1]cpu" = 0.5 * heights 2025-03-14T04:53:57.9878462Z ctr_y: "f32[3261][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:53:57.9878697Z 2025-03-14T04:53:57.9879110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:53:57.9879615Z getitem_10: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:53:57.9879938Z dx: "f32[3261, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:53:57.9880176Z 2025-03-14T04:53:57.9880561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:53:57.9881063Z getitem_11: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:53:57.9881381Z dy: "f32[3261, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:53:57.9881849Z 2025-03-14T04:53:57.9882251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:53:57.9882868Z getitem_12: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:53:57.9883194Z dw: "f32[3261, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:53:57.9883428Z 2025-03-14T04:53:57.9883886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:53:57.9884427Z getitem_13: "f32[3261, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:53:57.9884778Z dh: "f32[3261, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:53:57.9885019Z 2025-03-14T04:53:57.9885457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:53:57.9886022Z dw_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:53:57.9886282Z 2025-03-14T04:53:57.9886723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:53:57.9887266Z dh_1: "f32[3261, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:53:57.9887531Z 2025-03-14T04:53:57.9887987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:53:57.9888539Z getitem_14: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:53:57.9888866Z mul_2: "f32[3261, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:53:57.9889206Z getitem_15: "f32[3261, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:53:57.9889564Z pred_ctr_x: "f32[3261, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:53:57.9889833Z 2025-03-14T04:53:57.9890293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:53:57.9890824Z getitem_16: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:53:57.9891132Z mul_3: "f32[3261, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:53:57.9891447Z getitem_17: "f32[3261, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:53:57.9891779Z pred_ctr_y: "f32[3261, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:53:57.9892028Z 2025-03-14T04:53:57.9892444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:53:57.9892937Z exp: "f32[3261, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:53:57.9893253Z getitem_18: "f32[3261, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:53:57.9893592Z pred_w: "f32[3261, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:53:57.9893841Z 2025-03-14T04:53:57.9894260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:53:57.9894762Z exp_1: "f32[3261, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:53:57.9895091Z getitem_19: "f32[3261, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:53:57.9895441Z pred_h: "f32[3261, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:53:57.9895734Z 2025-03-14T04:53:57.9896146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:53:57.9896611Z mul_6: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:53:57.9896921Z x1: "f32[3261, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:53:57.9897163Z 2025-03-14T04:53:57.9897564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:53:57.9898032Z mul_7: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:53:57.9898304Z y1: "f32[3261, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:53:57.9898545Z 2025-03-14T04:53:57.9898946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:53:57.9899429Z mul_8: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:53:57.9899726Z x2: "f32[3261, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:53:57.9899982Z 2025-03-14T04:53:57.9900380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:53:57.9900855Z mul_9: "f32[3261, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:53:57.9901147Z y2: "f32[3261, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:53:57.9901390Z 2025-03-14T04:53:57.9901832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:53:57.9902423Z pred_boxes: "f32[3261, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:53:57.9902721Z 2025-03-14T04:53:57.9903146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:53:57.9903708Z predict_boxes: "f32[3261, 320][320, 1]cpu" = pred_boxes.reshape((3261, 320)); pred_boxes = None 2025-03-14T04:53:57.9904009Z 2025-03-14T04:53:57.9904540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:53:57.9905165Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:53:57.9905539Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:53:57.9905844Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:53:57.9906145Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:53:57.9906459Z getitem_23: "f32[1261 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:53:57.9906728Z 2025-03-14T04:53:57.9907103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:53:57.9907653Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9907996Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:53:57.9908240Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:53:57.9908598Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:53:57.9908950Z getitem_26: "Sym(1261 - s0)" = size_3[0] 2025-03-14T04:53:57.9909238Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:53:57.9909459Z 2025-03-14T04:53:57.9909881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:53:57.9910531Z probs: "f32[3261, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:53:57.9910862Z 2025-03-14T04:53:57.9911304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:53:57.9911899Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:53:57.9912257Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:53:57.9912549Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:53:57.9912852Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:53:57.9913175Z getitem_31: "f32[1261 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:53:57.9913445Z 2025-03-14T04:53:57.9914032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:53:57.9914750Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:53:57.9915123Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:53:57.9915469Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:53:57.9915832Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:53:57.9916134Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:53:57.9916381Z 2025-03-14T04:53:57.9916879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:53:57.9917462Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:53:57.9917704Z 2025-03-14T04:54:00.3072810Z 2025-03-14T04:54:00.3073614Z class GraphModule(torch.nn.Module): 2025-03-14T04:54:00.3074289Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:54:00.3075497Z l_scores_0_ = L_scores_0_ 2025-03-14T04:54:00.3075812Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:54:00.3076021Z 2025-03-14T04:54:00.3076712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:54:00.3077552Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:54:00.3077912Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:54:00.3078258Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:54:00.3078598Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:54:00.3078905Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:54:00.3079157Z 2025-03-14T04:54:00.3079620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:54:00.3080560Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:54:00.3080820Z 2025-03-14T04:54:00.3080914Z 2025-03-14T04:54:00.3081008Z class GraphModule(torch.nn.Module): 2025-03-14T04:54:00.3081335Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:54:00.3081999Z l_scores_0_ = L_scores_0_ 2025-03-14T04:54:00.3082223Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:54:00.3082429Z 2025-03-14T04:54:00.3083016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:54:00.3083718Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:54:00.3084065Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:54:00.3084411Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:54:00.3084739Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:54:00.3085048Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:54:00.3085307Z 2025-03-14T04:54:00.3085767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:54:00.3086305Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:54:00.3086553Z 2025-03-14T04:54:34.8237099Z Compilation time (from dynamo_timed): 79.731094732 2025-03-14T04:54:34.8241782Z pass 2025-03-14T04:54:34.8246228Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:54:34.8252022Z TIMING: entire_frame_compile:79.73109 gc:0.05234 _recursive_pre_grad_passes:0.03438 _recursive_joint_graph_passes:0.27464 _recursive_post_grad_passes:0.28065 async_compile.wait:37.753 code_gen:50.77651 inductor_compile:55.4209 backend_compile:64.30605 total_wall_time:79.73109 2025-03-14T04:54:34.8253861Z STATS: call_* op count: 777 | FakeTensorMode.__torch_dispatch__:33338 | FakeTensor.__torch_dispatch__:3861 | ProxyTorchDispatchMode.__torch_dispatch__:12075 | attempt fast:91 | slow no contiguity match:44 | fast is_contiguous:47 2025-03-14T04:54:34.8256254Z Dynamo produced 53 graphs covering 777 ops with 42 graph breaks (6 unique) 2025-03-14T04:54:40.9945025Z 2025-03-14T04:54:51.5518758Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:54:51.5519179Z loading model: 0it [00:10, ?it/s] 2025-03-14T04:54:51.5531969Z cpu eval detectron2_fasterrcnn_r_101_dc5 2025-03-14T04:55:08.3972266Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_101_dc5. Setting accuracy check to cosine 2025-03-14T04:55:08.4079895Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:55:19.6892867Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:55:31.4493864Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:55:43.5537280Z 2025-03-14T04:55:43.5539653Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:43.5649499Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:55:43.5749101Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:55:43.5749756Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5750530Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5751375Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5752194Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5752994Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5753769Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5754617Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5755508Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5756390Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5757212Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5758007Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5758791Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5759516Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5760229Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5760920Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5761579Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5762265Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5762985Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5763756Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5764430Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5765122Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.5765827Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5766576Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5767309Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5768017Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5768676Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5769357Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5770099Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5770818Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5771499Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5772145Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5772822Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5773561Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5774289Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5774985Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5775661Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5776354Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5777144Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5777872Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5778570Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5779256Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5779981Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5780717Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5781528Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5782265Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5782964Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5783666Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5784451Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5785182Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5785910Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5786588Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5787271Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5788007Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5788720Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5789402Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5790053Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5790730Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5791528Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5792248Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5792976Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5793635Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5794322Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5795058Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5795770Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5796465Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5797119Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5797797Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5798527Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5799240Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5799927Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5800597Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.5801311Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5802069Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5802874Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5803598Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5804306Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5805105Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5805940Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5806769Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5807526Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5808218Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5808973Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5809784Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5810532Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5811202Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5811844Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5812539Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5813282Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5814004Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5814697Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5815351Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5816024Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5816742Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5817438Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5818113Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5818754Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5819461Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5820190Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5820923Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5821593Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5822229Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5822901Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5823614Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5824388Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5825122Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5825814Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5826499Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5827237Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5827954Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5828642Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5829300Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5829984Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5830719Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5831436Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5832130Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5832821Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5833508Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5834275Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5834994Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5835677Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5836335Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5837014Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5837752Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5838464Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5839162Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5839836Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5840521Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5841269Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5841977Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5842661Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5843320Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5844002Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5844735Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5845447Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5846187Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5846847Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.5847548Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5848338Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5849076Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5849786Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5850451Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5851132Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5851868Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5852578Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5853270Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5853919Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5854602Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5855329Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5856050Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5856720Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5857353Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5858019Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5858737Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5859430Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5860158Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5860820Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5861528Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5862258Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5862974Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5863663Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5864393Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5865132Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5865884Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5866606Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5867290Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5867945Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5868638Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5869367Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5870082Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5870767Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5871415Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5872094Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5872818Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5873563Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5874257Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5874955Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5875640Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5876382Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5877105Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5877801Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5878467Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5879150Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5879888Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5880614Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5881325Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5882164Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5882849Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5883632Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5884360Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5885038Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5885688Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5886385Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5887139Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5887974Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5888669Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5889382Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5890059Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5890777Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5891471Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5892137Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5892777Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5893445Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5894162Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5894850Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5895513Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5896147Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5896823Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5897557Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5898264Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5898975Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5899632Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5900334Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5901116Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5901823Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5902536Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5903217Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5903938Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5904795Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5905593Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5906356Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5907057Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5907791Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5908587Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5909339Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5910065Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5910759Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5911487Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5912262Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5913009Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5913736Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5914434Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5915124Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5915911Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5916630Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5917347Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5918006Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5918686Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5919419Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5920121Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5920808Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5921454Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5922139Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5922871Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5923584Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5924264Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5924908Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5925587Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5926314Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5927019Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5927698Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5928342Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5929053Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5929802Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5930541Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5931240Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5931899Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5932590Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5933328Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5934047Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5934736Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5935412Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5936117Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5936834Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5937535Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5938204Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5938853Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5939538Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5940271Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5940990Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5941679Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5942336Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5943057Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5943791Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5944599Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5945375Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5946247Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5946979Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5947720Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5948448Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5949144Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5949801Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5950488Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5951229Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5951945Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5952633Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5953289Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5953972Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5954710Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5955422Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5956115Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5956808Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5957490Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5958272Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5958983Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5959671Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5960334Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5961014Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5961752Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5962476Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5963170Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5963829Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5964508Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5965248Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5965963Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5966655Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5967310Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5967998Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5968735Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5969449Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5970175Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5970841Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5971558Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5972297Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5973010Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5973703Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5974357Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5975049Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5975786Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5976506Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5977206Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5977867Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5978562Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5979296Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5980005Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5980695Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5981365Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5982268Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5983076Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5983919Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5984721Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5985546Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5986317Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5987134Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5987945Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5988719Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5989411Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.5990156Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5990939Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5991695Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5992423Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5993124Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.5993866Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5994650Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5995408Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5996131Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.5996828Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.5997556Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.5998331Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.5999116Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.5999809Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6000494Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6001179Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6001937Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6002687Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6003408Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6004104Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6004824Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6005606Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6006356Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6007081Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6007772Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6008499Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6009275Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6009989Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6010678Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6011340Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6012023Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6012806Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6013527Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6014258Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6014922Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6015625Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6016424Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6017142Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6017839Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6018503Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6019270Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6020068Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6020843Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6021585Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6022300Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6023042Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6023849Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6024729Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6025545Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6026278Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6027058Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6027855Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6028664Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6029406Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6030108Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6030844Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6031625Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6032385Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6033114Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6033818Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6034567Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6035349Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6036108Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6036831Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6037488Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6038180Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6038922Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6039644Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6040334Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6041039Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6041724Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6042463Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6043212Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6043911Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6044581Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6045269Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6046013Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6046731Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6047425Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6048089Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6048781Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6049523Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6050243Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6050936Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6051601Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6052290Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6053040Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6053762Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6054482Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6055224Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6055971Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6056786Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6057539Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6058267Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6058977Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6059719Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6060523Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6061319Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6062111Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6062934Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6064017Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6065057Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6065874Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6066699Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6067494Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6068538Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6069407Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6070229Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6071851Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6072567Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6073308Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6074084Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6074822Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6075535Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6076207Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6076916Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6077675Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6078409Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6079118Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6079791Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6080494Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6081244Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6082096Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6082814Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6083484Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6084190Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6084947Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6085751Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6086466Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6087194Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6087903Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6088662Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6089405Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6090120Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6090797Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6091499Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6092256Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6092988Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6093696Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6094370Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6095073Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6095828Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6096575Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6097296Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6097984Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6098698Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6099619Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6100571Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6101419Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6102276Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.6103147Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6104266Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6105215Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6106020Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6106775Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6107533Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6108341Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6109169Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6109995Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6110683Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6111415Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6112205Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6112990Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6113870Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6114728Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6115649Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6116558Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6117310Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6118064Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6118749Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6119566Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6120527Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6121469Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6122301Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6123000Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6123723Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6124528Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6125358Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6126150Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6126823Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6127526Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6128280Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6129016Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6129724Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6130465Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:55:43.6131247Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:55:43.6131957Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:55:43.6132714Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:55:43.6133556Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:55:43.6134347Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:55:43.6135124Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:55:43.6135614Z 2025-03-14T04:55:43.6136030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6136867Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6137504Z 2025-03-14T04:55:43.6137889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6139779Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6159158Z 2025-03-14T04:55:43.6159814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:55:43.6160354Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:55:43.6160673Z 2025-03-14T04:55:43.6161166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:55:43.6161870Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:55:43.6162258Z 2025-03-14T04:55:43.6162627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6163410Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6164000Z 2025-03-14T04:55:43.6164523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6166419Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6168119Z 2025-03-14T04:55:43.6168504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6168996Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:55:43.6169263Z 2025-03-14T04:55:43.6169611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6170355Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6170903Z 2025-03-14T04:55:43.6171267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6173110Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6174771Z 2025-03-14T04:55:43.6175155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6175637Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:55:43.6175899Z 2025-03-14T04:55:43.6176245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6176999Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6177558Z 2025-03-14T04:55:43.6177910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6179850Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6181856Z 2025-03-14T04:55:43.6182252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6183088Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.6183717Z 2025-03-14T04:55:43.6184215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6186433Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6188226Z 2025-03-14T04:55:43.6188617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6189135Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:55:43.6189415Z 2025-03-14T04:55:43.6189811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6190339Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:55:43.6190628Z 2025-03-14T04:55:43.6190988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6191777Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6192345Z 2025-03-14T04:55:43.6192721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6194763Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6196567Z 2025-03-14T04:55:43.6196957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6197484Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:55:43.6197766Z 2025-03-14T04:55:43.6198126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6198879Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6199434Z 2025-03-14T04:55:43.6199783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6201679Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6203414Z 2025-03-14T04:55:43.6203807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6204299Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:55:43.6204560Z 2025-03-14T04:55:43.6204905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6205645Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6206200Z 2025-03-14T04:55:43.6206554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6208462Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6210113Z 2025-03-14T04:55:43.6210481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6210975Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:55:43.6211248Z 2025-03-14T04:55:43.6211625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6212118Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:55:43.6212388Z 2025-03-14T04:55:43.6212730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6213458Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6213999Z 2025-03-14T04:55:43.6214353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6216198Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6217826Z 2025-03-14T04:55:43.6218199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6218682Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:55:43.6218957Z 2025-03-14T04:55:43.6219310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6220093Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6220678Z 2025-03-14T04:55:43.6221048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6223021Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6224894Z 2025-03-14T04:55:43.6225325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6225873Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:55:43.6226153Z 2025-03-14T04:55:43.6226509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6227288Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6227874Z 2025-03-14T04:55:43.6228246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6230198Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6231925Z 2025-03-14T04:55:43.6232315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6232834Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:55:43.6233128Z 2025-03-14T04:55:43.6233521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6234042Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:55:43.6234344Z 2025-03-14T04:55:43.6234682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6235410Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6235947Z 2025-03-14T04:55:43.6236339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6238205Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6239865Z 2025-03-14T04:55:43.6240243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6240732Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:55:43.6241002Z 2025-03-14T04:55:43.6241341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6242077Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6242627Z 2025-03-14T04:55:43.6242978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6244844Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6246509Z 2025-03-14T04:55:43.6246884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6247373Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:55:43.6247641Z 2025-03-14T04:55:43.6247983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6248731Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6249280Z 2025-03-14T04:55:43.6249633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6251508Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6253170Z 2025-03-14T04:55:43.6253510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6254260Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.6254827Z 2025-03-14T04:55:43.6255179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6257047Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6258768Z 2025-03-14T04:55:43.6259156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6259665Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:55:43.6259952Z 2025-03-14T04:55:43.6260345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6260866Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:55:43.6261148Z 2025-03-14T04:55:43.6261483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6262246Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6262801Z 2025-03-14T04:55:43.6263161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6265281Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6267103Z 2025-03-14T04:55:43.6267502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6268022Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:55:43.6268307Z 2025-03-14T04:55:43.6268663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6269456Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6270042Z 2025-03-14T04:55:43.6270414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6272362Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6274003Z 2025-03-14T04:55:43.6274371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6274859Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:55:43.6275124Z 2025-03-14T04:55:43.6275468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6276217Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6276777Z 2025-03-14T04:55:43.6277122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6279005Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6280663Z 2025-03-14T04:55:43.6281030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6281651Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:55:43.6281938Z 2025-03-14T04:55:43.6282319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6282815Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:55:43.6283089Z 2025-03-14T04:55:43.6283427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6284158Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6284697Z 2025-03-14T04:55:43.6285047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6286892Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6288504Z 2025-03-14T04:55:43.6288877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6289365Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:55:43.6289631Z 2025-03-14T04:55:43.6289970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6290706Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6291250Z 2025-03-14T04:55:43.6291601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6293523Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6295195Z 2025-03-14T04:55:43.6295569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6296054Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:55:43.6296322Z 2025-03-14T04:55:43.6296665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6297406Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6297961Z 2025-03-14T04:55:43.6298311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6300144Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6301762Z 2025-03-14T04:55:43.6302127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6302618Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:55:43.6302898Z 2025-03-14T04:55:43.6303267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6303753Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:55:43.6304028Z 2025-03-14T04:55:43.6304417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6305153Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6305752Z 2025-03-14T04:55:43.6306196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6308142Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6309824Z 2025-03-14T04:55:43.6310197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6310682Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:55:43.6310946Z 2025-03-14T04:55:43.6311283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6312017Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6312560Z 2025-03-14T04:55:43.6312912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6314739Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6316370Z 2025-03-14T04:55:43.6316742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6317220Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:55:43.6317488Z 2025-03-14T04:55:43.6317824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6318556Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6319102Z 2025-03-14T04:55:43.6319451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6321324Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6322978Z 2025-03-14T04:55:43.6323339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6323823Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:55:43.6324095Z 2025-03-14T04:55:43.6324461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6324954Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:55:43.6325217Z 2025-03-14T04:55:43.6325555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6326274Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6326808Z 2025-03-14T04:55:43.6327152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6328988Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6330589Z 2025-03-14T04:55:43.6330960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6331429Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:55:43.6331687Z 2025-03-14T04:55:43.6332020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6332746Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6333278Z 2025-03-14T04:55:43.6333663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6335506Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6337132Z 2025-03-14T04:55:43.6337504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6337979Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:55:43.6338234Z 2025-03-14T04:55:43.6338568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6339289Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6339826Z 2025-03-14T04:55:43.6340171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6341992Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6343593Z 2025-03-14T04:55:43.6343940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6344783Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.6345375Z 2025-03-14T04:55:43.6345725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6347746Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6349508Z 2025-03-14T04:55:43.6349901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6350401Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:55:43.6350676Z 2025-03-14T04:55:43.6351070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6351580Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:55:43.6351853Z 2025-03-14T04:55:43.6352205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6352973Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6353531Z 2025-03-14T04:55:43.6353904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6355749Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6357369Z 2025-03-14T04:55:43.6357736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6358217Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:55:43.6358471Z 2025-03-14T04:55:43.6358803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6359542Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6360085Z 2025-03-14T04:55:43.6360436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6362297Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6363934Z 2025-03-14T04:55:43.6364309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6364790Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:55:43.6365048Z 2025-03-14T04:55:43.6365391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6366125Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6366673Z 2025-03-14T04:55:43.6367026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6368852Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6370473Z 2025-03-14T04:55:43.6370845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6371334Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:55:43.6371601Z 2025-03-14T04:55:43.6371975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6372461Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:55:43.6372723Z 2025-03-14T04:55:43.6373060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6373783Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6374316Z 2025-03-14T04:55:43.6374665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6376509Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6378147Z 2025-03-14T04:55:43.6378524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6379008Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:55:43.6379271Z 2025-03-14T04:55:43.6379613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6380357Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6380910Z 2025-03-14T04:55:43.6381266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6383325Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6385121Z 2025-03-14T04:55:43.6385544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6386101Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:55:43.6386365Z 2025-03-14T04:55:43.6386735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6387566Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6388150Z 2025-03-14T04:55:43.6388509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6390543Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6392272Z 2025-03-14T04:55:43.6392657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6393172Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:55:43.6393465Z 2025-03-14T04:55:43.6393859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6394380Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:55:43.6394659Z 2025-03-14T04:55:43.6395013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6395824Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6396385Z 2025-03-14T04:55:43.6396752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6398714Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6400341Z 2025-03-14T04:55:43.6400720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6401194Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:55:43.6401451Z 2025-03-14T04:55:43.6401789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6402520Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6403084Z 2025-03-14T04:55:43.6403449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6405426Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6407188Z 2025-03-14T04:55:43.6407582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6408101Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:55:43.6408378Z 2025-03-14T04:55:43.6408719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6409450Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6409988Z 2025-03-14T04:55:43.6410339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6412206Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6413916Z 2025-03-14T04:55:43.6414309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6414819Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:55:43.6415098Z 2025-03-14T04:55:43.6415488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6415985Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:55:43.6416264Z 2025-03-14T04:55:43.6416620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6417376Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6417934Z 2025-03-14T04:55:43.6418346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6420304Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6422051Z 2025-03-14T04:55:43.6422446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6422946Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:55:43.6423216Z 2025-03-14T04:55:43.6423568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6424426Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6425028Z 2025-03-14T04:55:43.6425427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6427395Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6429026Z 2025-03-14T04:55:43.6429399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6429877Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:55:43.6430132Z 2025-03-14T04:55:43.6430468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6431198Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6431735Z 2025-03-14T04:55:43.6432084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6433940Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6435577Z 2025-03-14T04:55:43.6435947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6436431Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:55:43.6436694Z 2025-03-14T04:55:43.6437059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6437545Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:55:43.6437807Z 2025-03-14T04:55:43.6438146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6438867Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6439397Z 2025-03-14T04:55:43.6439749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6441594Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6443215Z 2025-03-14T04:55:43.6443590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6444068Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:55:43.6444331Z 2025-03-14T04:55:43.6444668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6445401Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6445940Z 2025-03-14T04:55:43.6446328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6448158Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6449792Z 2025-03-14T04:55:43.6450166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6450640Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:55:43.6450901Z 2025-03-14T04:55:43.6451235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6451959Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6452496Z 2025-03-14T04:55:43.6452844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6454668Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6456270Z 2025-03-14T04:55:43.6456636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6457113Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:55:43.6457378Z 2025-03-14T04:55:43.6457746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6458226Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:55:43.6458486Z 2025-03-14T04:55:43.6458819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6459566Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6460100Z 2025-03-14T04:55:43.6460453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6462285Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6464029Z 2025-03-14T04:55:43.6464487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6465003Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:55:43.6465286Z 2025-03-14T04:55:43.6465623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6466389Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6466964Z 2025-03-14T04:55:43.6467337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6469323Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6471055Z 2025-03-14T04:55:43.6471448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6471952Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:55:43.6472225Z 2025-03-14T04:55:43.6472580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6473360Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6473921Z 2025-03-14T04:55:43.6474311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6476152Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6477789Z 2025-03-14T04:55:43.6478169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6478648Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:55:43.6478918Z 2025-03-14T04:55:43.6479291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6479771Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:55:43.6480033Z 2025-03-14T04:55:43.6480371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6481102Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6481854Z 2025-03-14T04:55:43.6482211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6484042Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6485657Z 2025-03-14T04:55:43.6486019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6486507Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:55:43.6486759Z 2025-03-14T04:55:43.6487099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6487899Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6488449Z 2025-03-14T04:55:43.6488798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6490663Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6492282Z 2025-03-14T04:55:43.6492683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6493162Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:55:43.6493419Z 2025-03-14T04:55:43.6493752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6494479Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6495005Z 2025-03-14T04:55:43.6495346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6497092Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6498668Z 2025-03-14T04:55:43.6499031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6499507Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:55:43.6499773Z 2025-03-14T04:55:43.6500141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6500623Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:55:43.6500885Z 2025-03-14T04:55:43.6501221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6501984Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6502521Z 2025-03-14T04:55:43.6502901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6504800Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6506485Z 2025-03-14T04:55:43.6506880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6507404Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:55:43.6507682Z 2025-03-14T04:55:43.6508038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6508773Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6509332Z 2025-03-14T04:55:43.6509704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6511663Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6511740Z 2025-03-14T04:55:43.6512039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6512199Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:55:43.6512266Z 2025-03-14T04:55:43.6512539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6513034Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6513112Z 2025-03-14T04:55:43.6513391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6515026Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6515104Z 2025-03-14T04:55:43.6515398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6515567Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:55:43.6515639Z 2025-03-14T04:55:43.6515941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6516089Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:55:43.6516165Z 2025-03-14T04:55:43.6516430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6516874Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6516942Z 2025-03-14T04:55:43.6517215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6518729Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6518796Z 2025-03-14T04:55:43.6519087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6519225Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:55:43.6519299Z 2025-03-14T04:55:43.6519545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6520003Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6520070Z 2025-03-14T04:55:43.6520414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6521942Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6522011Z 2025-03-14T04:55:43.6522302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6522439Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:55:43.6522509Z 2025-03-14T04:55:43.6522756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6523184Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6523249Z 2025-03-14T04:55:43.6523523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6525028Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6525096Z 2025-03-14T04:55:43.6525388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6525540Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:55:43.6525614Z 2025-03-14T04:55:43.6525894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6526044Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:55:43.6526108Z 2025-03-14T04:55:43.6526395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6526817Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6526921Z 2025-03-14T04:55:43.6527182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6528718Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6528798Z 2025-03-14T04:55:43.6529081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6529226Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:55:43.6529293Z 2025-03-14T04:55:43.6529549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6529967Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6530045Z 2025-03-14T04:55:43.6530305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6531823Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6531901Z 2025-03-14T04:55:43.6532183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6532329Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:55:43.6532394Z 2025-03-14T04:55:43.6532651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6533104Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6533208Z 2025-03-14T04:55:43.6533478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6535015Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6535092Z 2025-03-14T04:55:43.6535372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6535527Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:55:43.6535593Z 2025-03-14T04:55:43.6535885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6536028Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:55:43.6536103Z 2025-03-14T04:55:43.6536352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6536772Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6536847Z 2025-03-14T04:55:43.6537113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6538635Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6538703Z 2025-03-14T04:55:43.6538993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6539135Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:55:43.6539240Z 2025-03-14T04:55:43.6539499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6539928Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6540029Z 2025-03-14T04:55:43.6540292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6541804Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6541883Z 2025-03-14T04:55:43.6542164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6542306Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:55:43.6542371Z 2025-03-14T04:55:43.6542629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6543051Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6543126Z 2025-03-14T04:55:43.6543387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6545047Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6545130Z 2025-03-14T04:55:43.6545427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6545589Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:55:43.6545659Z 2025-03-14T04:55:43.6545995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6546139Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:55:43.6546213Z 2025-03-14T04:55:43.6546474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6546946Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6547016Z 2025-03-14T04:55:43.6547301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6548917Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6548998Z 2025-03-14T04:55:43.6549303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6549447Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:55:43.6549521Z 2025-03-14T04:55:43.6549785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6550231Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6550300Z 2025-03-14T04:55:43.6550580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6552179Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6552261Z 2025-03-14T04:55:43.6552564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6552741Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:55:43.6552819Z 2025-03-14T04:55:43.6553078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6553527Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6553631Z 2025-03-14T04:55:43.6553916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6555526Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6555597Z 2025-03-14T04:55:43.6555900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6556058Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:55:43.6556137Z 2025-03-14T04:55:43.6556436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6556594Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:55:43.6556664Z 2025-03-14T04:55:43.6556933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6557373Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6557451Z 2025-03-14T04:55:43.6557731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6559355Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6559433Z 2025-03-14T04:55:43.6559749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6559895Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:55:43.6559962Z 2025-03-14T04:55:43.6560256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6560675Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6560749Z 2025-03-14T04:55:43.6561011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6562534Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6562612Z 2025-03-14T04:55:43.6562902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6563048Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:55:43.6563112Z 2025-03-14T04:55:43.6563369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6563795Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6563872Z 2025-03-14T04:55:43.6564134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6565667Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6565744Z 2025-03-14T04:55:43.6566021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6566204Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:55:43.6566270Z 2025-03-14T04:55:43.6566564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6567354Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:55:43.6567430Z 2025-03-14T04:55:43.6567685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6568115Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6568180Z 2025-03-14T04:55:43.6568456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6570011Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6570081Z 2025-03-14T04:55:43.6570387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6570518Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:55:43.6570591Z 2025-03-14T04:55:43.6570846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6571269Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6571345Z 2025-03-14T04:55:43.6571615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6573138Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6573205Z 2025-03-14T04:55:43.6573535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6573670Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:55:43.6573769Z 2025-03-14T04:55:43.6574017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6574442Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6574515Z 2025-03-14T04:55:43.6574778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6576299Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6576367Z 2025-03-14T04:55:43.6576657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6576804Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:55:43.6576877Z 2025-03-14T04:55:43.6577159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6577305Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:55:43.6577377Z 2025-03-14T04:55:43.6577626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6578048Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6578111Z 2025-03-14T04:55:43.6578379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6579924Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6579997Z 2025-03-14T04:55:43.6580288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6580452Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:55:43.6580522Z 2025-03-14T04:55:43.6580769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6581195Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6581259Z 2025-03-14T04:55:43.6581647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6583223Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6583305Z 2025-03-14T04:55:43.6583615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6583764Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:55:43.6583838Z 2025-03-14T04:55:43.6584123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6584577Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6584647Z 2025-03-14T04:55:43.6584936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6586635Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6586721Z 2025-03-14T04:55:43.6587023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6587179Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:55:43.6587317Z 2025-03-14T04:55:43.6587616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6587774Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:55:43.6587845Z 2025-03-14T04:55:43.6588121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6588564Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6588646Z 2025-03-14T04:55:43.6588930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6590551Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6590634Z 2025-03-14T04:55:43.6590934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6591087Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:55:43.6591160Z 2025-03-14T04:55:43.6591434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6591876Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6591957Z 2025-03-14T04:55:43.6592236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6593870Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6593949Z 2025-03-14T04:55:43.6594278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6594427Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:55:43.6594495Z 2025-03-14T04:55:43.6594777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6595227Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6595304Z 2025-03-14T04:55:43.6595579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6597216Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6597289Z 2025-03-14T04:55:43.6597565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6597726Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:55:43.6597795Z 2025-03-14T04:55:43.6598097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6598242Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:55:43.6598320Z 2025-03-14T04:55:43.6598585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6599285Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6599375Z 2025-03-14T04:55:43.6599661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6601446Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6601544Z 2025-03-14T04:55:43.6601852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6602026Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:55:43.6602129Z 2025-03-14T04:55:43.6602405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6602947Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6603021Z 2025-03-14T04:55:43.6603306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6605007Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6605078Z 2025-03-14T04:55:43.6605385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6605537Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:55:43.6605612Z 2025-03-14T04:55:43.6605861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6606300Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6606366Z 2025-03-14T04:55:43.6606634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6608382Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6608485Z 2025-03-14T04:55:43.6608799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6609032Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:55:43.6609109Z 2025-03-14T04:55:43.6609409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6609564Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:55:43.6609633Z 2025-03-14T04:55:43.6609903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6610356Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6610428Z 2025-03-14T04:55:43.6610714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6612324Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6612402Z 2025-03-14T04:55:43.6612702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6612859Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:55:43.6612927Z 2025-03-14T04:55:43.6613202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6613659Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6613732Z 2025-03-14T04:55:43.6614019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6615658Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6615768Z 2025-03-14T04:55:43.6616170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6616328Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:55:43.6616406Z 2025-03-14T04:55:43.6616734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6617282Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6617356Z 2025-03-14T04:55:43.6617639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6619295Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6619385Z 2025-03-14T04:55:43.6619703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6619875Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:55:43.6619954Z 2025-03-14T04:55:43.6620269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6620442Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:55:43.6620514Z 2025-03-14T04:55:43.6620796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6621269Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6621351Z 2025-03-14T04:55:43.6621643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6623696Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6623849Z 2025-03-14T04:55:43.6624286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6624464Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:55:43.6624559Z 2025-03-14T04:55:43.6624928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6625435Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6625555Z 2025-03-14T04:55:43.6625854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6627681Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6627763Z 2025-03-14T04:55:43.6628065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6628222Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:55:43.6628296Z 2025-03-14T04:55:43.6628582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6629056Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6629134Z 2025-03-14T04:55:43.6629409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6631225Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6631340Z 2025-03-14T04:55:43.6631753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6631947Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:55:43.6632023Z 2025-03-14T04:55:43.6632403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6632604Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:55:43.6632697Z 2025-03-14T04:55:43.6632984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6633577Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6633659Z 2025-03-14T04:55:43.6633954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6635741Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6635846Z 2025-03-14T04:55:43.6636199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6636358Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:55:43.6636450Z 2025-03-14T04:55:43.6636833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6637334Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6637413Z 2025-03-14T04:55:43.6637698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6639393Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6639495Z 2025-03-14T04:55:43.6639816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6639975Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:55:43.6640049Z 2025-03-14T04:55:43.6640335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6640812Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6640891Z 2025-03-14T04:55:43.6641196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6642847Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6642928Z 2025-03-14T04:55:43.6643232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6643413Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:55:43.6643484Z 2025-03-14T04:55:43.6643801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6643961Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:55:43.6644037Z 2025-03-14T04:55:43.6644312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6644774Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6644844Z 2025-03-14T04:55:43.6645177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6646784Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6646893Z 2025-03-14T04:55:43.6647197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6647340Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:55:43.6647417Z 2025-03-14T04:55:43.6647678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6648130Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6648199Z 2025-03-14T04:55:43.6648484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6650072Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6650150Z 2025-03-14T04:55:43.6650455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6650596Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:55:43.6650674Z 2025-03-14T04:55:43.6650935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6651389Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6651457Z 2025-03-14T04:55:43.6651739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6653362Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6653470Z 2025-03-14T04:55:43.6653776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6653942Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:55:43.6654019Z 2025-03-14T04:55:43.6654320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6654483Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:55:43.6654552Z 2025-03-14T04:55:43.6654826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6655270Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6655347Z 2025-03-14T04:55:43.6655626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6657256Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6657332Z 2025-03-14T04:55:43.6657633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6657787Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:55:43.6657856Z 2025-03-14T04:55:43.6658126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6658576Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6658707Z 2025-03-14T04:55:43.6658996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6660695Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6660811Z 2025-03-14T04:55:43.6661127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6661287Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:55:43.6661360Z 2025-03-14T04:55:43.6661642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6662116Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6662195Z 2025-03-14T04:55:43.6662489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6664269Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6664362Z 2025-03-14T04:55:43.6664671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6664855Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:55:43.6664932Z 2025-03-14T04:55:43.6665264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6665427Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:55:43.6665512Z 2025-03-14T04:55:43.6665797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6666326Z x_190: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6666402Z 2025-03-14T04:55:43.6666707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6668468Z x_191: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6668543Z 2025-03-14T04:55:43.6668868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6669020Z out_120: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:55:43.6669102Z 2025-03-14T04:55:43.6669379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6669866Z x_192: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_120 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6669938Z 2025-03-14T04:55:43.6670239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6671958Z x_193: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6672032Z 2025-03-14T04:55:43.6672358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6672510Z out_121: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:55:43.6672591Z 2025-03-14T04:55:43.6672880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6673375Z x_194: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6673452Z 2025-03-14T04:55:43.6673726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6675329Z x_195: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6675429Z 2025-03-14T04:55:43.6675701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6676160Z x_196: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.6676236Z 2025-03-14T04:55:43.6676515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6678154Z x_197: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6678235Z 2025-03-14T04:55:43.6678524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6678691Z x_195 += x_197; out_122: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:55:43.6678759Z 2025-03-14T04:55:43.6679061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6679227Z out_123: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:55:43.6679294Z 2025-03-14T04:55:43.6679563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6679992Z x_198: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6680066Z 2025-03-14T04:55:43.6680373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6682114Z x_199: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6682276Z 2025-03-14T04:55:43.6682584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6682740Z out_124: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:55:43.6682817Z 2025-03-14T04:55:43.6683112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6683582Z x_200: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_124 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6683661Z 2025-03-14T04:55:43.6683948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6685548Z x_201: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6685629Z 2025-03-14T04:55:43.6685938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6686089Z out_125: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:55:43.6686162Z 2025-03-14T04:55:43.6686439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6686885Z x_202: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6686962Z 2025-03-14T04:55:43.6687242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6688896Z x_203: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6689004Z 2025-03-14T04:55:43.6689305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6689485Z x_203 += out_123; out_126: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:55:43.6689554Z 2025-03-14T04:55:43.6689861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6690021Z out_127: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:55:43.6690098Z 2025-03-14T04:55:43.6690360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6690810Z x_204: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.6690880Z 2025-03-14T04:55:43.6691166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6692803Z x_205: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6692880Z 2025-03-14T04:55:43.6693186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6693334Z out_128: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:55:43.6693425Z 2025-03-14T04:55:43.6693688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6694145Z x_206: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_128 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.6694246Z 2025-03-14T04:55:43.6694533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6696095Z x_207: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6696214Z 2025-03-14T04:55:43.6696523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6696668Z out_129: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:55:43.6696743Z 2025-03-14T04:55:43.6697014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6697442Z x_208: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.6697506Z 2025-03-14T04:55:43.6697779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.6699291Z x_209: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.6699360Z 2025-03-14T04:55:43.6699645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.6699804Z x_209 += out_127; out_130: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:55:43.6699881Z 2025-03-14T04:55:43.6700159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.6700314Z out_131: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:55:43.6700379Z 2025-03-14T04:55:43.6700820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:43.6701007Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:55:43.6701088Z 2025-03-14T04:55:43.6701387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.6701565Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:55:43.6701632Z 2025-03-14T04:55:43.6702071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:43.6702225Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:55:43.6702298Z 2025-03-14T04:55:43.6702593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.6702748Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:55:43.6702817Z 2025-03-14T04:55:43.6703217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:43.6703410Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:55:43.6703522Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:55:43.6703650Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:55:43.6703727Z 2025-03-14T04:55:43.6704071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:43.6704285Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:55:43.6704362Z 2025-03-14T04:55:43.6704736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:43.6704883Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:55:43.6704957Z 2025-03-14T04:55:43.6705403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:43.6705658Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:55:43.6705740Z 2025-03-14T04:55:43.6706205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:43.6706362Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:55:43.6706819Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:55:43.6706955Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:55:43.6707074Z x_210: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:55:43.6707147Z 2025-03-14T04:55:43.6707446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:43.6707580Z tensor: "f32[82125, 4][4, 1]cpu" = x_210.to(torch.float32); x_210 = None 2025-03-14T04:55:43.6707679Z 2025-03-14T04:55:43.6707944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.6708720Z x_211: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_131, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_131 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:55:43.6708895Z 2025-03-14T04:55:43.6709175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:43.6709378Z x_212: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_211, inplace = False); x_211 = None 2025-03-14T04:55:43.6709443Z 2025-03-14T04:55:43.6709833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:43.6710706Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:55:43.6710772Z 2025-03-14T04:55:43.6711142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:43.6711950Z x_213: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_212 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:55:43.6712026Z 2025-03-14T04:55:43.6712365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:55:43.6712525Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:55:43.6712680Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:55:43.6712746Z 2025-03-14T04:55:43.6713167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:55:43.6713330Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_213.view(4, -1, 4, 73, 75); x_213 = None 2025-03-14T04:55:43.6713510Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:55:43.6713687Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:55:43.6713761Z 2025-03-14T04:55:43.6714187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:43.6714400Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:55:43.6714468Z 2025-03-14T04:55:43.6714904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:43.6715082Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:55:43.6715237Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:55:43.6715376Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:55:43.6715450Z 2025-03-14T04:55:43.6715823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:43.6716004Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:55:43.6716069Z 2025-03-14T04:55:43.6716389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:43.6716531Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:55:43.6716608Z 2025-03-14T04:55:43.6716936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:43.6717080Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:43.6717213Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:43.6717376Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:55:43.6717445Z 2025-03-14T04:55:43.6717785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:43.6717917Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:43.6718051Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:43.6718205Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:55:43.6718284Z 2025-03-14T04:55:43.6718608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:43.6718746Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:43.6718842Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:55:43.6718983Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:55:43.6719052Z 2025-03-14T04:55:43.6719386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:43.6719540Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:43.6719653Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:55:43.6719782Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:55:43.6719856Z 2025-03-14T04:55:43.6720220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:43.6720426Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:43.6720554Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:55:43.6720621Z 2025-03-14T04:55:43.6720933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:43.6721124Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:43.6721247Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:55:43.6721315Z 2025-03-14T04:55:43.6721631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:43.6724582Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:43.6724719Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:55:43.6724787Z 2025-03-14T04:55:43.6725118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:43.6725312Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:43.6725435Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:55:43.6725504Z 2025-03-14T04:55:43.6725858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:43.6726002Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:43.6726109Z 2025-03-14T04:55:43.6726465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:43.6726605Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:43.6726681Z 2025-03-14T04:55:43.6727036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:43.6727190Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:43.6727318Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:55:43.6727484Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:43.6727628Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:55:43.6727704Z 2025-03-14T04:55:43.6728065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:43.6728214Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:43.6728340Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:55:43.6728501Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:43.6728648Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:55:43.6728717Z 2025-03-14T04:55:43.6729063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:43.6729186Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:43.6729405Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:43.6729546Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:55:43.6729620Z 2025-03-14T04:55:43.6729980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:43.6730110Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:43.6730279Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:43.6730420Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:55:43.6730547Z 2025-03-14T04:55:43.6730883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:43.6730987Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:43.6731120Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:43.6731191Z 2025-03-14T04:55:43.6731522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:43.6731623Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:43.6731749Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:43.6731819Z 2025-03-14T04:55:43.6732144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:43.6732267Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:43.6732411Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:43.6732481Z 2025-03-14T04:55:43.6732803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:43.6732922Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:43.6733058Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:43.6733128Z 2025-03-14T04:55:43.6733494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:43.6733684Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:43.6733761Z 2025-03-14T04:55:43.6734107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:43.6734284Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:55:43.6734355Z 2025-03-14T04:55:43.6734759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:43.6734942Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:55:43.6735022Z 2025-03-14T04:55:43.6735519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:55:43.6735703Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:55:43.6735773Z 2025-03-14T04:55:43.6736092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.6736249Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:55:43.6736326Z 2025-03-14T04:55:43.6736757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:43.6736882Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:55:43.6736988Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:55:43.6737173Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:55:43.6737241Z 2025-03-14T04:55:43.6737716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:43.6737894Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:55:43.6738134Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:55:43.6738213Z 2025-03-14T04:55:43.6738673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:43.6738853Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:43.6738924Z 2025-03-14T04:55:43.6739233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.6739390Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:55:43.6739464Z 2025-03-14T04:55:43.6739852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:55:43.6740009Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:55:43.6740076Z 2025-03-14T04:55:43.6740387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:43.6740535Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:55:43.6740609Z 2025-03-14T04:55:43.6740991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:55:43.6741141Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:55:43.6741207Z 2025-03-14T04:55:43.6741702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:55:43.6741846Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:55:43.6741976Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:43.6742165Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:55:43.6742309Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:55:43.6742376Z 2025-03-14T04:55:43.6742761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:55:43.6742898Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:55:43.6742974Z 2025-03-14T04:55:43.6743531Z 2025-03-14T04:55:43.6743630Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:43.6845990Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:55:43.6846857Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:55:43.6847216Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6847590Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6847968Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6848367Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6848734Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6849100Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6849490Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6849937Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6850335Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6850751Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6851098Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6851548Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6852032Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6852413Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6852832Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6853148Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6853549Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6853985Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6854375Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6854756Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6855135Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.6855571Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6855999Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6856419Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6856812Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6857139Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6857550Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6857976Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6858371Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6858768Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6859128Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6859583Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6860007Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6860397Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6860801Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6861156Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6861595Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6862007Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6862384Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6862733Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6863053Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6863441Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6863816Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6864311Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6864726Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6865108Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6865529Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6865917Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6866290Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6866647Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6866984Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6867410Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6867794Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6868170Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6868528Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6868856Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6869260Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6869643Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6870011Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6870378Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6870709Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6871100Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6871472Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6871839Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6872197Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6872524Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6872918Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6873289Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6873652Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6873998Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6874383Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.6874779Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6875175Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6875566Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6875934Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6876277Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6876653Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6877041Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6877396Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6877748Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6878070Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6878453Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6878827Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6879190Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6879544Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6879863Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6880250Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6880627Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6880992Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6881343Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6881908Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6882284Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6882687Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6883039Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6883393Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6883697Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6884052Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6884406Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6884736Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6885074Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6885371Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6885734Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6886088Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6886417Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6886775Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6887076Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6887426Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6887782Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6888114Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6888483Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6888773Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6889140Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6889483Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6889815Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6890164Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6890459Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6890822Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6891173Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6891515Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6891843Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6892146Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6892501Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6892858Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6893197Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6893525Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6893828Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6894181Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6894548Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6894869Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6895229Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6895515Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6895875Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6896213Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6896552Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6896867Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6897165Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.6897524Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6897872Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6898215Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6898541Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6898832Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6899178Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6899513Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6899839Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6900147Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6900436Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6900771Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6901112Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6901472Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6901790Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6902096Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6902436Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6902792Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6903153Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6903486Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6903786Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6904243Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6904620Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6904970Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6905320Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6905640Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6906050Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6906443Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6906826Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6907163Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6907477Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6907842Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6908249Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6908595Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6908954Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6909278Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6909650Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6910025Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6910363Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6910701Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6911002Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6911365Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6911730Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6912063Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6912408Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6912707Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6913079Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6913444Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6913787Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6914116Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6914423Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6914796Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6915190Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6915534Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6915875Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6916179Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6916550Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6916931Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6917275Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6917616Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6917927Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6918304Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6918667Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6919007Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6919350Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6919655Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6920032Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6920392Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6920744Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6921081Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6921382Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6921788Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6922144Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6922512Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6922836Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6923149Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6923503Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6923848Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6924175Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6924486Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6924774Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6925115Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6925455Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6925777Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6926098Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6926385Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6926736Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6927077Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6927400Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6927720Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6928002Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6928381Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6928720Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6929064Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6929378Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6929668Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6930035Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6930372Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6930701Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6931014Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6931312Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6931656Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6932001Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6932320Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6932640Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6932938Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6933280Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6933630Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6933952Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6934275Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6934606Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6934954Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6935310Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6935642Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6935965Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6936268Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6936612Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6936947Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6937275Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6937587Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6937882Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6938218Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6938556Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6938883Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6939194Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6939486Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6939824Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6940163Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6940478Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6940791Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6941108Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6941456Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6941818Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6942141Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6942479Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6942765Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6943117Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6943457Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6943787Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6944160Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6944502Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6944897Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6945289Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6945662Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6945999Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6946316Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6946700Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6947096Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6947453Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6947854Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6948189Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6948586Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6948982Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6949353Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6949727Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6950050Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6950444Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6950815Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6951193Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6951553Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6951870Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6952265Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6952645Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6953012Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6953361Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6953687Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6954070Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6954461Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6954867Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6955222Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6955565Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6955953Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6956299Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6956659Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6956976Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6957264Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6957608Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6957949Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6958275Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6958593Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6958877Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6959221Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6959551Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6959879Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6960186Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6960480Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6960827Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6961216Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6961543Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6961855Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6962164Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6962504Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6962866Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6963188Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6963509Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6963801Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6964141Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6964489Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6964810Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6965129Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6965417Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6965766Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6966104Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6966433Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6966752Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6967037Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6967380Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6967749Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6968080Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6968412Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6968703Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6969042Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6969403Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6969727Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6970036Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6970328Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6970675Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6971013Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6971332Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6971651Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6971933Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6972281Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6972619Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6972938Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6973252Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6973536Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6973914Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6974252Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6974594Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6974906Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6975198Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6975561Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6975896Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6976225Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6976538Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6976833Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6977178Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6977533Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6977861Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6978189Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6978483Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6978828Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6979177Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6979508Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6979829Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6980141Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6980494Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6980859Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6981188Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6981614Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6981956Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6982313Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6982655Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6982985Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6983296Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6983595Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6983983Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6984431Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6984827Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6985243Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6985539Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6985907Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6986318Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6986666Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6987051Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6987365Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6987733Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6988122Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6988476Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6988834Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6989134Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6989511Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6989871Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6990228Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6990571Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6990874Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6991242Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6991606Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6991962Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6992295Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6992604Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6992963Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6993326Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6993655Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6993995Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6994290Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6994644Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6994989Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6995309Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6995648Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6995939Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.6996293Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6996642Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6996971Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6997291Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6997587Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.6997981Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6998339Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.6998701Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.6999012Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.6999308Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.6999658Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.6999998Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7000357Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7000670Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7000982Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7001320Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7001673Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7002009Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7002326Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7002619Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7002960Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7003305Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7003629Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7003945Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7004232Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7004579Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7004917Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7005245Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7005559Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7005847Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7006193Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7006576Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7006905Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7007235Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7007534Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7007873Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7008233Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7008560Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7008873Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7009167Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7009503Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7009850Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7010168Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7010489Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7010775Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7011120Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7011465Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7011782Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7012102Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7012398Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7012755Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7013118Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7013447Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7013775Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7014066Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7014412Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7014765Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7015094Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7015404Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7015714Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.7016074Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7016428Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7016763Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7017093Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7017382Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7017724Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7018066Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7018387Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7018706Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7018989Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7019361Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7019699Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7020038Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7020357Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7020644Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7021007Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7021344Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7021670Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7021977Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7022271Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7022609Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7022951Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7023277Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7023587Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7023876Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7024270Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7024630Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7024970Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7025320Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7025677Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7026057Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7026429Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7026763Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7027083Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7027451Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:55:43.7027807Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:55:43.7028166Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:55:43.7028599Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:55:43.7029006Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:55:43.7029411Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:55:43.7029808Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:55:43.7029892Z 2025-03-14T04:55:43.7030237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7030774Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7030859Z 2025-03-14T04:55:43.7031192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7032840Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7032935Z 2025-03-14T04:55:43.7033266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:55:43.7033421Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:55:43.7033491Z 2025-03-14T04:55:43.7033865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:55:43.7034119Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:55:43.7034195Z 2025-03-14T04:55:43.7034453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7034895Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7034964Z 2025-03-14T04:55:43.7035241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7036772Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7036840Z 2025-03-14T04:55:43.7037136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7037279Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:55:43.7037351Z 2025-03-14T04:55:43.7037604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7038035Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7038102Z 2025-03-14T04:55:43.7038375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7039926Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7039997Z 2025-03-14T04:55:43.7040290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7040447Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:55:43.7040521Z 2025-03-14T04:55:43.7040770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7041207Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7041288Z 2025-03-14T04:55:43.7041566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7043080Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7043150Z 2025-03-14T04:55:43.7043409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7043844Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.7043921Z 2025-03-14T04:55:43.7044184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7045744Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7045820Z 2025-03-14T04:55:43.7046099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7046255Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:55:43.7046349Z 2025-03-14T04:55:43.7046643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7046798Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:55:43.7046886Z 2025-03-14T04:55:43.7047139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7047572Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7047653Z 2025-03-14T04:55:43.7047926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7049441Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7049511Z 2025-03-14T04:55:43.7049809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7049952Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:55:43.7050026Z 2025-03-14T04:55:43.7050275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7050706Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7050771Z 2025-03-14T04:55:43.7051046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7052568Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7052637Z 2025-03-14T04:55:43.7052959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7053102Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:55:43.7053176Z 2025-03-14T04:55:43.7053426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7053881Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7053947Z 2025-03-14T04:55:43.7054219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7055758Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7055827Z 2025-03-14T04:55:43.7056114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7056272Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:55:43.7056349Z 2025-03-14T04:55:43.7056630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7056789Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:55:43.7056857Z 2025-03-14T04:55:43.7057114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7057536Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7057610Z 2025-03-14T04:55:43.7057881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7059473Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7059557Z 2025-03-14T04:55:43.7059857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7060014Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:55:43.7060098Z 2025-03-14T04:55:43.7060372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7060845Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7060944Z 2025-03-14T04:55:43.7061237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7062854Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7062933Z 2025-03-14T04:55:43.7063239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7063396Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:55:43.7063465Z 2025-03-14T04:55:43.7063742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7064263Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7064339Z 2025-03-14T04:55:43.7064629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7066288Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7066374Z 2025-03-14T04:55:43.7066747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7066923Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:55:43.7066998Z 2025-03-14T04:55:43.7067302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7067489Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:55:43.7067558Z 2025-03-14T04:55:43.7067827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7068284Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7068378Z 2025-03-14T04:55:43.7068659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7070275Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7070357Z 2025-03-14T04:55:43.7070656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7070819Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:55:43.7070890Z 2025-03-14T04:55:43.7071162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7071617Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7071698Z 2025-03-14T04:55:43.7071980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7073597Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7073676Z 2025-03-14T04:55:43.7073966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7074133Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:55:43.7074200Z 2025-03-14T04:55:43.7074463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7074894Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7074982Z 2025-03-14T04:55:43.7075247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7076757Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7076837Z 2025-03-14T04:55:43.7077085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7077530Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.7077600Z 2025-03-14T04:55:43.7077865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7079407Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7079483Z 2025-03-14T04:55:43.7079767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7079917Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:55:43.7079989Z 2025-03-14T04:55:43.7080300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7080465Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:55:43.7080555Z 2025-03-14T04:55:43.7080815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7081232Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7081308Z 2025-03-14T04:55:43.7081716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7083261Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7083337Z 2025-03-14T04:55:43.7083628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7083784Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:55:43.7083853Z 2025-03-14T04:55:43.7084111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7084539Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7084615Z 2025-03-14T04:55:43.7084880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7086429Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7086505Z 2025-03-14T04:55:43.7086790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7087011Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:55:43.7087079Z 2025-03-14T04:55:43.7087338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7087794Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7087868Z 2025-03-14T04:55:43.7088130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7089702Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7089780Z 2025-03-14T04:55:43.7090074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7090244Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:55:43.7090310Z 2025-03-14T04:55:43.7090602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7090756Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:55:43.7090828Z 2025-03-14T04:55:43.7091080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7091510Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7091578Z 2025-03-14T04:55:43.7091856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7093401Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7093500Z 2025-03-14T04:55:43.7093799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7093949Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:55:43.7094043Z 2025-03-14T04:55:43.7094302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7094748Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7094830Z 2025-03-14T04:55:43.7095108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7096655Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7096726Z 2025-03-14T04:55:43.7097026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7097170Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:55:43.7097246Z 2025-03-14T04:55:43.7097503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7097947Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7098015Z 2025-03-14T04:55:43.7098290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7099847Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7099917Z 2025-03-14T04:55:43.7100289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7100453Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:55:43.7100529Z 2025-03-14T04:55:43.7100819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7101000Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:55:43.7101067Z 2025-03-14T04:55:43.7101336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7101778Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7101867Z 2025-03-14T04:55:43.7102147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7103717Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7103800Z 2025-03-14T04:55:43.7104151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7104326Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:55:43.7104394Z 2025-03-14T04:55:43.7104658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7105104Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7105173Z 2025-03-14T04:55:43.7105466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7107188Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7107275Z 2025-03-14T04:55:43.7107599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7107767Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:55:43.7107864Z 2025-03-14T04:55:43.7108143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7108628Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7108717Z 2025-03-14T04:55:43.7109029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7110748Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7110833Z 2025-03-14T04:55:43.7111161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7111336Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:55:43.7111420Z 2025-03-14T04:55:43.7113832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7114427Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:55:43.7114741Z 2025-03-14T04:55:43.7115131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7115934Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7116479Z 2025-03-14T04:55:43.7116848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7118767Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7120519Z 2025-03-14T04:55:43.7120939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7121458Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:55:43.7121738Z 2025-03-14T04:55:43.7122100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7122886Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7123486Z 2025-03-14T04:55:43.7123860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7125817Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7127557Z 2025-03-14T04:55:43.7127949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7128459Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:55:43.7128733Z 2025-03-14T04:55:43.7129157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7129948Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7130528Z 2025-03-14T04:55:43.7130900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7132894Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7134610Z 2025-03-14T04:55:43.7134976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7135764Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.7136378Z 2025-03-14T04:55:43.7136753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7138746Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7140537Z 2025-03-14T04:55:43.7140931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7141447Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:55:43.7141722Z 2025-03-14T04:55:43.7142120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7142634Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:55:43.7142921Z 2025-03-14T04:55:43.7143311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7144195Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7144857Z 2025-03-14T04:55:43.7145265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7147240Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7148864Z 2025-03-14T04:55:43.7149270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7149754Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:55:43.7150014Z 2025-03-14T04:55:43.7150368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7151116Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7151673Z 2025-03-14T04:55:43.7152029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7153904Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7155538Z 2025-03-14T04:55:43.7155915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7156398Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:55:43.7156660Z 2025-03-14T04:55:43.7157005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7157792Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7158345Z 2025-03-14T04:55:43.7158697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7160576Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7162230Z 2025-03-14T04:55:43.7162605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7163120Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:55:43.7163392Z 2025-03-14T04:55:43.7163768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7164283Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:55:43.7164553Z 2025-03-14T04:55:43.7164900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7165636Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7166200Z 2025-03-14T04:55:43.7166556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7168417Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7170096Z 2025-03-14T04:55:43.7170481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7170988Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:55:43.7171263Z 2025-03-14T04:55:43.7171652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7172424Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7172998Z 2025-03-14T04:55:43.7173364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7175248Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7176925Z 2025-03-14T04:55:43.7177344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7177839Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:55:43.7178106Z 2025-03-14T04:55:43.7178475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7179211Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7179763Z 2025-03-14T04:55:43.7180118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7182165Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7183971Z 2025-03-14T04:55:43.7184455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7185011Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:55:43.7185315Z 2025-03-14T04:55:43.7185702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7186195Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:55:43.7186555Z 2025-03-14T04:55:43.7186897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7187629Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7188165Z 2025-03-14T04:55:43.7188523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7190402Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7192032Z 2025-03-14T04:55:43.7192412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7192931Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:55:43.7193192Z 2025-03-14T04:55:43.7193524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7194262Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7194835Z 2025-03-14T04:55:43.7195192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7197034Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7198660Z 2025-03-14T04:55:43.7199030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7199511Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:55:43.7199775Z 2025-03-14T04:55:43.7200139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7200875Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7201419Z 2025-03-14T04:55:43.7201773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7203618Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7205239Z 2025-03-14T04:55:43.7205623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7206108Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:55:43.7206395Z 2025-03-14T04:55:43.7206771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7207261Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:55:43.7207528Z 2025-03-14T04:55:43.7207865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7208597Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7209164Z 2025-03-14T04:55:43.7209517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7211355Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7212971Z 2025-03-14T04:55:43.7213356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7213869Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:55:43.7214161Z 2025-03-14T04:55:43.7214507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7215251Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7215795Z 2025-03-14T04:55:43.7216148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7218041Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7219825Z 2025-03-14T04:55:43.7220198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7220731Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:55:43.7221005Z 2025-03-14T04:55:43.7221366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7222142Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7222728Z 2025-03-14T04:55:43.7223103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7225221Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7226998Z 2025-03-14T04:55:43.7227392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7227901Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:55:43.7228188Z 2025-03-14T04:55:43.7228614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7229128Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:55:43.7229405Z 2025-03-14T04:55:43.7229763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7230520Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7231063Z 2025-03-14T04:55:43.7231413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7233272Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7234911Z 2025-03-14T04:55:43.7235287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7235777Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:55:43.7236044Z 2025-03-14T04:55:43.7236382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7237110Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7237708Z 2025-03-14T04:55:43.7238059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7239879Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7241496Z 2025-03-14T04:55:43.7241871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7242346Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:55:43.7242622Z 2025-03-14T04:55:43.7242953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7243691Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7244232Z 2025-03-14T04:55:43.7244586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7246436Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7248023Z 2025-03-14T04:55:43.7248387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7248884Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:55:43.7249145Z 2025-03-14T04:55:43.7249519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7250004Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:55:43.7250266Z 2025-03-14T04:55:43.7250606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7251352Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7251886Z 2025-03-14T04:55:43.7252244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7254072Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7255694Z 2025-03-14T04:55:43.7256098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7256587Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:55:43.7256847Z 2025-03-14T04:55:43.7257183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7257910Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7258446Z 2025-03-14T04:55:43.7258798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7260633Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7262231Z 2025-03-14T04:55:43.7262632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7263113Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:55:43.7263375Z 2025-03-14T04:55:43.7263718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7264520Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7265099Z 2025-03-14T04:55:43.7265474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7267381Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7269003Z 2025-03-14T04:55:43.7269371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7269860Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:55:43.7270151Z 2025-03-14T04:55:43.7270528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7271015Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:55:43.7271284Z 2025-03-14T04:55:43.7271624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7272353Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7272885Z 2025-03-14T04:55:43.7273235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7275094Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7276735Z 2025-03-14T04:55:43.7277107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7277586Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:55:43.7277844Z 2025-03-14T04:55:43.7278179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7278931Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7279464Z 2025-03-14T04:55:43.7279811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7281749Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7283412Z 2025-03-14T04:55:43.7283865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7284343Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:55:43.7284604Z 2025-03-14T04:55:43.7284943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7285700Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7286279Z 2025-03-14T04:55:43.7286656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7288633Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7290343Z 2025-03-14T04:55:43.7290758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7291267Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:55:43.7291549Z 2025-03-14T04:55:43.7291937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7292476Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:55:43.7292742Z 2025-03-14T04:55:43.7293098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7293837Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7294382Z 2025-03-14T04:55:43.7294728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7296583Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7298231Z 2025-03-14T04:55:43.7298607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7299094Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:55:43.7299362Z 2025-03-14T04:55:43.7299697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7300434Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7300975Z 2025-03-14T04:55:43.7301330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7303182Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7305026Z 2025-03-14T04:55:43.7305447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7305977Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:55:43.7306252Z 2025-03-14T04:55:43.7306606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7307415Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7307992Z 2025-03-14T04:55:43.7308363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7310265Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7311883Z 2025-03-14T04:55:43.7312268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7312761Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:55:43.7313035Z 2025-03-14T04:55:43.7313407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7313899Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:55:43.7314161Z 2025-03-14T04:55:43.7314497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7315227Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7315764Z 2025-03-14T04:55:43.7316116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7317992Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7319621Z 2025-03-14T04:55:43.7319993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7320486Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:55:43.7320742Z 2025-03-14T04:55:43.7321079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7321804Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7322348Z 2025-03-14T04:55:43.7322695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7324541Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7326166Z 2025-03-14T04:55:43.7326539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7327021Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:55:43.7327283Z 2025-03-14T04:55:43.7327626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7328354Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7328899Z 2025-03-14T04:55:43.7329258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7331130Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7332767Z 2025-03-14T04:55:43.7333136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7333625Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:55:43.7333895Z 2025-03-14T04:55:43.7334287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7334770Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:55:43.7335035Z 2025-03-14T04:55:43.7335396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7336126Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7336664Z 2025-03-14T04:55:43.7337016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7338905Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7340547Z 2025-03-14T04:55:43.7340920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7341401Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:55:43.7341662Z 2025-03-14T04:55:43.7341988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7342731Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7343271Z 2025-03-14T04:55:43.7343620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7345667Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7347436Z 2025-03-14T04:55:43.7347836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7348368Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:55:43.7348649Z 2025-03-14T04:55:43.7349006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7349791Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7350375Z 2025-03-14T04:55:43.7350749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7352728Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7354473Z 2025-03-14T04:55:43.7354854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7355375Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:55:43.7355653Z 2025-03-14T04:55:43.7356048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7356552Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:55:43.7356817Z 2025-03-14T04:55:43.7357157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7357890Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7358431Z 2025-03-14T04:55:43.7358792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7360649Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7362306Z 2025-03-14T04:55:43.7362678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7363157Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:55:43.7363416Z 2025-03-14T04:55:43.7363753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7364485Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7365025Z 2025-03-14T04:55:43.7365373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7367240Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7368859Z 2025-03-14T04:55:43.7369235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7369715Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:55:43.7369974Z 2025-03-14T04:55:43.7370313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7371053Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7371594Z 2025-03-14T04:55:43.7371944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7373826Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7375459Z 2025-03-14T04:55:43.7375823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7376335Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:55:43.7376609Z 2025-03-14T04:55:43.7376984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7377471Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:55:43.7377734Z 2025-03-14T04:55:43.7378075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7378799Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7379330Z 2025-03-14T04:55:43.7379683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7381671Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7383399Z 2025-03-14T04:55:43.7383789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7384388Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:55:43.7384672Z 2025-03-14T04:55:43.7385058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7385836Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7386409Z 2025-03-14T04:55:43.7386804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7388721Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7390463Z 2025-03-14T04:55:43.7390859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7391365Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:55:43.7391638Z 2025-03-14T04:55:43.7391991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7392767Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7393341Z 2025-03-14T04:55:43.7393710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7395667Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7397380Z 2025-03-14T04:55:43.7397768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7398280Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:55:43.7398564Z 2025-03-14T04:55:43.7398949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7399462Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:55:43.7399738Z 2025-03-14T04:55:43.7400127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7400871Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7401411Z 2025-03-14T04:55:43.7401763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7403601Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7405266Z 2025-03-14T04:55:43.7405638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7406122Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:55:43.7406382Z 2025-03-14T04:55:43.7406713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7407451Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7407989Z 2025-03-14T04:55:43.7408341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7410213Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7411842Z 2025-03-14T04:55:43.7412238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7412743Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:55:43.7413004Z 2025-03-14T04:55:43.7413339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7414078Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7414632Z 2025-03-14T04:55:43.7414997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7416844Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7418595Z 2025-03-14T04:55:43.7418971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7419473Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:55:43.7419758Z 2025-03-14T04:55:43.7420151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7420668Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:55:43.7420945Z 2025-03-14T04:55:43.7421303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7422074Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7422641Z 2025-03-14T04:55:43.7423011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7425102Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7426891Z 2025-03-14T04:55:43.7427292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7427803Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:55:43.7428086Z 2025-03-14T04:55:43.7428451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7429247Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7429818Z 2025-03-14T04:55:43.7430193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7432139Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7433879Z 2025-03-14T04:55:43.7434278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7434792Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:55:43.7435056Z 2025-03-14T04:55:43.7435396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7436139Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7436685Z 2025-03-14T04:55:43.7437035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7438920Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7440654Z 2025-03-14T04:55:43.7441019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7441513Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:55:43.7441785Z 2025-03-14T04:55:43.7442166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7442677Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:55:43.7442952Z 2025-03-14T04:55:43.7443319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7444092Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7444637Z 2025-03-14T04:55:43.7444985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7446818Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7448453Z 2025-03-14T04:55:43.7448827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7449298Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:55:43.7449559Z 2025-03-14T04:55:43.7449893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7450621Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7451165Z 2025-03-14T04:55:43.7451514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7453376Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7455023Z 2025-03-14T04:55:43.7455403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7455884Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:55:43.7456143Z 2025-03-14T04:55:43.7456504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7457264Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7457813Z 2025-03-14T04:55:43.7458170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7460166Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7461901Z 2025-03-14T04:55:43.7462289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7462807Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:55:43.7463091Z 2025-03-14T04:55:43.7463477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7463996Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:55:43.7464358Z 2025-03-14T04:55:43.7464744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7465556Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7466133Z 2025-03-14T04:55:43.7466520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7468466Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7470195Z 2025-03-14T04:55:43.7470588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7471096Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:55:43.7471366Z 2025-03-14T04:55:43.7471741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7472505Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7473114Z 2025-03-14T04:55:43.7473482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7475006Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7475098Z 2025-03-14T04:55:43.7475387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7475534Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:55:43.7475600Z 2025-03-14T04:55:43.7475860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7476285Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7476360Z 2025-03-14T04:55:43.7476632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7478169Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7478250Z 2025-03-14T04:55:43.7478528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7478689Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:55:43.7478755Z 2025-03-14T04:55:43.7479041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7479196Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:55:43.7479271Z 2025-03-14T04:55:43.7479517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7479957Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7480031Z 2025-03-14T04:55:43.7480297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7481975Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7482101Z 2025-03-14T04:55:43.7482399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7482547Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:55:43.7482615Z 2025-03-14T04:55:43.7482872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7483298Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7483393Z 2025-03-14T04:55:43.7483659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7485197Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7485275Z 2025-03-14T04:55:43.7485559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7485703Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:55:43.7485769Z 2025-03-14T04:55:43.7486049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7486471Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7486565Z 2025-03-14T04:55:43.7486830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7488349Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7488440Z 2025-03-14T04:55:43.7488720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7488876Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:55:43.7488944Z 2025-03-14T04:55:43.7489230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7489369Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:55:43.7489442Z 2025-03-14T04:55:43.7489688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7490125Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7490193Z 2025-03-14T04:55:43.7490467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7491999Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7492073Z 2025-03-14T04:55:43.7492366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7492523Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:55:43.7492595Z 2025-03-14T04:55:43.7492843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7493306Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7493373Z 2025-03-14T04:55:43.7493644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7495162Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7495238Z 2025-03-14T04:55:43.7495525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7495666Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:55:43.7495740Z 2025-03-14T04:55:43.7495986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7496433Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7496502Z 2025-03-14T04:55:43.7496770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7498297Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7498369Z 2025-03-14T04:55:43.7498656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7498813Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:55:43.7498915Z 2025-03-14T04:55:43.7499197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7499352Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:55:43.7499430Z 2025-03-14T04:55:43.7499688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7500112Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7500200Z 2025-03-14T04:55:43.7500465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7501988Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7502063Z 2025-03-14T04:55:43.7502351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7502497Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:55:43.7502564Z 2025-03-14T04:55:43.7502821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7503256Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7503331Z 2025-03-14T04:55:43.7503592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7505323Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7505417Z 2025-03-14T04:55:43.7505746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7505901Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:55:43.7505969Z 2025-03-14T04:55:43.7506247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7506714Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7506792Z 2025-03-14T04:55:43.7507067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7508695Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7508776Z 2025-03-14T04:55:43.7509072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7509252Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:55:43.7509321Z 2025-03-14T04:55:43.7509624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7509779Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:55:43.7509858Z 2025-03-14T04:55:43.7510136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7510589Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7510660Z 2025-03-14T04:55:43.7510944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7512562Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7512635Z 2025-03-14T04:55:43.7512943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7513103Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:55:43.7513181Z 2025-03-14T04:55:43.7513448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7513901Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7513992Z 2025-03-14T04:55:43.7514272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7515875Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7515947Z 2025-03-14T04:55:43.7516253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7516397Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:55:43.7516477Z 2025-03-14T04:55:43.7516758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7517217Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7517294Z 2025-03-14T04:55:43.7517571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7519143Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7519212Z 2025-03-14T04:55:43.7519521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7519690Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:55:43.7519772Z 2025-03-14T04:55:43.7520062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7520210Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:55:43.7520283Z 2025-03-14T04:55:43.7520531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7520969Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7521033Z 2025-03-14T04:55:43.7521299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7522837Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7522911Z 2025-03-14T04:55:43.7523200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7523366Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:55:43.7523439Z 2025-03-14T04:55:43.7523687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7524120Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7524187Z 2025-03-14T04:55:43.7524456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7525992Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7526067Z 2025-03-14T04:55:43.7526360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7526514Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:55:43.7526584Z 2025-03-14T04:55:43.7526834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7527273Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7527352Z 2025-03-14T04:55:43.7527620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7529128Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7529202Z 2025-03-14T04:55:43.7529485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7529645Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:55:43.7529716Z 2025-03-14T04:55:43.7530018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7530170Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:55:43.7530235Z 2025-03-14T04:55:43.7530495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7530915Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7530989Z 2025-03-14T04:55:43.7531251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7532801Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7532894Z 2025-03-14T04:55:43.7533182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7533326Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:55:43.7533393Z 2025-03-14T04:55:43.7533652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7534087Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7534163Z 2025-03-14T04:55:43.7534426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7535933Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7536009Z 2025-03-14T04:55:43.7536289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7536446Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:55:43.7536512Z 2025-03-14T04:55:43.7536765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7537186Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7537261Z 2025-03-14T04:55:43.7537525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7539067Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7539142Z 2025-03-14T04:55:43.7539437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7539600Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:55:43.7539666Z 2025-03-14T04:55:43.7539954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7540100Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:55:43.7540188Z 2025-03-14T04:55:43.7540437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7540853Z x_190: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7540919Z 2025-03-14T04:55:43.7541200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7542794Z x_191: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7542880Z 2025-03-14T04:55:43.7543186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7543329Z out_120: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:55:43.7543408Z 2025-03-14T04:55:43.7543668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7544178Z x_192: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_120 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7544261Z 2025-03-14T04:55:43.7544570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7546250Z x_193: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7546337Z 2025-03-14T04:55:43.7546645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7546788Z out_121: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:55:43.7546866Z 2025-03-14T04:55:43.7547128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7547619Z x_194: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7547690Z 2025-03-14T04:55:43.7547976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7549583Z x_195: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7549657Z 2025-03-14T04:55:43.7549950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7550415Z x_196: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.7550492Z 2025-03-14T04:55:43.7550769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7552502Z x_197: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7552584Z 2025-03-14T04:55:43.7552902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7553061Z x_195 += x_197; out_122: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:55:43.7553143Z 2025-03-14T04:55:43.7553436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7553585Z out_123: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:55:43.7553659Z 2025-03-14T04:55:43.7553923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7554354Z x_198: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7554427Z 2025-03-14T04:55:43.7554686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7556208Z x_199: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7556275Z 2025-03-14T04:55:43.7556569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7556721Z out_124: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:55:43.7556793Z 2025-03-14T04:55:43.7557039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7557473Z x_200: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_124 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7557544Z 2025-03-14T04:55:43.7557807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7559337Z x_201: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7559404Z 2025-03-14T04:55:43.7559698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7559859Z out_125: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:55:43.7559927Z 2025-03-14T04:55:43.7560182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7560608Z x_202: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7560699Z 2025-03-14T04:55:43.7560964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7562468Z x_203: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7562546Z 2025-03-14T04:55:43.7562827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7562993Z x_203 += out_123; out_126: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:55:43.7563060Z 2025-03-14T04:55:43.7563367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7563518Z out_127: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:55:43.7563592Z 2025-03-14T04:55:43.7563843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7564270Z x_204: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7564337Z 2025-03-14T04:55:43.7564608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7566141Z x_205: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7566234Z 2025-03-14T04:55:43.7566529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7566666Z out_128: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:55:43.7566739Z 2025-03-14T04:55:43.7566990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7567436Z x_206: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_128 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7567502Z 2025-03-14T04:55:43.7567773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7569290Z x_207: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7569367Z 2025-03-14T04:55:43.7569661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7569825Z out_129: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:55:43.7569898Z 2025-03-14T04:55:43.7570146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7570576Z x_208: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7570642Z 2025-03-14T04:55:43.7570908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7572453Z x_209: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7572529Z 2025-03-14T04:55:43.7572817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7572997Z x_209 += out_127; out_130: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:55:43.7573070Z 2025-03-14T04:55:43.7573348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7573503Z out_131: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:55:43.7573588Z 2025-03-14T04:55:43.7574035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:43.7574187Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:55:43.7574261Z 2025-03-14T04:55:43.7574555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.7574706Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:55:43.7574772Z 2025-03-14T04:55:43.7575214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:43.7575368Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:55:43.7575441Z 2025-03-14T04:55:43.7575730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.7575878Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:55:43.7575944Z 2025-03-14T04:55:43.7576339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:43.7576518Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:55:43.7576625Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:55:43.7576747Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:55:43.7576823Z 2025-03-14T04:55:43.7577154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:43.7577290Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:55:43.7577354Z 2025-03-14T04:55:43.7577686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:43.7577805Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:55:43.7577878Z 2025-03-14T04:55:43.7578259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:43.7578498Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:55:43.7578570Z 2025-03-14T04:55:43.7578986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:43.7579134Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:55:43.7579558Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:55:43.7579688Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:55:43.7579804Z x_210: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:55:43.7579893Z 2025-03-14T04:55:43.7580194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:43.7580329Z tensor: "f32[82125, 4][4, 1]cpu" = x_210.to(torch.float32); x_210 = None 2025-03-14T04:55:43.7580394Z 2025-03-14T04:55:43.7580660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7581592Z x_211: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_131, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_131 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:55:43.7581680Z 2025-03-14T04:55:43.7581971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:43.7582179Z x_212: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_211, inplace = False); x_211 = None 2025-03-14T04:55:43.7582248Z 2025-03-14T04:55:43.7582652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:43.7583588Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:55:43.7583660Z 2025-03-14T04:55:43.7584046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:43.7584925Z x_213: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_212 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:55:43.7585008Z 2025-03-14T04:55:43.7585380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:55:43.7585548Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:55:43.7585691Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:55:43.7585788Z 2025-03-14T04:55:43.7586228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:55:43.7586396Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_213.view(4, -1, 4, 73, 75); x_213 = None 2025-03-14T04:55:43.7586578Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:55:43.7586778Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:55:43.7586854Z 2025-03-14T04:55:43.7587256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:43.7587473Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:55:43.7587543Z 2025-03-14T04:55:43.7587992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:43.7588147Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:55:43.7588311Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:55:43.7588454Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:55:43.7588528Z 2025-03-14T04:55:43.7588910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:43.7589093Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:55:43.7589160Z 2025-03-14T04:55:43.7589507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:43.7589651Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:55:43.7589725Z 2025-03-14T04:55:43.7590044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:43.7590190Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:43.7590321Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:43.7590477Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:55:43.7590545Z 2025-03-14T04:55:43.7590879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:43.7591007Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:43.7591139Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:43.7591288Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:55:43.7591365Z 2025-03-14T04:55:43.7591696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:43.7591831Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:43.7591921Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:55:43.7592073Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:55:43.7592140Z 2025-03-14T04:55:43.7592467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:43.7592615Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:43.7592719Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:55:43.7592849Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:55:43.7592940Z 2025-03-14T04:55:43.7593308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:43.7593476Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:43.7593592Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:55:43.7593669Z 2025-03-14T04:55:43.7594241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:43.7594398Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:43.7594524Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:55:43.7594592Z 2025-03-14T04:55:43.7594909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:43.7595066Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:43.7595198Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:55:43.7595265Z 2025-03-14T04:55:43.7595585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:43.7595791Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:43.7595913Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:55:43.7595981Z 2025-03-14T04:55:43.7596338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:43.7596484Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:43.7596559Z 2025-03-14T04:55:43.7596902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:43.7597047Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:43.7597115Z 2025-03-14T04:55:43.7597472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:43.7597614Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:43.7597750Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:55:43.7597929Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:43.7598084Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:55:43.7598153Z 2025-03-14T04:55:43.7598521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:43.7598682Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:43.7598817Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:55:43.7598981Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:43.7599127Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:55:43.7599207Z 2025-03-14T04:55:43.7599545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:43.7599664Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:43.7599834Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:43.7599968Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:55:43.7600041Z 2025-03-14T04:55:43.7600375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:43.7600499Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:43.7600673Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:43.7600811Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:55:43.7600885Z 2025-03-14T04:55:43.7601200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:43.7601308Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:43.7601425Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:43.7601497Z 2025-03-14T04:55:43.7601821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:43.7601926Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:43.7602039Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:43.7602114Z 2025-03-14T04:55:43.7602421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:43.7602542Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:43.7602667Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:43.7602742Z 2025-03-14T04:55:43.7603047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:43.7603167Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:43.7603291Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:43.7603366Z 2025-03-14T04:55:43.7603719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:43.7603926Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:43.7603992Z 2025-03-14T04:55:43.7604334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:43.7604511Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:55:43.7604583Z 2025-03-14T04:55:43.7604968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:43.7605149Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:55:43.7605231Z 2025-03-14T04:55:43.7605721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:55:43.7605857Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:55:43.7605931Z 2025-03-14T04:55:43.7606224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.7606374Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:55:43.7606439Z 2025-03-14T04:55:43.7606878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:43.7606995Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:55:43.7607111Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:55:43.7607226Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:55:43.7607301Z 2025-03-14T04:55:43.7607764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:43.7607952Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:55:43.7608185Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:55:43.7608259Z 2025-03-14T04:55:43.7608716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:43.7608885Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:43.7608961Z 2025-03-14T04:55:43.7609252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.7609412Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:55:43.7609478Z 2025-03-14T04:55:43.7609857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:55:43.7610004Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:55:43.7610080Z 2025-03-14T04:55:43.7610387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:43.7610540Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:55:43.7610606Z 2025-03-14T04:55:43.7611001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:55:43.7611142Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:55:43.7611216Z 2025-03-14T04:55:43.7611690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:55:43.7611850Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:55:43.7611970Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:43.7612130Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:55:43.7612260Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:55:43.7612335Z 2025-03-14T04:55:43.7612700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:55:43.7612825Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:55:43.7612890Z 2025-03-14T04:55:43.7612901Z 2025-03-14T04:55:43.7613011Z class GraphModule(torch.nn.Module): 2025-03-14T04:55:43.7714129Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:55:43.7715027Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:55:43.7715365Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7715761Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7716182Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7716595Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7716978Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7717347Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7717832Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7718268Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7718692Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7719088Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7719439Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7719893Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7720307Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7720704Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7721099Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7721464Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7721882Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7722302Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7722713Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7723104Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7723473Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.7723911Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7724336Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7724738Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7725127Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7725444Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7725908Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7726317Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7726730Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7727114Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7727455Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7727863Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7728276Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7728676Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7729057Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7729386Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7729795Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7730175Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7730555Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7730908Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7731224Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7731600Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7731972Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7732328Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7732669Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7732992Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7733368Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7733751Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7734105Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7734453Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7734785Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7735159Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7735532Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7735884Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7736230Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7736549Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7736916Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7737307Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7737657Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7738016Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7738341Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7738711Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7739086Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7739432Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7739798Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7740107Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7740488Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7740871Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7741233Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7741592Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7741919Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.7742307Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7742683Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7743054Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7743406Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7743720Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7744196Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7744682Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7745097Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7745455Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7745776Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7746154Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7746556Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7746935Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7747327Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7747666Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7748092Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7748502Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7748879Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7749271Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7749610Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7750029Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7750429Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7750825Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7751200Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7751537Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7751973Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7752375Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7752764Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7753139Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7753466Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7753843Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7754225Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7754608Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7754958Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7755303Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7755683Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7756065Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7756447Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7756804Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7757123Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7757514Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7757895Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7758256Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7758613Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7758946Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7759337Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7759714Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7760105Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7760450Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7760779Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7761162Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7761535Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7761916Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7762263Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7762606Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7762987Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7763377Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7763748Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7764114Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7764442Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7764821Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7765206Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7765558Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7765904Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7766259Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.7766648Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7767026Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7767395Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7767757Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7768067Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7768440Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7768820Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7769177Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7769534Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7769857Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7770222Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7770618Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7770970Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7771321Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7771635Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7772001Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7772384Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7772729Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7773104Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7773413Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7773788Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7774170Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7774516Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7774874Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7775305Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7775771Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7776159Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7776559Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7776936Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7777520Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7777922Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7778334Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7778683Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7779039Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7779417Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7779804Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7780205Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7780553Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7780926Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7781261Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7781797Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7782177Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7782573Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7782943Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7783296Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7783782Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7784196Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7784642Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7785017Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7785410Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7785884Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7786278Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7786690Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7787041Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7787392Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7787786Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7788189Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7788575Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7788954Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7789309Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7789716Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7790128Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7790492Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7790882Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7791208Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7791668Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7792076Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7792449Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7792824Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7793132Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7793551Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7793910Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7794275Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7794606Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7794926Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7795340Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7795711Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7796075Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7796405Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7796732Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7797105Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7797504Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7797864Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7798198Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7798559Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7798940Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7799358Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7799699Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7800064Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7800400Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7800795Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7801194Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7801531Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7801896Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7802197Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7802591Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7802971Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7803348Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7803709Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7804013Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7804410Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7804777Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7805162Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7805518Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7805853Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7806215Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7806635Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7806996Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7807341Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7807670Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7808026Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7808445Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7808782Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7809143Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7809445Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7809843Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7810258Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7810593Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7810953Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7811257Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7811644Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7812034Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7812432Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7812809Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7813122Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7813512Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7813880Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7814267Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7814599Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7814970Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7815361Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7815742Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7816117Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7816443Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7835938Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7836517Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7836874Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7837214Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7837525Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7837830Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7838178Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7838535Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7838891Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7839216Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7839534Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7839888Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7840236Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7840586Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7840910Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7841200Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7841549Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7841887Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7842224Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7842538Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7842850Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7843198Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7843536Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7843869Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7844182Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7844482Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7844820Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7845180Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7845513Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7846192Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7846494Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7846848Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7847203Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7847534Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7847851Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7848146Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7848484Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7848830Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7849152Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7849490Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7849781Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7850117Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7850461Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7850780Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7851100Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7851387Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7851731Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7852085Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7852413Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7852751Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7853041Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7853394Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7853747Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7854073Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7854388Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7854683Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7855028Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7855374Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7855703Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7856029Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7856325Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7856669Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7857013Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7857336Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7857656Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7857940Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7858303Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7858646Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7858981Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7859301Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7859585Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7859963Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7860308Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7860643Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7860959Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7861258Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7861614Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7861957Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7862308Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7862622Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7862919Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7863263Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7863617Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7863956Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7864393Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7864735Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7865100Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7865493Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7865816Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7866136Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7866437Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7866788Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7867132Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7867467Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7867790Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7868079Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7868428Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7868785Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7869115Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7869428Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7869725Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7870066Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7870415Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7870750Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7871081Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7871374Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7871716Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7872080Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7872403Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7872768Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7873053Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7873406Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7873752Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7874072Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7874393Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7874679Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7875028Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7875388Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7875715Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7876030Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7876326Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7876672Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7877004Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7877331Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7877656Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7877951Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7878310Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7878660Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7878995Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7879312Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7879604Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7879944Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7880286Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7880610Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7880926Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7881210Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7881883Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7882231Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7882565Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7882889Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7883186Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7883549Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7883885Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7884242Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7884552Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7884885Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7885230Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7885575Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7885928Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7886238Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7886535Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7886875Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7887224Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7887549Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7887871Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7888174Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7888526Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7888874Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7889198Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7889519Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7889812Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7890161Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7890517Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7890848Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7891181Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7891467Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7891821Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7892175Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7892500Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7892813Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7893107Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7893448Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7893797Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7894126Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7894452Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7894748Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7895091Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7895441Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7895761Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7896098Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7896382Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7896743Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7897091Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7897412Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7897744Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7898028Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7898396Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7898739Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7899072Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7899385Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7899681Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7900035Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7900378Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7900708Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7901036Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7901329Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7901676Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7902025Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7902353Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7902674Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7902972Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7903331Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7903678Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7904027Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7904426Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7904736Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7905124Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7905483Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7905846Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7906174Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7906469Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7906897Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7907249Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7907614Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7907945Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7908277Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:55:43.7908654Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7909032Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7909397Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7909744Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7910070Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7910430Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7910810Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7911151Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7911489Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7911811Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7912242Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7912611Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7912951Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7913291Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7913593Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7913958Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7914334Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7914681Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7915016Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7915319Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:55:43.7915684Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7916039Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7916382Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7916727Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7917037Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:55:43.7917395Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7917779Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7918125Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7918468Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7918776Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:55:43.7919137Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:55:43.7919493Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:55:43.7919820Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:55:43.7920147Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:55:43.7920503Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:55:43.7920842Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:55:43.7921184Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:55:43.7921565Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:55:43.7921938Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:55:43.7922296Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:55:43.7922656Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:55:43.7922737Z 2025-03-14T04:55:43.7923064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7923576Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7923659Z 2025-03-14T04:55:43.7923953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7925467Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7925561Z 2025-03-14T04:55:43.7925864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:55:43.7926020Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:55:43.7926087Z 2025-03-14T04:55:43.7926472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:55:43.7926719Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:55:43.7926797Z 2025-03-14T04:55:43.7927066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7927512Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7927581Z 2025-03-14T04:55:43.7927884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7929458Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7929529Z 2025-03-14T04:55:43.7929838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7929986Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:55:43.7930063Z 2025-03-14T04:55:43.7930327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7930793Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7930880Z 2025-03-14T04:55:43.7931155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7932669Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7932752Z 2025-03-14T04:55:43.7933051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7933193Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:55:43.7933268Z 2025-03-14T04:55:43.7933516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7933961Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7934038Z 2025-03-14T04:55:43.7934300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7935846Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7935919Z 2025-03-14T04:55:43.7936183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7936619Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.7936694Z 2025-03-14T04:55:43.7936968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7938532Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7938638Z 2025-03-14T04:55:43.7938926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7939082Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:55:43.7939148Z 2025-03-14T04:55:43.7939439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7939594Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:55:43.7939666Z 2025-03-14T04:55:43.7939916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7940345Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7940419Z 2025-03-14T04:55:43.7940683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7942205Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7942275Z 2025-03-14T04:55:43.7942581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7942740Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:55:43.7942809Z 2025-03-14T04:55:43.7943069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7943528Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7943607Z 2025-03-14T04:55:43.7943909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7945653Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7945771Z 2025-03-14T04:55:43.7946080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7946240Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:55:43.7946322Z 2025-03-14T04:55:43.7946591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7947023Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7947101Z 2025-03-14T04:55:43.7947369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7948936Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7949014Z 2025-03-14T04:55:43.7949299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7949462Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:55:43.7949530Z 2025-03-14T04:55:43.7949819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7949970Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:55:43.7950043Z 2025-03-14T04:55:43.7950291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7950733Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7950801Z 2025-03-14T04:55:43.7951073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7952592Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7952686Z 2025-03-14T04:55:43.7952979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7953120Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:55:43.7953193Z 2025-03-14T04:55:43.7953442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7953873Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7953940Z 2025-03-14T04:55:43.7954214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7955745Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7955823Z 2025-03-14T04:55:43.7956115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7956252Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:55:43.7956326Z 2025-03-14T04:55:43.7956573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7957006Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7957089Z 2025-03-14T04:55:43.7957361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7958887Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7958998Z 2025-03-14T04:55:43.7959286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7959442Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:55:43.7959517Z 2025-03-14T04:55:43.7959802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7959961Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:55:43.7960028Z 2025-03-14T04:55:43.7960286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7960712Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7960787Z 2025-03-14T04:55:43.7961053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7962578Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7962656Z 2025-03-14T04:55:43.7962944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7963095Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:55:43.7963160Z 2025-03-14T04:55:43.7963417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7963863Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7963936Z 2025-03-14T04:55:43.7964199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7965722Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7965810Z 2025-03-14T04:55:43.7966094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7966246Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:55:43.7966311Z 2025-03-14T04:55:43.7966565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7966997Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7967070Z 2025-03-14T04:55:43.7967334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7968861Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7968934Z 2025-03-14T04:55:43.7969185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7969635Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.7969700Z 2025-03-14T04:55:43.7969970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7971556Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7971651Z 2025-03-14T04:55:43.7971942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7972091Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:55:43.7972163Z 2025-03-14T04:55:43.7972444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7972604Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:55:43.7972672Z 2025-03-14T04:55:43.7972930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7973352Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7973429Z 2025-03-14T04:55:43.7973692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7975242Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7975321Z 2025-03-14T04:55:43.7975608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7975759Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:55:43.7975825Z 2025-03-14T04:55:43.7976081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7976506Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7976582Z 2025-03-14T04:55:43.7976868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7978392Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7978528Z 2025-03-14T04:55:43.7978812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7978960Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:55:43.7979025Z 2025-03-14T04:55:43.7979280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7979704Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7979777Z 2025-03-14T04:55:43.7980044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7981738Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7981824Z 2025-03-14T04:55:43.7982106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7982274Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:55:43.7982343Z 2025-03-14T04:55:43.7982636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7982789Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:55:43.7982864Z 2025-03-14T04:55:43.7983113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7983565Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7983639Z 2025-03-14T04:55:43.7983901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7985661Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7985765Z 2025-03-14T04:55:43.7986086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7986240Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:55:43.7986306Z 2025-03-14T04:55:43.7986566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7986994Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7987070Z 2025-03-14T04:55:43.7987333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7988862Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7988939Z 2025-03-14T04:55:43.7989227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7989378Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:55:43.7989446Z 2025-03-14T04:55:43.7989704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7990130Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.7990221Z 2025-03-14T04:55:43.7990486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7992008Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7992112Z 2025-03-14T04:55:43.7992400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.7992564Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:55:43.7992632Z 2025-03-14T04:55:43.7992928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7993079Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:55:43.7993154Z 2025-03-14T04:55:43.7993407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7993841Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.7993909Z 2025-03-14T04:55:43.7994187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7995722Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7995797Z 2025-03-14T04:55:43.7996086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7996225Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:55:43.7996297Z 2025-03-14T04:55:43.7996544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.7996996Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.7997063Z 2025-03-14T04:55:43.7997334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.7998872Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.7998959Z 2025-03-14T04:55:43.7999252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.7999393Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:55:43.7999467Z 2025-03-14T04:55:43.7999713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8000152Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8000219Z 2025-03-14T04:55:43.8000490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8002051Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8002133Z 2025-03-14T04:55:43.8002433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8002597Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:55:43.8002673Z 2025-03-14T04:55:43.8002970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8003133Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:55:43.8003203Z 2025-03-14T04:55:43.8003485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8003925Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8004023Z 2025-03-14T04:55:43.8004301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8005895Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8005987Z 2025-03-14T04:55:43.8006289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8006441Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:55:43.8006511Z 2025-03-14T04:55:43.8006788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8007271Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8007349Z 2025-03-14T04:55:43.8007627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8009250Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8009349Z 2025-03-14T04:55:43.8009653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8009803Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:55:43.8009870Z 2025-03-14T04:55:43.8010139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8010606Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8010687Z 2025-03-14T04:55:43.8010965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8012562Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8012659Z 2025-03-14T04:55:43.8012920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8013379Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.8013449Z 2025-03-14T04:55:43.8013734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8015301Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8015370Z 2025-03-14T04:55:43.8015660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8015800Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:55:43.8015875Z 2025-03-14T04:55:43.8016158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8016312Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:55:43.8016377Z 2025-03-14T04:55:43.8016634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8017063Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8017136Z 2025-03-14T04:55:43.8017397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8018944Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8019040Z 2025-03-14T04:55:43.8019341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8019493Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:55:43.8019560Z 2025-03-14T04:55:43.8019836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8020277Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8020355Z 2025-03-14T04:55:43.8020637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8022240Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8022322Z 2025-03-14T04:55:43.8022622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8022772Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:55:43.8022840Z 2025-03-14T04:55:43.8023110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8023550Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8023629Z 2025-03-14T04:55:43.8023938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8025675Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8025798Z 2025-03-14T04:55:43.8026111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8026295Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:55:43.8026367Z 2025-03-14T04:55:43.8026671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8026823Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:55:43.8026900Z 2025-03-14T04:55:43.8027165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8027610Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8027688Z 2025-03-14T04:55:43.8027965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8029598Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8029669Z 2025-03-14T04:55:43.8029979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8030129Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:55:43.8030197Z 2025-03-14T04:55:43.8030460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8030922Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8031002Z 2025-03-14T04:55:43.8031283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8032890Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8032982Z 2025-03-14T04:55:43.8033285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8033436Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:55:43.8033505Z 2025-03-14T04:55:43.8033777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8034219Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8034299Z 2025-03-14T04:55:43.8034577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8036203Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8036285Z 2025-03-14T04:55:43.8036578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8036740Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:55:43.8036809Z 2025-03-14T04:55:43.8037113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8037262Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:55:43.8037338Z 2025-03-14T04:55:43.8037601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8038067Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8038133Z 2025-03-14T04:55:43.8038419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8039919Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8040012Z 2025-03-14T04:55:43.8040304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8040439Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:55:43.8040512Z 2025-03-14T04:55:43.8040761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8041189Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8041254Z 2025-03-14T04:55:43.8041523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8043040Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8043115Z 2025-03-14T04:55:43.8043411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8043546Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:55:43.8043620Z 2025-03-14T04:55:43.8043871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8044317Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8044385Z 2025-03-14T04:55:43.8044662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8046174Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8046269Z 2025-03-14T04:55:43.8046559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8046708Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:55:43.8046781Z 2025-03-14T04:55:43.8047066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8047215Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:55:43.8047283Z 2025-03-14T04:55:43.8047542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8047959Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8048033Z 2025-03-14T04:55:43.8048295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8049847Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8049930Z 2025-03-14T04:55:43.8050237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8050378Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:55:43.8050444Z 2025-03-14T04:55:43.8050698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8051129Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8051204Z 2025-03-14T04:55:43.8051478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8052976Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8053064Z 2025-03-14T04:55:43.8053355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8053496Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:55:43.8053562Z 2025-03-14T04:55:43.8053821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8054241Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8054312Z 2025-03-14T04:55:43.8054580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8056106Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8056184Z 2025-03-14T04:55:43.8056460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8056615Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:55:43.8056680Z 2025-03-14T04:55:43.8056970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8057112Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:55:43.8057188Z 2025-03-14T04:55:43.8057448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8057867Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8057948Z 2025-03-14T04:55:43.8058220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8059723Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8059815Z 2025-03-14T04:55:43.8060114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8060246Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:55:43.8060320Z 2025-03-14T04:55:43.8060571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8060993Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8061060Z 2025-03-14T04:55:43.8061334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8062917Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8062991Z 2025-03-14T04:55:43.8063299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8063436Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:55:43.8063512Z 2025-03-14T04:55:43.8063773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8064301Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8064376Z 2025-03-14T04:55:43.8064678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8066329Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8066415Z 2025-03-14T04:55:43.8066716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8066871Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:55:43.8066947Z 2025-03-14T04:55:43.8067242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8067404Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:55:43.8067475Z 2025-03-14T04:55:43.8067746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8068178Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8068259Z 2025-03-14T04:55:43.8068560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8070145Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8070226Z 2025-03-14T04:55:43.8070520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8070670Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:55:43.8070741Z 2025-03-14T04:55:43.8071024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8071462Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8071557Z 2025-03-14T04:55:43.8071846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8073428Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8073522Z 2025-03-14T04:55:43.8073821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8073969Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:55:43.8074039Z 2025-03-14T04:55:43.8074310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8074756Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8074826Z 2025-03-14T04:55:43.8075112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8076686Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8076763Z 2025-03-14T04:55:43.8077041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8077191Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:55:43.8077256Z 2025-03-14T04:55:43.8077542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8077714Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:55:43.8077781Z 2025-03-14T04:55:43.8078035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8078462Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8078534Z 2025-03-14T04:55:43.8078797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8080308Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8080399Z 2025-03-14T04:55:43.8080687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8080828Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:55:43.8080893Z 2025-03-14T04:55:43.8081150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8081693Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8081777Z 2025-03-14T04:55:43.8082090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8083598Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8083676Z 2025-03-14T04:55:43.8083960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8084100Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:55:43.8084166Z 2025-03-14T04:55:43.8084472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8084891Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8084998Z 2025-03-14T04:55:43.8085262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8086760Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8086856Z 2025-03-14T04:55:43.8087140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8087295Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:55:43.8087363Z 2025-03-14T04:55:43.8087655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8087804Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:55:43.8087878Z 2025-03-14T04:55:43.8088127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8088574Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8088642Z 2025-03-14T04:55:43.8088913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8090432Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8090509Z 2025-03-14T04:55:43.8090804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8090958Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:55:43.8091029Z 2025-03-14T04:55:43.8091277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8091720Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8091785Z 2025-03-14T04:55:43.8092056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8093556Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8093648Z 2025-03-14T04:55:43.8093938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8094077Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:55:43.8094150Z 2025-03-14T04:55:43.8094396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8094823Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8094905Z 2025-03-14T04:55:43.8095174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8096693Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8096760Z 2025-03-14T04:55:43.8097045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8097197Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:55:43.8097272Z 2025-03-14T04:55:43.8097573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8097723Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:55:43.8097787Z 2025-03-14T04:55:43.8098057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8098469Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8098542Z 2025-03-14T04:55:43.8098805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8100337Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8100413Z 2025-03-14T04:55:43.8100699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8100846Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:55:43.8100912Z 2025-03-14T04:55:43.8101167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8101597Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8101672Z 2025-03-14T04:55:43.8101935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8103536Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8103615Z 2025-03-14T04:55:43.8103913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8104136Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:55:43.8104221Z 2025-03-14T04:55:43.8104514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8104978Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8105055Z 2025-03-14T04:55:43.8105329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8106948Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8107042Z 2025-03-14T04:55:43.8107362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8107542Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:55:43.8107616Z 2025-03-14T04:55:43.8107937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8108095Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:55:43.8108179Z 2025-03-14T04:55:43.8108473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8108949Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8109023Z 2025-03-14T04:55:43.8109331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8111046Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8111121Z 2025-03-14T04:55:43.8111471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8111628Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:55:43.8111726Z 2025-03-14T04:55:43.8112002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8112478Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8112558Z 2025-03-14T04:55:43.8112867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8114516Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8114585Z 2025-03-14T04:55:43.8114880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8115014Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:55:43.8115088Z 2025-03-14T04:55:43.8115335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8115789Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8115863Z 2025-03-14T04:55:43.8116129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8117661Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8117730Z 2025-03-14T04:55:43.8118040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8118191Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:55:43.8118265Z 2025-03-14T04:55:43.8118550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8118717Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:55:43.8118783Z 2025-03-14T04:55:43.8119039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8119457Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8119537Z 2025-03-14T04:55:43.8119809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8121335Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8121415Z 2025-03-14T04:55:43.8121723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8121863Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:55:43.8121939Z 2025-03-14T04:55:43.8122206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8122629Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8122695Z 2025-03-14T04:55:43.8122965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8124464Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8124557Z 2025-03-14T04:55:43.8124847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8124982Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:55:43.8125069Z 2025-03-14T04:55:43.8125320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8125750Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8125831Z 2025-03-14T04:55:43.8126104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8127611Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8127687Z 2025-03-14T04:55:43.8127977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8128125Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:55:43.8128199Z 2025-03-14T04:55:43.8128482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8128646Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:55:43.8128714Z 2025-03-14T04:55:43.8128976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8129393Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8129467Z 2025-03-14T04:55:43.8129726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8131251Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8131327Z 2025-03-14T04:55:43.8131610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8131774Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:55:43.8131842Z 2025-03-14T04:55:43.8132099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8132525Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8132613Z 2025-03-14T04:55:43.8132880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8134395Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8134471Z 2025-03-14T04:55:43.8134758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8134900Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:55:43.8134965Z 2025-03-14T04:55:43.8135242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8135670Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8135748Z 2025-03-14T04:55:43.8136011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8137569Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8137647Z 2025-03-14T04:55:43.8137927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8138099Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:55:43.8138165Z 2025-03-14T04:55:43.8138457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8138598Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:55:43.8138672Z 2025-03-14T04:55:43.8138920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8139382Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8139451Z 2025-03-14T04:55:43.8139738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8141343Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8141415Z 2025-03-14T04:55:43.8141737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8141880Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:55:43.8141956Z 2025-03-14T04:55:43.8142218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8142678Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8142748Z 2025-03-14T04:55:43.8143039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8144793Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8144894Z 2025-03-14T04:55:43.8145219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8145361Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:55:43.8145437Z 2025-03-14T04:55:43.8145695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8146150Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8146239Z 2025-03-14T04:55:43.8146526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8148146Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8148216Z 2025-03-14T04:55:43.8148522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8148699Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:55:43.8148778Z 2025-03-14T04:55:43.8149081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8149241Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:55:43.8149309Z 2025-03-14T04:55:43.8149582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8150029Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8150103Z 2025-03-14T04:55:43.8150393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8152004Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8152101Z 2025-03-14T04:55:43.8152406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8152561Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:55:43.8152630Z 2025-03-14T04:55:43.8152925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8153374Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8153445Z 2025-03-14T04:55:43.8153731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8155325Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8155403Z 2025-03-14T04:55:43.8155704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8155849Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:55:43.8155924Z 2025-03-14T04:55:43.8156172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8156603Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8156669Z 2025-03-14T04:55:43.8156939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8158463Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8158554Z 2025-03-14T04:55:43.8158846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8158993Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:55:43.8159069Z 2025-03-14T04:55:43.8159355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8159525Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:55:43.8159591Z 2025-03-14T04:55:43.8159847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8160255Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8160331Z 2025-03-14T04:55:43.8160592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8162123Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8162201Z 2025-03-14T04:55:43.8162483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8162627Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:55:43.8162693Z 2025-03-14T04:55:43.8162946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8163359Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8163431Z 2025-03-14T04:55:43.8163692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8165243Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8165331Z 2025-03-14T04:55:43.8165613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8165757Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:55:43.8165835Z 2025-03-14T04:55:43.8166093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8166509Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8166583Z 2025-03-14T04:55:43.8166847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8168358Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8168434Z 2025-03-14T04:55:43.8168729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8168888Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:55:43.8168953Z 2025-03-14T04:55:43.8169245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8169387Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:55:43.8169460Z 2025-03-14T04:55:43.8169708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8170133Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8170199Z 2025-03-14T04:55:43.8170472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8172026Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8172106Z 2025-03-14T04:55:43.8172399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8172550Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:55:43.8172623Z 2025-03-14T04:55:43.8172874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8173303Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8173367Z 2025-03-14T04:55:43.8173642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8175186Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8175254Z 2025-03-14T04:55:43.8175548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8175684Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:55:43.8175757Z 2025-03-14T04:55:43.8176010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8176441Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8176510Z 2025-03-14T04:55:43.8176787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8178365Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8178449Z 2025-03-14T04:55:43.8178737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8178888Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:55:43.8178978Z 2025-03-14T04:55:43.8179260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8179406Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:55:43.8179472Z 2025-03-14T04:55:43.8179729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8180144Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8180222Z 2025-03-14T04:55:43.8180486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8182407Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8182495Z 2025-03-14T04:55:43.8182797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8182950Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:55:43.8183018Z 2025-03-14T04:55:43.8183289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8183727Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8183803Z 2025-03-14T04:55:43.8184079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8185846Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8185958Z 2025-03-14T04:55:43.8186282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8186434Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:55:43.8186508Z 2025-03-14T04:55:43.8186782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8187227Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8187304Z 2025-03-14T04:55:43.8187584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8189225Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8189305Z 2025-03-14T04:55:43.8189599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8189767Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:55:43.8189834Z 2025-03-14T04:55:43.8190137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8190286Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:55:43.8190362Z 2025-03-14T04:55:43.8190622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8191062Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8191140Z 2025-03-14T04:55:43.8191430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8193046Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8193149Z 2025-03-14T04:55:43.8193460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8193614Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:55:43.8193684Z 2025-03-14T04:55:43.8193955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8194406Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8194484Z 2025-03-14T04:55:43.8194763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8196343Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8196421Z 2025-03-14T04:55:43.8196704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8196854Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:55:43.8196919Z 2025-03-14T04:55:43.8197172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8197610Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8197683Z 2025-03-14T04:55:43.8197945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8199470Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8199572Z 2025-03-14T04:55:43.8199852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8200013Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:55:43.8200078Z 2025-03-14T04:55:43.8200367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8200519Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:55:43.8200593Z 2025-03-14T04:55:43.8200842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8201269Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8201337Z 2025-03-14T04:55:43.8201606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8203129Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8203204Z 2025-03-14T04:55:43.8203493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8203633Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:55:43.8203707Z 2025-03-14T04:55:43.8203956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8204383Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8204467Z 2025-03-14T04:55:43.8204743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8206251Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8206364Z 2025-03-14T04:55:43.8206656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8206795Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:55:43.8206865Z 2025-03-14T04:55:43.8207114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8207546Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8207615Z 2025-03-14T04:55:43.8207888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8209434Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8209504Z 2025-03-14T04:55:43.8209789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8209949Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:55:43.8210022Z 2025-03-14T04:55:43.8210303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8210457Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:55:43.8210523Z 2025-03-14T04:55:43.8210778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8211220Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8211295Z 2025-03-14T04:55:43.8211555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8213158Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8213254Z 2025-03-14T04:55:43.8213561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8213714Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:55:43.8213783Z 2025-03-14T04:55:43.8214056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8214506Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8214585Z 2025-03-14T04:55:43.8214864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8216502Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8216581Z 2025-03-14T04:55:43.8216877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8217033Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:55:43.8217102Z 2025-03-14T04:55:43.8217370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8217834Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8217912Z 2025-03-14T04:55:43.8218187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8219821Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8219914Z 2025-03-14T04:55:43.8220210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8220385Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:55:43.8220458Z 2025-03-14T04:55:43.8220766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8220917Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:55:43.8220996Z 2025-03-14T04:55:43.8221262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8221710Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8221786Z 2025-03-14T04:55:43.8222083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8223691Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8223763Z 2025-03-14T04:55:43.8224068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8224268Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:55:43.8224349Z 2025-03-14T04:55:43.8224612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8225106Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8225211Z 2025-03-14T04:55:43.8225515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8227134Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8227218Z 2025-03-14T04:55:43.8227515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8227652Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:55:43.8227728Z 2025-03-14T04:55:43.8227978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8228417Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8228496Z 2025-03-14T04:55:43.8228761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8230311Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8230381Z 2025-03-14T04:55:43.8230673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8230844Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:55:43.8230913Z 2025-03-14T04:55:43.8231206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8231353Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:55:43.8231448Z 2025-03-14T04:55:43.8231696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8232120Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8232199Z 2025-03-14T04:55:43.8232471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8233992Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8234117Z 2025-03-14T04:55:43.8234410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8234546Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:55:43.8234622Z 2025-03-14T04:55:43.8234872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8235298Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8235366Z 2025-03-14T04:55:43.8235659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8237176Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8237247Z 2025-03-14T04:55:43.8237540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8237674Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:55:43.8237749Z 2025-03-14T04:55:43.8238015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8238453Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8238535Z 2025-03-14T04:55:43.8238809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8240332Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8240416Z 2025-03-14T04:55:43.8240707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8240864Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:55:43.8240938Z 2025-03-14T04:55:43.8241220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8241371Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:55:43.8241438Z 2025-03-14T04:55:43.8241696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8242129Z x_190: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8242206Z 2025-03-14T04:55:43.8242469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8243989Z x_191: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8244065Z 2025-03-14T04:55:43.8244349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8244510Z out_120: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:55:43.8244576Z 2025-03-14T04:55:43.8244832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8245255Z x_192: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_120 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8245342Z 2025-03-14T04:55:43.8245606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8247119Z x_193: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8247219Z 2025-03-14T04:55:43.8247502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8247648Z out_121: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:55:43.8247713Z 2025-03-14T04:55:43.8247967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8248393Z x_194: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8248470Z 2025-03-14T04:55:43.8248747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8250263Z x_195: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8250340Z 2025-03-14T04:55:43.8250592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8251057Z x_196: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:55:43.8251133Z 2025-03-14T04:55:43.8251406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8252975Z x_197: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8253057Z 2025-03-14T04:55:43.8253348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8253502Z x_195 += x_197; out_122: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:55:43.8253580Z 2025-03-14T04:55:43.8253862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8254018Z out_123: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:55:43.8254085Z 2025-03-14T04:55:43.8254349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8254778Z x_198: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8254845Z 2025-03-14T04:55:43.8255136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8256641Z x_199: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8256720Z 2025-03-14T04:55:43.8257003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8257149Z out_124: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:55:43.8257215Z 2025-03-14T04:55:43.8257469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8257915Z x_200: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_124 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8257998Z 2025-03-14T04:55:43.8258269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8259812Z x_201: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8259918Z 2025-03-14T04:55:43.8260224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8260380Z out_125: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:55:43.8260457Z 2025-03-14T04:55:43.8260724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8261189Z x_202: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8261261Z 2025-03-14T04:55:43.8261545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8263178Z x_203: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8263261Z 2025-03-14T04:55:43.8263557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8263725Z x_203 += out_123; out_126: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:55:43.8263801Z 2025-03-14T04:55:43.8264151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8264330Z out_127: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:55:43.8264420Z 2025-03-14T04:55:43.8264689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8265129Z x_204: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:55:43.8265226Z 2025-03-14T04:55:43.8265509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8267106Z x_205: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8267203Z 2025-03-14T04:55:43.8267507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8267660Z out_128: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:55:43.8267731Z 2025-03-14T04:55:43.8268006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8268447Z x_206: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_128 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:55:43.8268528Z 2025-03-14T04:55:43.8268818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8270407Z x_207: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8270487Z 2025-03-14T04:55:43.8270785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8270933Z out_129: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:55:43.8271003Z 2025-03-14T04:55:43.8271288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8271746Z x_208: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:55:43.8271841Z 2025-03-14T04:55:43.8272120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:55:43.8273674Z x_209: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:55:43.8273765Z 2025-03-14T04:55:43.8274083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:55:43.8274251Z x_209 += out_127; out_130: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:55:43.8274318Z 2025-03-14T04:55:43.8274609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:55:43.8274761Z out_131: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:55:43.8274833Z 2025-03-14T04:55:43.8275275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:43.8275439Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:55:43.8275519Z 2025-03-14T04:55:43.8275822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.8275965Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:55:43.8276039Z 2025-03-14T04:55:43.8276465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:55:43.8276625Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:55:43.8276692Z 2025-03-14T04:55:43.8276991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.8277131Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:55:43.8277207Z 2025-03-14T04:55:43.8277586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:55:43.8277776Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:55:43.8277892Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:55:43.8278023Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:55:43.8278090Z 2025-03-14T04:55:43.8278422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:55:43.8278566Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:55:43.8278640Z 2025-03-14T04:55:43.8278967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:55:43.8279096Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:55:43.8279162Z 2025-03-14T04:55:43.8279571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:55:43.8279794Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:55:43.8279862Z 2025-03-14T04:55:43.8280286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:55:43.8280415Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:55:43.8280849Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:55:43.8280973Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:55:43.8281101Z x_210: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:55:43.8281167Z 2025-03-14T04:55:43.8281640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:43.8281780Z tensor: "f32[82125, 4][4, 1]cpu" = x_210.to(torch.float32); x_210 = None 2025-03-14T04:55:43.8281855Z 2025-03-14T04:55:43.8282155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:55:43.8282944Z x_211: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_131, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_131 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:55:43.8283013Z 2025-03-14T04:55:43.8283292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:55:43.8283483Z x_212: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_211, inplace = False); x_211 = None 2025-03-14T04:55:43.8283558Z 2025-03-14T04:55:43.8283938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:55:43.8284822Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:55:43.8284902Z 2025-03-14T04:55:43.8285293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:55:43.8286113Z x_213: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_212, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_212 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:55:43.8286218Z 2025-03-14T04:55:43.8286571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:55:43.8286724Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:55:43.8286873Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:55:43.8286938Z 2025-03-14T04:55:43.8287362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:55:43.8287528Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_213.view(4, -1, 4, 73, 75); x_213 = None 2025-03-14T04:55:43.8287704Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:55:43.8287887Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:55:43.8287954Z 2025-03-14T04:55:43.8288356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:55:43.8288583Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:55:43.8288657Z 2025-03-14T04:55:43.8289087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:55:43.8289245Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:55:43.8289394Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:55:43.8289543Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:55:43.8289609Z 2025-03-14T04:55:43.8289993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:55:43.8290165Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:55:43.8290241Z 2025-03-14T04:55:43.8290553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:55:43.8290703Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:55:43.8290769Z 2025-03-14T04:55:43.8291105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:55:43.8291236Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:55:43.8291386Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:43.8291532Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:55:43.8291606Z 2025-03-14T04:55:43.8291923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:55:43.8292053Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:55:43.8292217Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:55:43.8292371Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:55:43.8292436Z 2025-03-14T04:55:43.8292748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:55:43.8292869Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:55:43.8292966Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:55:43.8293090Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:55:43.8293163Z 2025-03-14T04:55:43.8293469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:55:43.8293623Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:55:43.8293715Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:55:43.8293853Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:55:43.8293920Z 2025-03-14T04:55:43.8294271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:55:43.8294429Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:55:43.8294568Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:55:43.8294636Z 2025-03-14T04:55:43.8294939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:55:43.8295097Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:55:43.8295211Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:55:43.8295284Z 2025-03-14T04:55:43.8295579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:55:43.8295736Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:55:43.8295848Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:55:43.8295919Z 2025-03-14T04:55:43.8296218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:55:43.8296404Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:55:43.8296517Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:55:43.8296591Z 2025-03-14T04:55:43.8296943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:55:43.8297092Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:55:43.8297175Z 2025-03-14T04:55:43.8297520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:55:43.8297657Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:55:43.8297730Z 2025-03-14T04:55:43.8298072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:55:43.8298242Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:55:43.8298371Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:55:43.8298531Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:55:43.8298670Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:55:43.8298746Z 2025-03-14T04:55:43.8299092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:55:43.8299241Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:55:43.8299362Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:55:43.8299523Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:55:43.8299660Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:55:43.8299734Z 2025-03-14T04:55:43.8300061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:55:43.8300190Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:55:43.8300361Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:55:43.8300503Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:55:43.8300567Z 2025-03-14T04:55:43.8300907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:55:43.8301031Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:55:43.8301197Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:55:43.8301338Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:55:43.8301404Z 2025-03-14T04:55:43.8301724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:55:43.8301823Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:55:43.8301948Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:55:43.8302014Z 2025-03-14T04:55:43.8302334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:55:43.8302432Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:55:43.8302570Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:55:43.8302636Z 2025-03-14T04:55:43.8302942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:55:43.8303072Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:55:43.8303207Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:55:43.8303275Z 2025-03-14T04:55:43.8303585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:55:43.8303697Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:55:43.8303850Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:55:43.8303920Z 2025-03-14T04:55:43.8304359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:55:43.8304561Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:55:43.8304638Z 2025-03-14T04:55:43.8304983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:55:43.8305155Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:55:43.8305222Z 2025-03-14T04:55:43.8305620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:55:43.8305808Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:55:43.8305883Z 2025-03-14T04:55:43.8306357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:55:43.8306501Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:55:43.8306586Z 2025-03-14T04:55:43.8306890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.8307033Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:55:43.8307106Z 2025-03-14T04:55:43.8307534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:55:43.8307655Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:55:43.8307760Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:55:43.8307881Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:55:43.8307947Z 2025-03-14T04:55:43.8308411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:55:43.8308573Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:55:43.8308814Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:55:43.8308903Z 2025-03-14T04:55:43.8309360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:55:43.8309548Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:55:43.8309614Z 2025-03-14T04:55:43.8309917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:55:43.8310068Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:55:43.8310141Z 2025-03-14T04:55:43.8310521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:55:43.8310698Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:55:43.8310763Z 2025-03-14T04:55:43.8311074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:55:43.8311220Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:55:43.8311293Z 2025-03-14T04:55:43.8311667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:55:43.8311819Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:55:43.8311888Z 2025-03-14T04:55:43.8312375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:55:43.8312513Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:55:43.8312646Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:55:43.8312805Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:55:43.8312964Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:55:43.8313032Z 2025-03-14T04:55:43.8313402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:55:43.8313521Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:55:43.8313596Z 2025-03-14T04:56:03.5598343Z 2025-03-14T04:56:03.5599241Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:03.5600690Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:56:03.5602300Z l_features_res5_ = L_features_res5_ 2025-03-14T04:56:03.5603172Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:56:03.5603737Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:56:03.5604224Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:56:03.5604833Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:56:03.5605418Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:56:03.5605984Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:56:03.5606693Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:56:03.5607080Z 2025-03-14T04:56:03.5607745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:56:03.5608530Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:56:03.5608817Z 2025-03-14T04:56:03.5609235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5609742Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:56:03.5610008Z 2025-03-14T04:56:03.5610664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:56:03.5611419Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:56:03.5611695Z 2025-03-14T04:56:03.5612085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5612593Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:56:03.5612861Z 2025-03-14T04:56:03.5613394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:56:03.5614026Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:56:03.5614370Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:56:03.5614722Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:56:03.5614972Z 2025-03-14T04:56:03.5615501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:56:03.5616032Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:56:03.5616288Z 2025-03-14T04:56:03.5616719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:56:03.5617275Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:56:03.5617525Z 2025-03-14T04:56:03.5618007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:56:03.5618685Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:56:03.5619026Z 2025-03-14T04:56:03.5619545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:56:03.5620176Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:56:03.5620691Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:56:03.5621191Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:56:03.5621514Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:56:03.5621778Z 2025-03-14T04:56:03.5622192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:56:03.5622692Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:56:03.5622950Z 2025-03-14T04:56:03.5623311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:56:03.5624410Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:56:03.5625181Z 2025-03-14T04:56:03.5625559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:56:03.5626083Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:56:03.5626396Z 2025-03-14T04:56:03.5626878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:56:03.5627992Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:56:03.5628752Z 2025-03-14T04:56:03.5629220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:56:03.5630224Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:56:03.5630930Z 2025-03-14T04:56:03.5631353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:56:03.5631896Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:56:03.5632244Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:56:03.5632519Z 2025-03-14T04:56:03.5633023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:56:03.5633657Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:56:03.5634038Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:56:03.5634434Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:56:03.5634727Z 2025-03-14T04:56:03.5635221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:56:03.5635894Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:56:03.5636215Z 2025-03-14T04:56:03.5636729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:56:03.5637363Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:56:03.5637718Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:56:03.5638060Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:56:03.5638318Z 2025-03-14T04:56:03.5638780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:03.5639379Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:56:03.5639671Z 2025-03-14T04:56:03.5640074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:03.5640581Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:56:03.5640840Z 2025-03-14T04:56:03.5641257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:03.5641758Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:03.5642069Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:03.5642398Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:56:03.5642667Z 2025-03-14T04:56:03.5643077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:03.5643565Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:03.5643859Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:03.5644178Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:03.5644439Z 2025-03-14T04:56:03.5644831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:03.5645309Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:03.5645570Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:56:03.5645840Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:56:03.5646083Z 2025-03-14T04:56:03.5646477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:03.5647006Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:03.5647299Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:56:03.5647586Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:56:03.5647826Z 2025-03-14T04:56:03.5648231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:03.5648773Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:03.5649140Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:56:03.5649452Z 2025-03-14T04:56:03.5649837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:03.5650338Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:03.5650658Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:56:03.5650893Z 2025-03-14T04:56:03.5651275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:03.5651772Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:03.5652096Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:56:03.5652333Z 2025-03-14T04:56:03.5652723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:03.5653342Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:03.5653696Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:56:03.5653962Z 2025-03-14T04:56:03.5654460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:03.5655009Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:03.5655270Z 2025-03-14T04:56:03.5655695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:03.5656233Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:03.5656501Z 2025-03-14T04:56:03.5657090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:03.5657781Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:03.5658113Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:56:03.5658524Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:03.5658910Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:56:03.5659182Z 2025-03-14T04:56:03.5659660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:03.5660219Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:03.5660546Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:56:03.5660916Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:03.5661280Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:56:03.5661555Z 2025-03-14T04:56:03.5662000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:03.5662531Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:03.5662870Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:03.5663225Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:56:03.5663486Z 2025-03-14T04:56:03.5663927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:03.5664540Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:03.5664900Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:03.5665275Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:56:03.5665545Z 2025-03-14T04:56:03.5665962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:03.5666466Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:03.5666753Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:03.5666998Z 2025-03-14T04:56:03.5667404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:03.5667885Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:03.5668181Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:03.5668423Z 2025-03-14T04:56:03.5668827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:03.5669318Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:03.5669624Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:03.5669882Z 2025-03-14T04:56:03.5670289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:03.5670779Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:03.5671079Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:03.5671339Z 2025-03-14T04:56:03.5671794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:03.5672392Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:03.5672695Z 2025-03-14T04:56:03.5673146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:03.5673709Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:56:03.5674020Z 2025-03-14T04:56:03.5674505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:56:03.5675840Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:56:03.5676142Z 2025-03-14T04:56:03.5676729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:56:03.5677461Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:56:03.5677726Z 2025-03-14T04:56:03.5678123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5678626Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:56:03.5678899Z 2025-03-14T04:56:03.5679434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:56:03.5680043Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:56:03.5680322Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:56:03.5680600Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:56:03.5680841Z 2025-03-14T04:56:03.5681689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:56:03.5682399Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:56:03.5682868Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:56:03.5683291Z 2025-03-14T04:56:03.5683850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:56:03.5684533Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:56:03.5684825Z 2025-03-14T04:56:03.5685217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5685735Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:56:03.5686015Z 2025-03-14T04:56:03.5686503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:56:03.5687079Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:56:03.5687344Z 2025-03-14T04:56:03.5687727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:56:03.5688216Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:56:03.5688472Z 2025-03-14T04:56:03.5688968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:56:03.5689541Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:56:03.5689834Z 2025-03-14T04:56:03.5690406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:56:03.5691080Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:56:03.5691397Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:03.5691755Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:56:03.5692107Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:56:03.5693348Z 2025-03-14T04:56:03.5693822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:56:03.5694374Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:56:03.5694616Z 2025-03-14T04:56:03.5694797Z 2025-03-14T04:56:03.5694902Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:03.5696209Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T04:56:03.5697493Z l_features_res5_ = L_features_res5_ 2025-03-14T04:56:03.5697932Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:56:03.5698449Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:56:03.5698925Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:56:03.5699449Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:56:03.5700024Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:56:03.5700581Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:56:03.5701120Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:56:03.5701480Z 2025-03-14T04:56:03.5702004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:56:03.5702628Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T04:56:03.5702894Z 2025-03-14T04:56:03.5703297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5703782Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:56:03.5704044Z 2025-03-14T04:56:03.5704710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:56:03.5705372Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T04:56:03.5705639Z 2025-03-14T04:56:03.5706028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5706550Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:56:03.5706815Z 2025-03-14T04:56:03.5707289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:56:03.5707913Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:56:03.5708256Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T04:56:03.5708533Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:56:03.5708781Z 2025-03-14T04:56:03.5709262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:56:03.5709845Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:56:03.5710104Z 2025-03-14T04:56:03.5710571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:56:03.5711125Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:56:03.5711376Z 2025-03-14T04:56:03.5711899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:56:03.5712622Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:56:03.5712966Z 2025-03-14T04:56:03.5713544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:56:03.5714211Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:56:03.5714762Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:56:03.5715304Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:56:03.5715616Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:56:03.5715846Z 2025-03-14T04:56:03.5716233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:56:03.5716710Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:56:03.5716977Z 2025-03-14T04:56:03.5717326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:56:03.5718253Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:56:03.5718977Z 2025-03-14T04:56:03.5719348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:56:03.5719869Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:56:03.5720172Z 2025-03-14T04:56:03.5720645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:56:03.5721733Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:56:03.5722481Z 2025-03-14T04:56:03.5722933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:56:03.5723943Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:56:03.5724655Z 2025-03-14T04:56:03.5725083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:56:03.5725626Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:56:03.5725969Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:56:03.5726250Z 2025-03-14T04:56:03.5726753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:56:03.5727371Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T04:56:03.5727752Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T04:56:03.5728150Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T04:56:03.5728443Z 2025-03-14T04:56:03.5728933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:56:03.5729599Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:56:03.5729914Z 2025-03-14T04:56:03.5730418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:56:03.5731068Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:56:03.5731422Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:56:03.5731766Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:56:03.5732048Z 2025-03-14T04:56:03.5732514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:03.5733103Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:56:03.5733395Z 2025-03-14T04:56:03.5733791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:03.5734328Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:56:03.5734588Z 2025-03-14T04:56:03.5734981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:03.5735469Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:03.5735773Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:03.5736093Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:56:03.5736354Z 2025-03-14T04:56:03.5736743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:03.5737225Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:03.5737521Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:03.5737842Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:03.5738110Z 2025-03-14T04:56:03.5738520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:03.5738998Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:03.5739262Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:56:03.5739541Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T04:56:03.5739781Z 2025-03-14T04:56:03.5740177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:03.5740873Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:03.5741168Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:56:03.5741445Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T04:56:03.5741697Z 2025-03-14T04:56:03.5742113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:03.5742625Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:03.5742950Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:56:03.5743184Z 2025-03-14T04:56:03.5743577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:03.5744082Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:03.5744510Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:56:03.5744752Z 2025-03-14T04:56:03.5745156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:03.5745671Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:03.5746029Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T04:56:03.5746264Z 2025-03-14T04:56:03.5746656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:03.5747192Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:03.5747570Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T04:56:03.5747812Z 2025-03-14T04:56:03.5748250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:03.5748799Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:03.5749068Z 2025-03-14T04:56:03.5749500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:03.5750036Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:03.5750299Z 2025-03-14T04:56:03.5750736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:03.5751301Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:03.5751639Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T04:56:03.5751989Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:03.5752356Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T04:56:03.5752628Z 2025-03-14T04:56:03.5753104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:03.5753674Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:03.5754009Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T04:56:03.5754355Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:03.5754719Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T04:56:03.5754994Z 2025-03-14T04:56:03.5755427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:03.5755953Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:03.5756298Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:03.5756663Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T04:56:03.5756931Z 2025-03-14T04:56:03.5757372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:03.5757948Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:03.5758288Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:03.5758644Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T04:56:03.5758919Z 2025-03-14T04:56:03.5759319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:03.5759787Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:03.5760055Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:03.5760294Z 2025-03-14T04:56:03.5760686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:03.5761169Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:03.5761436Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:03.5761670Z 2025-03-14T04:56:03.5762064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:03.5762541Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:03.5762835Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:03.5763094Z 2025-03-14T04:56:03.5763485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:03.5763964Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:03.5764259Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:03.5764509Z 2025-03-14T04:56:03.5764943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:03.5765526Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:03.5765826Z 2025-03-14T04:56:03.5766274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:03.5766824Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:56:03.5767108Z 2025-03-14T04:56:03.5767576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:56:03.5768181Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:56:03.5768472Z 2025-03-14T04:56:03.5769054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:56:03.5769732Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:56:03.5769980Z 2025-03-14T04:56:03.5770355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5770836Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:56:03.5771092Z 2025-03-14T04:56:03.5771615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:56:03.5772197Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T04:56:03.5772466Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:56:03.5772752Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:56:03.5772973Z 2025-03-14T04:56:03.5773510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:56:03.5774162Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:56:03.5774629Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T04:56:03.5774973Z 2025-03-14T04:56:03.5775504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:56:03.5776159Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:56:03.5776437Z 2025-03-14T04:56:03.5776809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:03.5777313Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:56:03.5777591Z 2025-03-14T04:56:03.5778059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:56:03.5778643Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:56:03.5778912Z 2025-03-14T04:56:03.5779297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:56:03.5779793Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T04:56:03.5780061Z 2025-03-14T04:56:03.5780546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:56:03.5781116Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:56:03.5781385Z 2025-03-14T04:56:03.5782185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:56:03.5782939Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T04:56:03.5783289Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:03.5783659Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:56:03.5784043Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:56:03.5784374Z 2025-03-14T04:56:03.5784847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:56:03.5785413Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:56:03.5785652Z 2025-03-14T04:56:07.0294322Z 2025-03-14T04:56:07.0300528Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:07.0301403Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T04:56:07.0301983Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:56:07.0302273Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:56:07.0302594Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:56:07.0302908Z 2025-03-14T04:56:07.0303540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:56:07.0304421Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:56:07.0304898Z 2025-03-14T04:56:07.0305537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:56:07.0306237Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:56:07.0306649Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:56:07.0307053Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:56:07.0307322Z 2025-03-14T04:56:07.0307802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:07.0308417Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:56:07.0308758Z 2025-03-14T04:56:07.0309167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:07.0309691Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:56:07.0309961Z 2025-03-14T04:56:07.0310419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:07.0310936Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:07.0311252Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:07.0311579Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:56:07.0311852Z 2025-03-14T04:56:07.0312275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:07.0312792Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:07.0313114Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:07.0313445Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:56:07.0313717Z 2025-03-14T04:56:07.0314118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:07.0314609Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:07.0314876Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T04:56:07.0315144Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:56:07.0315391Z 2025-03-14T04:56:07.0315818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:07.0316341Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:07.0316668Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T04:56:07.0316944Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:56:07.0317195Z 2025-03-14T04:56:07.0317619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:07.0318134Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:07.0318483Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:56:07.0318722Z 2025-03-14T04:56:07.0319110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:07.0319611Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:07.0319935Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:56:07.0320170Z 2025-03-14T04:56:07.0320557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:07.0321056Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:07.0321377Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:56:07.0321616Z 2025-03-14T04:56:07.0322006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:07.0322545Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:07.0322894Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:56:07.0323131Z 2025-03-14T04:56:07.0323573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:07.0324104Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:07.0324366Z 2025-03-14T04:56:07.0324786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:07.0325308Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:07.0325564Z 2025-03-14T04:56:07.0325996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:07.0326533Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:07.0326859Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:56:07.0327196Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:07.0327545Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:56:07.0327803Z 2025-03-14T04:56:07.0328234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:07.0328799Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:07.0329113Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:56:07.0329438Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:07.0329807Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:56:07.0330067Z 2025-03-14T04:56:07.0330491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:07.0330993Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:07.0331328Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:07.0331703Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:56:07.0331960Z 2025-03-14T04:56:07.0332382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:07.0332890Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:07.0333229Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:07.0333587Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:56:07.0333847Z 2025-03-14T04:56:07.0334248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:07.0334720Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:07.0334994Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:07.0335233Z 2025-03-14T04:56:07.0335630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:07.0336090Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:07.0336359Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:07.0336597Z 2025-03-14T04:56:07.0337010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:07.0337490Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:07.0337789Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:07.0338046Z 2025-03-14T04:56:07.0338438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:07.0338915Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:07.0339206Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:07.0339456Z 2025-03-14T04:56:07.0339888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:07.0340470Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:07.0340764Z 2025-03-14T04:56:07.0341186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:07.0341760Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T04:56:07.0342050Z 2025-03-14T04:56:07.0342514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:56:07.0343144Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:56:07.0343449Z 2025-03-14T04:56:07.0344023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:56:07.0344941Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:56:07.0345263Z 2025-03-14T04:56:07.0345668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:07.0346161Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:56:07.0346454Z 2025-03-14T04:56:07.0346981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:56:07.0347648Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:56:07.0347986Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T04:56:07.0348260Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:56:07.0348493Z 2025-03-14T04:56:07.0349050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:56:07.0349731Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:56:07.0350188Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T04:56:07.0350543Z 2025-03-14T04:56:07.0351110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:56:07.0351792Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:56:07.0352081Z 2025-03-14T04:56:07.0352469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:56:07.0352980Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T04:56:07.0353253Z 2025-03-14T04:56:07.0353726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:56:07.0354320Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T04:56:07.0354591Z 2025-03-14T04:56:07.0354978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:56:07.0355475Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T04:56:07.0355744Z 2025-03-14T04:56:07.0356232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:56:07.0356806Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T04:56:07.0357072Z 2025-03-14T04:56:07.0357641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:56:07.0358331Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:56:07.0358646Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:07.0358981Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:56:07.0359347Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:56:07.0359616Z 2025-03-14T04:56:07.0360070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:56:07.0360600Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:56:07.0360838Z 2025-03-14T04:56:14.1727331Z 2025-03-14T04:56:14.1729737Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:14.1732133Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:14.1734752Z l_stack0_ = L_stack0_ 2025-03-14T04:56:14.1735154Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:56:14.1735648Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:56:14.1736124Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:56:14.1736640Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:56:14.1737249Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:56:14.1737846Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:56:14.1738414Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:56:14.1738979Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:56:14.1739483Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1739987Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1740409Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1740823Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1741202Z 2025-03-14T04:56:14.1741651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:56:14.1742145Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:56:14.1742853Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:56:14.1743625Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:56:14.1744534Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:56:14.1745349Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:56:14.1745672Z 2025-03-14T04:56:14.1746083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:56:14.1747055Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:56:14.1747759Z 2025-03-14T04:56:14.1748174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:56:14.1749191Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:56:14.1749923Z 2025-03-14T04:56:14.1752005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1752564Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1752834Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:14.1753076Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:14.1753358Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1753625Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:14.1753879Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:14.1754105Z 2025-03-14T04:56:14.1754516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:14.1755461Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1756231Z 2025-03-14T04:56:14.1756696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:14.1757271Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:56:14.1757576Z 2025-03-14T04:56:14.1757986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:14.1758517Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:14.1758796Z 2025-03-14T04:56:14.1759201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:14.1759728Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:14.1760042Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1760366Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:14.1760640Z 2025-03-14T04:56:14.1761038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:14.1762938Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:14.1763619Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:14.1763971Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:14.1764252Z 2025-03-14T04:56:14.1764670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:14.1765164Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1765425Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:14.1765686Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:14.1765932Z 2025-03-14T04:56:14.1766372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:14.1766881Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:14.1767169Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:14.1767434Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:14.1767681Z 2025-03-14T04:56:14.1768110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:14.1768620Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:14.1768950Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:14.1769187Z 2025-03-14T04:56:14.1769573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:14.1770105Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:14.1770428Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:14.1770661Z 2025-03-14T04:56:14.1771043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:14.1771568Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:14.1771891Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:14.1772127Z 2025-03-14T04:56:14.1772516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:14.1773143Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:14.1773499Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:14.1773738Z 2025-03-14T04:56:14.1774166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:14.1774725Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:14.1774984Z 2025-03-14T04:56:14.1775401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:14.1775927Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:14.1776184Z 2025-03-14T04:56:14.1776619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:14.1777157Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:14.1777475Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:14.1777810Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:14.1778160Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:14.1778423Z 2025-03-14T04:56:14.1778880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:14.1779416Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:14.1779752Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:14.1780084Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:14.1780429Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:14.1780687Z 2025-03-14T04:56:14.1781125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:14.1782455Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:14.1782924Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:14.1783299Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:14.1783571Z 2025-03-14T04:56:14.1784035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:14.1784655Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:14.1785002Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:14.1785371Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:14.1785724Z 2025-03-14T04:56:14.1786152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:14.1786665Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:14.1786981Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:14.1787219Z 2025-03-14T04:56:14.1787669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:14.1788130Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:14.1788390Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:14.1788625Z 2025-03-14T04:56:14.1789066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:14.1789545Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:14.1789841Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:14.1790094Z 2025-03-14T04:56:14.1790491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:14.1790971Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:14.1791261Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:14.1791509Z 2025-03-14T04:56:14.1791949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:14.1792544Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:14.1792915Z 2025-03-14T04:56:14.1793350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:14.1793914Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:14.1794202Z 2025-03-14T04:56:14.1794681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:14.1795296Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:14.1795666Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:14.1795963Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:14.1796273Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:14.1796599Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:14.1796863Z 2025-03-14T04:56:14.1797242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1797803Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1798154Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:14.1798403Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:14.1798773Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1799132Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:14.1799408Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:14.1799650Z 2025-03-14T04:56:14.1800077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:14.1800659Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:56:14.1800954Z 2025-03-14T04:56:14.1801405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:14.1802017Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:14.1802401Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:14.1802722Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:14.1803037Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:14.1803368Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:14.1803635Z 2025-03-14T04:56:14.1804207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:14.1804920Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:14.1805271Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:14.1805621Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:14.1805973Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:14.1806277Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:14.1806528Z 2025-03-14T04:56:14.1806983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:14.1807519Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:14.1807763Z 2025-03-14T04:56:14.1807904Z 2025-03-14T04:56:14.1808017Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:14.1809950Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:14.1812031Z l_stack0_ = L_stack0_ 2025-03-14T04:56:14.1812392Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:56:14.1812878Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:56:14.1813356Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:56:14.1813818Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:56:14.1814350Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:56:14.1814911Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:56:14.1815469Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:56:14.1816021Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:56:14.1816517Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1816921Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1817324Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1817726Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1818030Z 2025-03-14T04:56:14.1818412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:56:14.1818900Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:56:14.1819611Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:56:14.1820330Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:56:14.1821072Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:56:14.1821776Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:56:14.1822058Z 2025-03-14T04:56:14.1822459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:56:14.1823416Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:56:14.1824214Z 2025-03-14T04:56:14.1824682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:56:14.1825759Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:56:14.1826535Z 2025-03-14T04:56:14.1826967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1827436Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1827695Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:14.1827933Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:14.1828234Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1828498Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:14.1828750Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:14.1828974Z 2025-03-14T04:56:14.1829345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:14.1830282Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1830997Z 2025-03-14T04:56:14.1831457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:14.1832030Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:56:14.1832302Z 2025-03-14T04:56:14.1832695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:14.1833213Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:14.1833496Z 2025-03-14T04:56:14.1833899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:14.1834396Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:14.1834702Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1835021Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:14.1835289Z 2025-03-14T04:56:14.1835709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:14.1836206Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:14.1836500Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:14.1836821Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:14.1837082Z 2025-03-14T04:56:14.1837483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:14.1837965Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1838226Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:14.1838484Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:14.1838713Z 2025-03-14T04:56:14.1839115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:14.1839620Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:14.1839908Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:14.1840173Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:14.1840449Z 2025-03-14T04:56:14.1840870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:14.1841386Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:14.1841731Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:14.1841966Z 2025-03-14T04:56:14.1842352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:14.1842862Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:14.1843182Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:14.1843437Z 2025-03-14T04:56:14.1843832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:14.1844344Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:14.1844666Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:14.1844905Z 2025-03-14T04:56:14.1845300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:14.1845850Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:14.1846198Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:14.1846436Z 2025-03-14T04:56:14.1846869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:14.1847413Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:14.1847673Z 2025-03-14T04:56:14.1848095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:14.1848641Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:14.1848896Z 2025-03-14T04:56:14.1849326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:14.1849865Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:14.1850185Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:14.1850519Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:14.1850863Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:14.1851121Z 2025-03-14T04:56:14.1851560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:14.1852098Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:14.1852412Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:14.1852740Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:14.1853081Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:14.1853340Z 2025-03-14T04:56:14.1853782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:14.1854285Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:14.1854628Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:14.1854969Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:14.1855217Z 2025-03-14T04:56:14.1855632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:14.1856130Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:14.1856473Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:14.1856819Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:14.1857068Z 2025-03-14T04:56:14.1857458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:14.1857942Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:14.1858212Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:14.1858469Z 2025-03-14T04:56:14.1858889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:14.1859373Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:14.1859652Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:14.1859901Z 2025-03-14T04:56:14.1860317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:14.1860816Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:14.1861128Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:14.1861389Z 2025-03-14T04:56:14.1861830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:14.1862334Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:14.1862640Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:14.1862899Z 2025-03-14T04:56:14.1863415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:14.1864072Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:14.1865107Z 2025-03-14T04:56:14.1865621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:14.1866244Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:14.1866555Z 2025-03-14T04:56:14.1867023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:14.1867658Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:14.1868075Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:14.1868377Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:14.1868690Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:14.1869021Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:14.1869312Z 2025-03-14T04:56:14.1869705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1870281Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1870643Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:14.1870893Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:14.1871295Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1871661Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:14.1871917Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:14.1872149Z 2025-03-14T04:56:14.1872599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:14.1873180Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:56:14.1873481Z 2025-03-14T04:56:14.1873929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:14.1874559Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:14.1874929Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:14.1875266Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:14.1875567Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:14.1875886Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:14.1876152Z 2025-03-14T04:56:14.1876717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:14.1877418Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:14.1877768Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:14.1878114Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:14.1878458Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:14.1878756Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:14.1879000Z 2025-03-14T04:56:14.1879451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:14.1880012Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:14.1880246Z 2025-03-14T04:56:14.1880387Z 2025-03-14T04:56:14.1880485Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:14.1882614Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:14.1884609Z l_stack0_ = L_stack0_ 2025-03-14T04:56:14.1884982Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:56:14.1885458Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:56:14.1885925Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:56:14.1886393Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:56:14.1886904Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:56:14.1887465Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:56:14.1888022Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:56:14.1888586Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:56:14.1889063Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1889468Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1889864Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1890285Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1890580Z 2025-03-14T04:56:14.1890955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:56:14.1891436Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:56:14.1892119Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:56:14.1892828Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:56:14.1893545Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:56:14.1894255Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:56:14.1894538Z 2025-03-14T04:56:14.1894962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:56:14.1895919Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:56:14.1896634Z 2025-03-14T04:56:14.1897048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:56:14.1898039Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:56:14.1898795Z 2025-03-14T04:56:14.1899174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1899641Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1899896Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:14.1900131Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:14.1900410Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1900674Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:14.1900923Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:14.1901147Z 2025-03-14T04:56:14.1901523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:14.1902513Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1903263Z 2025-03-14T04:56:14.1903756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:14.1904508Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:56:14.1904803Z 2025-03-14T04:56:14.1905232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:14.1905786Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:14.1906073Z 2025-03-14T04:56:14.1906478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:14.1906982Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:14.1907288Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1907608Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:14.1907871Z 2025-03-14T04:56:14.1908302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:14.1908827Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:14.1909139Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:14.1909491Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:14.1909777Z 2025-03-14T04:56:14.1910181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:14.1910687Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1910946Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:14.1911206Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:14.1911451Z 2025-03-14T04:56:14.1911849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:14.1912375Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:14.1912661Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:14.1912923Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:14.1913165Z 2025-03-14T04:56:14.1913572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:14.1914083Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:14.1914410Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:14.1914650Z 2025-03-14T04:56:14.1915036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:14.1915541Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:14.1915864Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:14.1916099Z 2025-03-14T04:56:14.1916486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:14.1916987Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:14.1917311Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:14.1917537Z 2025-03-14T04:56:14.1917945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:14.1918485Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:14.1918860Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:14.1919099Z 2025-03-14T04:56:14.1919527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:14.1920062Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:14.1920327Z 2025-03-14T04:56:14.1920756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:14.1921283Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:14.1921537Z 2025-03-14T04:56:14.1921973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:14.1922532Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:14.1922857Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:14.1923192Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:14.1923556Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:14.1923815Z 2025-03-14T04:56:14.1924257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:14.1924801Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:14.1925118Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:14.1925464Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:14.1925805Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:14.1926062Z 2025-03-14T04:56:14.1926485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:14.1926991Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:14.1927313Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:14.1927645Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:14.1927891Z 2025-03-14T04:56:14.1928304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:14.1928797Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:14.1929119Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:14.1929457Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:14.1929706Z 2025-03-14T04:56:14.1930096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:14.1930565Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:14.1930826Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:14.1931059Z 2025-03-14T04:56:14.1931456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:14.1931917Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:14.1932176Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:14.1932407Z 2025-03-14T04:56:14.1932803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:14.1933280Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:14.1933570Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:14.1933811Z 2025-03-14T04:56:14.1936653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:14.1937279Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:14.1937593Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:14.1937845Z 2025-03-14T04:56:14.1938344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:14.1938933Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:14.1939291Z 2025-03-14T04:56:14.1939720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:14.1940287Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:14.1940577Z 2025-03-14T04:56:14.1941024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:14.1941676Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:14.1942042Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:14.1942334Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:14.1942646Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:14.1942966Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:14.1943230Z 2025-03-14T04:56:14.1943616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1944268Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1944630Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:14.1944877Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:14.1945250Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1945616Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:14.1945908Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:14.1946152Z 2025-03-14T04:56:14.1946609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:14.1947169Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:56:14.1947458Z 2025-03-14T04:56:14.1947903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:14.1948509Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:14.1948868Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:14.1949163Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:14.1949469Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:14.1949787Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:14.1950050Z 2025-03-14T04:56:14.1950600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:14.1951298Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:14.1951662Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:14.1952005Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:14.1952348Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:14.1952662Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:14.1952908Z 2025-03-14T04:56:14.1953344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:14.1953863Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:14.1954092Z 2025-03-14T04:56:14.1954248Z 2025-03-14T04:56:14.1954340Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:14.1956270Z def forward(self, L_stack0_: "f32[3225, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:14.1958308Z l_stack0_ = L_stack0_ 2025-03-14T04:56:14.1958653Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:56:14.1959131Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:56:14.1959609Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:56:14.1960088Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:56:14.1960600Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:56:14.1961155Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:56:14.1961709Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:56:14.1962262Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:56:14.1962739Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1964237Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1964753Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1965159Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:14.1965446Z 2025-03-14T04:56:14.1965828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:56:14.1966355Z x: "f32[3225, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:56:14.1967056Z x_1: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:56:14.1967805Z x_2: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:56:14.1968520Z x_3: "f32[3225, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:56:14.1969246Z x_4: "f32[3225, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:56:14.1969527Z 2025-03-14T04:56:14.1969931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:56:14.1970892Z scores: "f32[3225, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:56:14.1971599Z 2025-03-14T04:56:14.1972015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:56:14.1973064Z proposal_deltas: "f32[3225, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:56:14.1973801Z 2025-03-14T04:56:14.1974183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.1977224Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1977498Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:14.1978192Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:14.1978478Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:14.1978748Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:14.1979000Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:14.1979231Z 2025-03-14T04:56:14.1979612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:14.1980556Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.1981271Z 2025-03-14T04:56:14.1981936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:14.1982518Z deltas: "f32[3225, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:56:14.1982792Z 2025-03-14T04:56:14.1983191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:14.1983800Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:14.1984178Z 2025-03-14T04:56:14.1984641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:14.1985232Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:14.1985561Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1985927Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:14.1986199Z 2025-03-14T04:56:14.1986608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:14.1987144Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:14.1987446Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:14.1987765Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:14.1988030Z 2025-03-14T04:56:14.1988431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:14.1988920Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:14.1989180Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:14.1989438Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:14.1989678Z 2025-03-14T04:56:14.1990078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:14.1990583Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:14.1990868Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:14.1991132Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:14.1991378Z 2025-03-14T04:56:14.1991792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:14.1992334Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:14.1992664Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:14.1992903Z 2025-03-14T04:56:14.1993286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:14.1993796Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:14.1994120Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:14.1994358Z 2025-03-14T04:56:14.1994743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:14.1995249Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:14.1995579Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:14.1995817Z 2025-03-14T04:56:14.1996202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:14.1996738Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:14.1997106Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:14.1997343Z 2025-03-14T04:56:14.1997772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:14.1998340Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:14.1998599Z 2025-03-14T04:56:14.1999015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:14.1999532Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:14.1999782Z 2025-03-14T04:56:14.2000236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:14.2000769Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:14.2001084Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:14.2001416Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:14.2001762Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:14.2002016Z 2025-03-14T04:56:14.2002451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:14.2002989Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:14.2003309Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:14.2003635Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:14.2003978Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:14.2004236Z 2025-03-14T04:56:14.2004657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:14.2005186Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:14.2005510Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:14.2005856Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:14.2006104Z 2025-03-14T04:56:14.2006529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:14.2007031Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:14.2007356Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:14.2007704Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:14.2007960Z 2025-03-14T04:56:14.2008361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:14.2010058Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:14.2010349Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:14.2010590Z 2025-03-14T04:56:14.2011075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:14.2011548Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:14.2011813Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:14.2012054Z 2025-03-14T04:56:14.2012449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:14.2012956Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:14.2013253Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:14.2013502Z 2025-03-14T04:56:14.2013896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:14.2014403Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:14.2014696Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:14.2014947Z 2025-03-14T04:56:14.2015380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:14.2015966Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:14.2016261Z 2025-03-14T04:56:14.2016689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:14.2017240Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:14.2017553Z 2025-03-14T04:56:14.2017998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:14.2018611Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:14.2018974Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:14.2019268Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:14.2019593Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:14.2019963Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:14.2020234Z 2025-03-14T04:56:14.2020616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:14.2021174Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.2021528Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:14.2021773Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:14.2022141Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:14.2022494Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:14.2022744Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:14.2022965Z 2025-03-14T04:56:14.2023386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:14.2023938Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:56:14.2024304Z 2025-03-14T04:56:14.2024816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:14.2025460Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:14.2025836Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:14.2026157Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:14.2026466Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:14.2026792Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:14.2027060Z 2025-03-14T04:56:14.2027617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:14.2028349Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:14.2028708Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:14.2029065Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:14.2029420Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:14.2029730Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:14.2029985Z 2025-03-14T04:56:14.2030442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:14.2030982Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:14.2031234Z 2025-03-14T04:56:16.4149033Z 2025-03-14T04:56:16.4153458Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:16.4154589Z def forward(self, L_predictions_0_: "f32[3225, 81][81, 1]cpu", L_predictions_1_: "f32[3225, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:16.4155727Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:56:16.4157467Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:56:16.4157920Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4160892Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4161378Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4166483Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4167680Z 2025-03-14T04:56:16.4168256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:16.4168837Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:16.4169110Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:16.4169355Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:16.4169665Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:16.4169951Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:16.4170206Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:16.4170588Z 2025-03-14T04:56:16.4171288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:16.4172829Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4173721Z 2025-03-14T04:56:16.4174325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:16.4175035Z deltas: "f32[3225, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:56:16.4175406Z 2025-03-14T04:56:16.4176022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:16.4176758Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:16.4177148Z 2025-03-14T04:56:16.4177662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:16.4178296Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:16.4178716Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:16.4179123Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:16.4179468Z 2025-03-14T04:56:16.4180044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:16.4180669Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:16.4181116Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:16.4181797Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:16.4182159Z 2025-03-14T04:56:16.4195241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:16.4195966Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:16.4196386Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:16.4196673Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:16.4196933Z 2025-03-14T04:56:16.4197377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:16.4197953Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:16.4198280Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:16.4198623Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:16.4198880Z 2025-03-14T04:56:16.4199317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:16.4199859Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:16.4200208Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:16.4200462Z 2025-03-14T04:56:16.4200874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:16.4201392Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:16.4201781Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:16.4202032Z 2025-03-14T04:56:16.4202441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:16.4203013Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:16.4203345Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:16.4203585Z 2025-03-14T04:56:16.4203976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:16.4204518Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:16.4204927Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:16.4205167Z 2025-03-14T04:56:16.4205603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:16.4206153Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:16.4206426Z 2025-03-14T04:56:16.4206856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:16.4207391Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:16.4207652Z 2025-03-14T04:56:16.4208093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:16.4208643Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:16.4208964Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:16.4209301Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:16.4209652Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:16.4209921Z 2025-03-14T04:56:16.4210377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:16.4210926Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:16.4211238Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:16.4211567Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:16.4211912Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:16.4212178Z 2025-03-14T04:56:16.4212602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:16.4213110Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:16.4213439Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:16.4213785Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:16.4214044Z 2025-03-14T04:56:16.4214477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:16.4215007Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:16.4215349Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:16.4215706Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:16.4215982Z 2025-03-14T04:56:16.4216396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:16.4216872Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:16.4217141Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:16.4217382Z 2025-03-14T04:56:16.4217785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:16.4218286Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:16.4218563Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:16.4218803Z 2025-03-14T04:56:16.4219205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:16.4219690Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:16.4219994Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:16.4220253Z 2025-03-14T04:56:16.4220649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:16.4221127Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:16.4221433Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:16.4221688Z 2025-03-14T04:56:16.4222129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:16.4222713Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:16.4223015Z 2025-03-14T04:56:16.4223457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:16.4224030Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:16.4224439Z 2025-03-14T04:56:16.4224911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:16.4225543Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:16.4225916Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:16.4226214Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:16.4226533Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:16.4226863Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:16.4227135Z 2025-03-14T04:56:16.4227530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:16.4228101Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4228460Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:16.4228729Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:16.4229104Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4229473Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:16.4229749Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:16.4229981Z 2025-03-14T04:56:16.4230420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:16.4231037Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:56:16.4231375Z 2025-03-14T04:56:16.4231850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:16.4232467Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:16.4232840Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:16.4233143Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:16.4233448Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:16.4233773Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:16.4234040Z 2025-03-14T04:56:16.4234602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:16.4235319Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:16.4235670Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:16.4236022Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:16.4236373Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:16.4236681Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:16.4236929Z 2025-03-14T04:56:16.4237416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:16.4237955Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:16.4238202Z 2025-03-14T04:56:16.4238299Z 2025-03-14T04:56:16.4238406Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:16.4239262Z def forward(self, L_predictions_0_: "f32[3225, 81][81, 1]cpu", L_predictions_1_: "f32[3225, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:16.4240064Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:56:16.4240301Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:56:16.4240627Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4241038Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4241443Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4241892Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4242186Z 2025-03-14T04:56:16.4242567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:16.4243037Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:16.4243318Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:16.4243566Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:16.4243861Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:16.4244137Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:16.4244396Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:16.4244633Z 2025-03-14T04:56:16.4245031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:16.4246023Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4246760Z 2025-03-14T04:56:16.4247230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:16.4247813Z deltas: "f32[3225, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:56:16.4248085Z 2025-03-14T04:56:16.4248485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:16.4249015Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:16.4249298Z 2025-03-14T04:56:16.4249700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:16.4250194Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:16.4250497Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:16.4250838Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:16.4251107Z 2025-03-14T04:56:16.4251519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:16.4252016Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:16.4252319Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:16.4252640Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:16.4252908Z 2025-03-14T04:56:16.4253304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:16.4253792Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:16.4254052Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:16.4254308Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:16.4254547Z 2025-03-14T04:56:16.4254954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:16.4255464Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:16.4255770Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:16.4256036Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:16.4256280Z 2025-03-14T04:56:16.4256682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:16.4257224Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:16.4257558Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:16.4257794Z 2025-03-14T04:56:16.4258185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:16.4258716Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:16.4259046Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:16.4259286Z 2025-03-14T04:56:16.4259674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:16.4260179Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:16.4260502Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:16.4260742Z 2025-03-14T04:56:16.4261134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:16.4261670Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:16.4262016Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:16.4262250Z 2025-03-14T04:56:16.4262675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:16.4263204Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:16.4263466Z 2025-03-14T04:56:16.4263918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:16.4264581Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:16.4264861Z 2025-03-14T04:56:16.4265350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:16.4265915Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:16.4266251Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:16.4266611Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:16.4266979Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:16.4267253Z 2025-03-14T04:56:16.4267719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:16.4268300Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:16.4268639Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:16.4268990Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:16.4269384Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:16.4269652Z 2025-03-14T04:56:16.4270101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:16.4270668Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:16.4271016Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:16.4271384Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:16.4271652Z 2025-03-14T04:56:16.4272096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:16.4272647Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:16.4272997Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:16.4273362Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:16.4273634Z 2025-03-14T04:56:16.4274058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:16.4274547Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:16.4274824Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:16.4275072Z 2025-03-14T04:56:16.4275493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:16.4275983Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:16.4276251Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:16.4276490Z 2025-03-14T04:56:16.4276882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:16.4277363Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:16.4277654Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:16.4277942Z 2025-03-14T04:56:16.4278340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:16.4278821Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:16.4279109Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:16.4279355Z 2025-03-14T04:56:16.4279799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:16.4280390Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:16.4280687Z 2025-03-14T04:56:16.4281120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:16.4281908Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:16.4282201Z 2025-03-14T04:56:16.4282659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:16.4283355Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:16.4283724Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:16.4284023Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:16.4284360Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:16.4284682Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:16.4284951Z 2025-03-14T04:56:16.4285338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:16.4285908Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4286289Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:16.4286537Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:16.4286904Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4287262Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:16.4287513Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:16.4287741Z 2025-03-14T04:56:16.4288161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:16.4288758Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:56:16.4289090Z 2025-03-14T04:56:16.4289533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:16.4290139Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:16.4290503Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:16.4290793Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:16.4291097Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:16.4291442Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:16.4291706Z 2025-03-14T04:56:16.4292255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:16.4292939Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:16.4293276Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:16.4293620Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:16.4293957Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:16.4294254Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:16.4294493Z 2025-03-14T04:56:16.4294932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:16.4295459Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:16.4295693Z 2025-03-14T04:56:16.4295840Z 2025-03-14T04:56:16.4295934Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:16.4296746Z def forward(self, L_predictions_0_: "f32[3225, 81][81, 1]cpu", L_predictions_1_: "f32[3225, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1225 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1225 - s0, 4][4, 1]cpu"): 2025-03-14T04:56:16.4297538Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:56:16.4297774Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:56:16.4298088Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4298490Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4298889Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4299302Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:56:16.4299600Z 2025-03-14T04:56:16.4299988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:16.4300457Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:16.4300712Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:56:16.4300948Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:56:16.4301224Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:56:16.4301486Z getitem_2: "Sym(1225 - s0)" = size_1[0] 2025-03-14T04:56:16.4301741Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:56:16.4301967Z 2025-03-14T04:56:16.4302340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:56:16.4303288Z proposal_boxes: "f32[3225, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4304015Z 2025-03-14T04:56:16.4304542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:56:16.4305149Z deltas: "f32[3225, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:56:16.4305424Z 2025-03-14T04:56:16.4305829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:56:16.4306360Z boxes: "f32[3225, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:56:16.4306646Z 2025-03-14T04:56:16.4307063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:56:16.4307567Z getitem_4: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:56:16.4307873Z getitem_5: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:16.4308194Z widths: "f32[3225][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T04:56:16.4308463Z 2025-03-14T04:56:16.4308868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:56:16.4309363Z getitem_6: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:56:16.4309667Z getitem_7: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:56:16.4310000Z heights: "f32[3225][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T04:56:16.4310267Z 2025-03-14T04:56:16.4310668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:56:16.4311177Z getitem_8: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:56:16.4311440Z mul: "f32[3225][1]cpu" = 0.5 * widths 2025-03-14T04:56:16.4311698Z ctr_x: "f32[3225][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T04:56:16.4311940Z 2025-03-14T04:56:16.4312341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:56:16.4312851Z getitem_9: "f32[3225][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:56:16.4313157Z mul_1: "f32[3225][1]cpu" = 0.5 * heights 2025-03-14T04:56:16.4313419Z ctr_y: "f32[3225][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T04:56:16.4313662Z 2025-03-14T04:56:16.4314062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:56:16.4314581Z getitem_10: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:56:16.4314909Z dx: "f32[3225, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T04:56:16.4315149Z 2025-03-14T04:56:16.4315539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:56:16.4316047Z getitem_11: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:56:16.4316372Z dy: "f32[3225, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T04:56:16.4316613Z 2025-03-14T04:56:16.4317005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:56:16.4317511Z getitem_12: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:56:16.4317833Z dw: "f32[3225, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T04:56:16.4318069Z 2025-03-14T04:56:16.4318492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:56:16.4319032Z getitem_13: "f32[3225, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:56:16.4319384Z dh: "f32[3225, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T04:56:16.4319622Z 2025-03-14T04:56:16.4320049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:56:16.4320582Z dw_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:56:16.4320844Z 2025-03-14T04:56:16.4321275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:56:16.4321799Z dh_1: "f32[3225, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:56:16.4322054Z 2025-03-14T04:56:16.4322488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:56:16.4323027Z getitem_14: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:56:16.4323387Z mul_2: "f32[3225, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T04:56:16.4323725Z getitem_15: "f32[3225, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:56:16.4324080Z pred_ctr_x: "f32[3225, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T04:56:16.4324354Z 2025-03-14T04:56:16.4324787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:56:16.4325326Z getitem_16: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:56:16.4325645Z mul_3: "f32[3225, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T04:56:16.4325999Z getitem_17: "f32[3225, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:56:16.4326348Z pred_ctr_y: "f32[3225, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T04:56:16.4326612Z 2025-03-14T04:56:16.4327050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:56:16.4327551Z exp: "f32[3225, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:56:16.4327876Z getitem_18: "f32[3225, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:56:16.4328218Z pred_w: "f32[3225, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T04:56:16.4328471Z 2025-03-14T04:56:16.4328888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:56:16.4329381Z exp_1: "f32[3225, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:56:16.4329712Z getitem_19: "f32[3225, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:56:16.4330055Z pred_h: "f32[3225, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T04:56:16.4330310Z 2025-03-14T04:56:16.4330707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:56:16.4331167Z mul_6: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:56:16.4331455Z x1: "f32[3225, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:56:16.4331691Z 2025-03-14T04:56:16.4332069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:56:16.4332519Z mul_7: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:56:16.4332775Z y1: "f32[3225, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:56:16.4333008Z 2025-03-14T04:56:16.4333394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:56:16.4333862Z mul_8: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:56:16.4334149Z x2: "f32[3225, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:56:16.4334393Z 2025-03-14T04:56:16.4334781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:56:16.4335240Z mul_9: "f32[3225, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:56:16.4335518Z y2: "f32[3225, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:56:16.4335765Z 2025-03-14T04:56:16.4336243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:56:16.4336822Z pred_boxes: "f32[3225, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:56:16.4337140Z 2025-03-14T04:56:16.4337564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:56:16.4338119Z predict_boxes: "f32[3225, 320][320, 1]cpu" = pred_boxes.reshape((3225, 320)); pred_boxes = None 2025-03-14T04:56:16.4338413Z 2025-03-14T04:56:16.4338867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:56:16.4339483Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T04:56:16.4339839Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T04:56:16.4340126Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T04:56:16.4340424Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T04:56:16.4340735Z getitem_23: "f32[1225 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T04:56:16.4340993Z 2025-03-14T04:56:16.4341368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:56:16.4341909Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4342248Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T04:56:16.4342485Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T04:56:16.4342845Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:56:16.4343195Z getitem_26: "Sym(1225 - s0)" = size_3[0] 2025-03-14T04:56:16.4343444Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T04:56:16.4343669Z 2025-03-14T04:56:16.4344173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:56:16.4344783Z probs: "f32[3225, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:56:16.4345113Z 2025-03-14T04:56:16.4345566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:56:16.4346175Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T04:56:16.4346545Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:56:16.4346845Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T04:56:16.4347151Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T04:56:16.4347466Z getitem_31: "f32[1225 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T04:56:16.4347725Z 2025-03-14T04:56:16.4348275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:16.4348963Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:56:16.4349334Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:16.4349674Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:56:16.4350024Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:16.4350320Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:16.4350586Z 2025-03-14T04:56:16.4351031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:16.4351557Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:16.4351798Z 2025-03-14T04:56:19.2204725Z 2025-03-14T04:56:19.2207072Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:19.2208251Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:56:19.2213466Z l_scores_0_ = L_scores_0_ 2025-03-14T04:56:19.2215574Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:56:19.2215978Z 2025-03-14T04:56:19.2216657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:19.2217551Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:56:19.2217911Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:19.2218759Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:56:19.2219101Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:19.2219423Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:19.2219681Z 2025-03-14T04:56:19.2220162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:19.2220704Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:19.2220957Z 2025-03-14T04:56:19.2221061Z 2025-03-14T04:56:19.2221156Z class GraphModule(torch.nn.Module): 2025-03-14T04:56:19.2221681Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T04:56:19.2222017Z l_scores_0_ = L_scores_0_ 2025-03-14T04:56:19.2222250Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:56:19.2222456Z 2025-03-14T04:56:19.2223063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:56:19.2223802Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:56:19.2224212Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:56:19.2224556Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:56:19.2224892Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:56:19.2225204Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:56:19.2225460Z 2025-03-14T04:56:19.2225944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:56:19.2226533Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:56:19.2226780Z 2025-03-14T04:56:35.6810234Z Compilation time (from dynamo_timed): 48.186219551 2025-03-14T04:56:35.6813375Z pass 2025-03-14T04:56:35.6816366Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:56:35.6817445Z TIMING: entire_frame_compile:48.18622 gc:0.03682 _recursive_pre_grad_passes:0.03256 async_compile.wait:11.90747 backend_compile:32.40393 _recursive_joint_graph_passes:0.58521 _recursive_post_grad_passes:0.15726 code_gen:16.70481 inductor_compile:19.37403 total_wall_time:48.18622 2025-03-14T04:56:35.6822759Z STATS: call_* op count: 781 | FakeTensorMode.__torch_dispatch__:27912 | FakeTensor.__torch_dispatch__:3330 | ProxyTorchDispatchMode.__torch_dispatch__:10384 | attempt fast:51 | slow no contiguity match:20 | fast is_contiguous:31 2025-03-14T04:56:35.6825172Z Dynamo produced 52 graphs covering 781 ops with 42 graph breaks (6 unique) 2025-03-14T04:56:41.5797936Z 2025-03-14T04:56:48.6479156Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:56:48.6479457Z loading model: 0it [00:07, ?it/s] 2025-03-14T04:56:48.6491778Z cpu eval detectron2_fasterrcnn_r_101_fpn 2025-03-14T04:57:06.4525394Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_101_fpn. Setting accuracy check to cosine 2025-03-14T04:57:06.4746883Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:57:19.7548394Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:57:28.8071114Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:57:45.0816098Z 2025-03-14T04:57:45.0816855Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:45.0993597Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:57:45.1114046Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:57:45.1114648Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1115595Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1116606Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1117556Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1118567Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1119463Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1120413Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1121387Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1122342Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1123261Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1124170Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1125135Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1126120Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1127094Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1128004Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1128901Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1129808Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1130746Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1131622Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1132441Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1133303Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.1134236Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1135205Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1136114Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1136951Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1137794Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1138666Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1139614Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1140523Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1141414Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1142246Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1143132Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1144041Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1145043Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1145921Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1146712Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1147523Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1148419Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1149272Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1150086Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1150864Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1151672Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1152531Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1153366Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1154198Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1154975Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1155802Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1156661Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1157519Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1158333Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1159123Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1159925Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1160790Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1161624Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1162456Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1163236Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1164043Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1164903Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1165740Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1166550Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1167351Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1168165Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1169057Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1169894Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1170735Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1171518Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1172342Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1173204Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1174043Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1174855Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1175654Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.1176516Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1177406Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1178278Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1179119Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1179914Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1180723Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1181774Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1182650Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1183537Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1184376Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1185228Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1186171Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1187111Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1188033Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1188884Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1189760Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1190735Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1191666Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1192584Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1193461Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1194376Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1195349Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1196273Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1197092Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1197904Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1198719Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1199590Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1200441Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1201246Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1202024Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1202824Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1203683Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1204517Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1205347Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1206131Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1206953Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1207808Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1208653Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1209466Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1210259Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1211071Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1211967Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1212806Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1213636Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1214414Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1215226Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1216108Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1216942Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1217750Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1218550Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1219362Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1220226Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1221094Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1221978Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1222814Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1223675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1224724Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1225683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1226606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1227443Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1228318Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1229221Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1230106Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1230958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1231800Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.1232694Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1233659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1234582Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1235477Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1236322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1237188Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1238087Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1238946Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1239766Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1240561Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1241370Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1242254Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1243095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1243922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1244707Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1245531Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1246399Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1247263Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1248071Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1248846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1249657Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1250516Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1251350Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1252157Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1252963Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1253778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1254654Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1255496Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1256323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1257098Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1257905Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1258774Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1259613Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1260427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1261255Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1262130Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1263050Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1263943Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1264917Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1265826Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1266743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1267658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1268560Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1269427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1270247Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1271120Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1272030Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1272923Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1273790Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1274608Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1275422Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1276305Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1277142Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1277950Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1278730Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1279549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1280405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1281269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1282271Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1283108Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1283916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1284807Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1285646Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1286492Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1287272Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1288080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1288935Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1289796Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1290611Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1291402Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1292230Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1293151Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1293996Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1294837Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1295666Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1296545Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1297482Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1298391Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1299289Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1300136Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1301020Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1301961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1302872Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1303753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1304725Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1305676Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1306551Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1307387Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1308196Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1308971Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1309797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1310663Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1311523Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1312343Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1313137Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1313949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1314810Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1315659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1316470Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1317245Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1318054Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1318925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1319783Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1320606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1321368Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1322158Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1323004Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1323863Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1324672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1325483Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1326296Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1327169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1327982Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1328790Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1329574Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1330378Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1331236Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1332101Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1332909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1333693Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1334494Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1335356Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1336193Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1337020Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1337798Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1338631Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1339489Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1340324Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1341155Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1341936Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1342745Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1343608Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1344560Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1345418Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1346225Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1347037Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1347907Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1348753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1349568Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1350362Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1351210Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1352081Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1352946Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1353767Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1354572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1355367Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1356214Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1357052Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1357846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1358611Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1359430Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1360280Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1361110Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1361904Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1362669Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1363461Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1364320Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1365146Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1365961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1366720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1367517Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1368369Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1369190Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1369989Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1370751Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1371554Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1372405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1373241Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1374040Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1374812Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1375610Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1376463Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1377289Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1378116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1378878Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1379687Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1380526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1381368Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1382310Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1383103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1383929Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1384854Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1385704Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1386576Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1387454Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1388389Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1389303Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1390208Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1391075Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1391974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1392878Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1393811Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1394649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1395467Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1396286Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1397095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1397961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1398802Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1399624Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1400410Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1401221Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1402086Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1402922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1403738Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1404519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1405330Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1406207Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1407030Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1407859Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1408636Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1409466Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1410329Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1411175Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1411993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1412777Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1413573Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1414445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1415278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1416083Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1416851Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1417653Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1418505Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1419351Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1420170Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1420964Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1421772Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1422638Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1423509Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1424446Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1425285Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1426125Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1426990Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1427833Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1428672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1429455Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1430278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1431139Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1431977Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1432791Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1433593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1434412Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1435293Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1436136Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1436971Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1437750Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1438576Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1439440Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1440282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1441113Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1441916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1442728Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1443602Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1444444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1445260Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1446040Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1446902Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1447769Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1448633Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1449450Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1450247Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1451060Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1451930Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1452779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1453598Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1454390Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1455199Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1456080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1456925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1457740Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1458519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1459341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1460201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1461064Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1461885Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1462746Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1463628Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1464681Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1465635Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1466515Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1467365Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1468262Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1469186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1470117Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1471004Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1471846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1472709Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1473625Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1474512Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1475392Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1476203Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1477043Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1477910Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1478788Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1479610Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1480405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1481220Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1482198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1483052Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1483875Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1484712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1485549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1486425Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1487282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1488118Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1488904Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1489748Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1490619Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1491486Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1492306Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1493133Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1493985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1494868Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1495736Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1496614Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1497723Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1498633Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1499556Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1500458Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1501327Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1502157Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1503014Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1503946Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1504936Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1505843Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1506667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1507539Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1508440Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1509288Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1510106Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1510897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1511722Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1512625Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1513472Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1514290Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1515074Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1515884Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1516745Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1517593Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1518418Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1519202Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1520031Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1520893Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1521755Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1522572Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1523350Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1524164Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1525007Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1525831Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1526641Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1527423Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.1528255Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1529149Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1530022Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1530844Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1531666Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1532453Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1533509Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1534474Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1535322Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1536103Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1536916Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1537776Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1538618Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1539655Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1540783Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1542100Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1543497Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1544433Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1545294Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1546129Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.1546994Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1547922Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1549068Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1550111Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1550906Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.1551753Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1552633Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1553499Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1554339Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1555125Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.1555933Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.1556814Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.1557651Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.1558467Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.1559142Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T04:57:45.1559664Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T04:57:45.1560188Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T04:57:45.1560696Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T04:57:45.1561204Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T04:57:45.1561716Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T04:57:45.1562241Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T04:57:45.1562745Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T04:57:45.1563268Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T04:57:45.1563776Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T04:57:45.1564276Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T04:57:45.1564775Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T04:57:45.1565308Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T04:57:45.1565819Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T04:57:45.1566336Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T04:57:45.1566826Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T04:57:45.1567451Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:45.1568215Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:57:45.1568964Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:57:45.1569708Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:57:45.1570467Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:57:45.1571184Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:45.1571873Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:45.1572609Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:45.1573387Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:45.1574153Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:45.1574899Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:45.1575371Z 2025-03-14T04:57:45.1575793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1576674Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1577337Z 2025-03-14T04:57:45.1577712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1580431Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1582838Z 2025-03-14T04:57:45.1583280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:57:45.1583825Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:57:45.1584169Z 2025-03-14T04:57:45.1584692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:57:45.1585434Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:57:45.1585827Z 2025-03-14T04:57:45.1586196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1587153Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1587829Z 2025-03-14T04:57:45.1588230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1590606Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1592717Z 2025-03-14T04:57:45.1593144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1593734Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:57:45.1594031Z 2025-03-14T04:57:45.1594393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1595249Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1595920Z 2025-03-14T04:57:45.1596297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1598511Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1600490Z 2025-03-14T04:57:45.1600887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1601402Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:57:45.1601682Z 2025-03-14T04:57:45.1602059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1602864Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1603465Z 2025-03-14T04:57:45.1603812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1605852Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1607677Z 2025-03-14T04:57:45.1608028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1608824Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.1609428Z 2025-03-14T04:57:45.1609791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1611888Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1613931Z 2025-03-14T04:57:45.1614288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1614758Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:57:45.1615016Z 2025-03-14T04:57:45.1615404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1615903Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:57:45.1616181Z 2025-03-14T04:57:45.1616524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1617324Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1617930Z 2025-03-14T04:57:45.1618288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1620835Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1622856Z 2025-03-14T04:57:45.1623257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1623771Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:57:45.1624057Z 2025-03-14T04:57:45.1624530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1625459Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1626130Z 2025-03-14T04:57:45.1626505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1628662Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1630540Z 2025-03-14T04:57:45.1630910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1631398Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:57:45.1631662Z 2025-03-14T04:57:45.1632026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1632835Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1633463Z 2025-03-14T04:57:45.1633816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1635932Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1637824Z 2025-03-14T04:57:45.1638192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1638702Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:57:45.1638979Z 2025-03-14T04:57:45.1639349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1639840Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:57:45.1640121Z 2025-03-14T04:57:45.1640461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1641248Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1641832Z 2025-03-14T04:57:45.1642177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1644229Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1646054Z 2025-03-14T04:57:45.1646418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1646891Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:57:45.1647147Z 2025-03-14T04:57:45.1647482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1648262Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1648896Z 2025-03-14T04:57:45.1649239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1651277Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1653128Z 2025-03-14T04:57:45.1653486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1653957Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:57:45.1654213Z 2025-03-14T04:57:45.1654542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1655327Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1655932Z 2025-03-14T04:57:45.1656269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1658342Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1660501Z 2025-03-14T04:57:45.1660876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1661380Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:57:45.1661662Z 2025-03-14T04:57:45.1662040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1662650Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:57:45.1663077Z 2025-03-14T04:57:45.1663554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1664679Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1665526Z 2025-03-14T04:57:45.1665913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1668125Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1670190Z 2025-03-14T04:57:45.1670583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1671105Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:57:45.1671387Z 2025-03-14T04:57:45.1671745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1672640Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1673280Z 2025-03-14T04:57:45.1673649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1675796Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1677669Z 2025-03-14T04:57:45.1678071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1678568Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:57:45.1678839Z 2025-03-14T04:57:45.1679179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1680012Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1680631Z 2025-03-14T04:57:45.1680981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1683276Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1685192Z 2025-03-14T04:57:45.1685539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1686357Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.1686984Z 2025-03-14T04:57:45.1687398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1689549Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1691648Z 2025-03-14T04:57:45.1692020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1692544Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:57:45.1692819Z 2025-03-14T04:57:45.1693186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1693709Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:57:45.1693983Z 2025-03-14T04:57:45.1694441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1695386Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1696221Z 2025-03-14T04:57:45.1696777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1699549Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1701891Z 2025-03-14T04:57:45.1702380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1703217Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:57:45.1703571Z 2025-03-14T04:57:45.1703960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1705041Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1705729Z 2025-03-14T04:57:45.1706127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1708675Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1710683Z 2025-03-14T04:57:45.1711080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1711599Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:57:45.1711884Z 2025-03-14T04:57:45.1712238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1713879Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1714611Z 2025-03-14T04:57:45.1714974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1717154Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1719293Z 2025-03-14T04:57:45.1719704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1720228Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:57:45.1720524Z 2025-03-14T04:57:45.1720917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1721434Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:57:45.1721718Z 2025-03-14T04:57:45.1722066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1722888Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1723505Z 2025-03-14T04:57:45.1723864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1726027Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1727980Z 2025-03-14T04:57:45.1728362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1728856Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:57:45.1729126Z 2025-03-14T04:57:45.1729475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1730298Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1730924Z 2025-03-14T04:57:45.1731282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1733462Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1735384Z 2025-03-14T04:57:45.1735756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1736237Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:57:45.1736506Z 2025-03-14T04:57:45.1736842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1737883Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1738565Z 2025-03-14T04:57:45.1738939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1741878Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1744070Z 2025-03-14T04:57:45.1744677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1745218Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:57:45.1745542Z 2025-03-14T04:57:45.1745970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1746526Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:57:45.1746863Z 2025-03-14T04:57:45.1747372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1748629Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1749564Z 2025-03-14T04:57:45.1750087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1753445Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1756359Z 2025-03-14T04:57:45.1756764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1757279Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:57:45.1757566Z 2025-03-14T04:57:45.1757928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1759033Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1760024Z 2025-03-14T04:57:45.1760543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1763454Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1765640Z 2025-03-14T04:57:45.1766037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1766555Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:57:45.1766838Z 2025-03-14T04:57:45.1767198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1768050Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1768709Z 2025-03-14T04:57:45.1769099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1771316Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1773337Z 2025-03-14T04:57:45.1773726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1774258Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:57:45.1774550Z 2025-03-14T04:57:45.1774940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1775462Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:57:45.1775762Z 2025-03-14T04:57:45.1776119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1776959Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1777613Z 2025-03-14T04:57:45.1777982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1780169Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1782280Z 2025-03-14T04:57:45.1782680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1783192Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:57:45.1783472Z 2025-03-14T04:57:45.1783881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1784876Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1785576Z 2025-03-14T04:57:45.1785970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1788212Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1790186Z 2025-03-14T04:57:45.1790579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1791113Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:57:45.1791389Z 2025-03-14T04:57:45.1791762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1792648Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1793370Z 2025-03-14T04:57:45.1793756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1795958Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1797933Z 2025-03-14T04:57:45.1798293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1799158Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.1799807Z 2025-03-14T04:57:45.1800182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1802504Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1804628Z 2025-03-14T04:57:45.1804997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1805498Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:57:45.1805761Z 2025-03-14T04:57:45.1806131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1806613Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:57:45.1806879Z 2025-03-14T04:57:45.1807216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1808031Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1808629Z 2025-03-14T04:57:45.1808982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1811075Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1812966Z 2025-03-14T04:57:45.1813342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1813814Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:57:45.1814076Z 2025-03-14T04:57:45.1814417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1815210Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1815822Z 2025-03-14T04:57:45.1816176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1818313Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1820200Z 2025-03-14T04:57:45.1820577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1821073Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:57:45.1821376Z 2025-03-14T04:57:45.1821721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1822556Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1823205Z 2025-03-14T04:57:45.1823585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1825978Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1827951Z 2025-03-14T04:57:45.1828341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1828852Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:57:45.1829134Z 2025-03-14T04:57:45.1829518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1830026Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:57:45.1830305Z 2025-03-14T04:57:45.1830663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1831489Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1832119Z 2025-03-14T04:57:45.1832502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1834730Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1836646Z 2025-03-14T04:57:45.1837019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1837492Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:57:45.1837751Z 2025-03-14T04:57:45.1838088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1838876Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1839480Z 2025-03-14T04:57:45.1839833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1841962Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1843830Z 2025-03-14T04:57:45.1844204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1844687Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:57:45.1844944Z 2025-03-14T04:57:45.1845282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1846099Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1846709Z 2025-03-14T04:57:45.1847061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1849172Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1851052Z 2025-03-14T04:57:45.1851420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1851906Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:57:45.1852172Z 2025-03-14T04:57:45.1852541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1853027Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:57:45.1853292Z 2025-03-14T04:57:45.1853629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1854417Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1855035Z 2025-03-14T04:57:45.1855391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1857489Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1859389Z 2025-03-14T04:57:45.1859764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1860259Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:57:45.1860523Z 2025-03-14T04:57:45.1860862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1861656Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1862276Z 2025-03-14T04:57:45.1862632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1864834Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1866843Z 2025-03-14T04:57:45.1867241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1867749Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:57:45.1868025Z 2025-03-14T04:57:45.1868385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1869244Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1869881Z 2025-03-14T04:57:45.1870257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1872477Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1874445Z 2025-03-14T04:57:45.1874858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1875375Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:57:45.1875683Z 2025-03-14T04:57:45.1876096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1876613Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:57:45.1876895Z 2025-03-14T04:57:45.1877255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1878101Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1878733Z 2025-03-14T04:57:45.1879087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1881188Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1883188Z 2025-03-14T04:57:45.1883612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1884106Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:57:45.1884378Z 2025-03-14T04:57:45.1884739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1885574Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1886214Z 2025-03-14T04:57:45.1886584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1888775Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1890737Z 2025-03-14T04:57:45.1891118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1891604Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:57:45.1891873Z 2025-03-14T04:57:45.1892228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1893112Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1893783Z 2025-03-14T04:57:45.1894162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1896354Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1898377Z 2025-03-14T04:57:45.1898765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1899282Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:57:45.1899568Z 2025-03-14T04:57:45.1899961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1900472Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:57:45.1900745Z 2025-03-14T04:57:45.1901104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1901943Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1902577Z 2025-03-14T04:57:45.1902951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1905303Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1907367Z 2025-03-14T04:57:45.1907741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1908213Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:57:45.1908472Z 2025-03-14T04:57:45.1908801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1909583Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1910178Z 2025-03-14T04:57:45.1910523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1912609Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1914478Z 2025-03-14T04:57:45.1914849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1915322Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:57:45.1915582Z 2025-03-14T04:57:45.1915923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1916715Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1917319Z 2025-03-14T04:57:45.1917690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1919788Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1921679Z 2025-03-14T04:57:45.1922044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1922523Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:57:45.1922785Z 2025-03-14T04:57:45.1923154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1923638Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:57:45.1923903Z 2025-03-14T04:57:45.1924242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1925049Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1925640Z 2025-03-14T04:57:45.1926010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1928094Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1929986Z 2025-03-14T04:57:45.1930359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1930841Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:57:45.1931103Z 2025-03-14T04:57:45.1931463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1932258Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1932888Z 2025-03-14T04:57:45.1933244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1935333Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1937218Z 2025-03-14T04:57:45.1937592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1938064Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:57:45.1938324Z 2025-03-14T04:57:45.1938659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1939451Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1940077Z 2025-03-14T04:57:45.1940430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1942528Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1944549Z 2025-03-14T04:57:45.1944963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1945519Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:57:45.1945786Z 2025-03-14T04:57:45.1946157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1946660Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:57:45.1946921Z 2025-03-14T04:57:45.1947260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1948043Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1948660Z 2025-03-14T04:57:45.1949011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1951094Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1952959Z 2025-03-14T04:57:45.1953321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1953795Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:57:45.1954077Z 2025-03-14T04:57:45.1954417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1955209Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1955821Z 2025-03-14T04:57:45.1956170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1958288Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1960167Z 2025-03-14T04:57:45.1960541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1961018Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:57:45.1961275Z 2025-03-14T04:57:45.1961612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1962408Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1963039Z 2025-03-14T04:57:45.1963397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1965501Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1967382Z 2025-03-14T04:57:45.1967695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1967855Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:57:45.1967921Z 2025-03-14T04:57:45.1968215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1968364Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:57:45.1968438Z 2025-03-14T04:57:45.1968690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1969197Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1969264Z 2025-03-14T04:57:45.1969536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1971357Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1971440Z 2025-03-14T04:57:45.1971752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1971896Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:57:45.1971970Z 2025-03-14T04:57:45.1972222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1972723Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1972787Z 2025-03-14T04:57:45.1973061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1974850Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1974917Z 2025-03-14T04:57:45.1975205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1975341Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:57:45.1975412Z 2025-03-14T04:57:45.1975659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1976146Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1976217Z 2025-03-14T04:57:45.1976475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1978247Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1978350Z 2025-03-14T04:57:45.1978631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1978794Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:57:45.1978860Z 2025-03-14T04:57:45.1979149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1979292Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:57:45.1979364Z 2025-03-14T04:57:45.1979615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1980102Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1980170Z 2025-03-14T04:57:45.1980444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1982364Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1982451Z 2025-03-14T04:57:45.1982747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1982887Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:57:45.1982962Z 2025-03-14T04:57:45.1983213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1983736Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1983826Z 2025-03-14T04:57:45.1984163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1986145Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1986257Z 2025-03-14T04:57:45.1986569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1986714Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:57:45.1986795Z 2025-03-14T04:57:45.1987059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1987583Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1987653Z 2025-03-14T04:57:45.1987957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1989826Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1989893Z 2025-03-14T04:57:45.1990183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.1990335Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:57:45.1990409Z 2025-03-14T04:57:45.1990704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1990853Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:57:45.1990937Z 2025-03-14T04:57:45.1991192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1991678Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.1991762Z 2025-03-14T04:57:45.1992050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1993895Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1993972Z 2025-03-14T04:57:45.1994263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1994401Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:57:45.1994472Z 2025-03-14T04:57:45.1994738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1995227Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.1995295Z 2025-03-14T04:57:45.1995570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.1997360Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.1997439Z 2025-03-14T04:57:45.1997733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.1997885Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:57:45.1997964Z 2025-03-14T04:57:45.1998212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.1998707Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.1998787Z 2025-03-14T04:57:45.1999057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2000846Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2000916Z 2025-03-14T04:57:45.2001201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2001365Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:57:45.2001440Z 2025-03-14T04:57:45.2001720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2001870Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:57:45.2001936Z 2025-03-14T04:57:45.2002218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2004697Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2004836Z 2025-03-14T04:57:45.2005140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2007000Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2007106Z 2025-03-14T04:57:45.2007396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2007566Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:57:45.2007642Z 2025-03-14T04:57:45.2007896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2008398Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2008466Z 2025-03-14T04:57:45.2008751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2010603Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2010684Z 2025-03-14T04:57:45.2010987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2011125Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:57:45.2011202Z 2025-03-14T04:57:45.2011456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2011971Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2012039Z 2025-03-14T04:57:45.2012318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2014169Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2014277Z 2025-03-14T04:57:45.2014577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2014731Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:57:45.2014806Z 2025-03-14T04:57:45.2015097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2015249Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:57:45.2015316Z 2025-03-14T04:57:45.2015580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2016081Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2016156Z 2025-03-14T04:57:45.2016427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2018284Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2018363Z 2025-03-14T04:57:45.2018656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2018806Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:57:45.2018871Z 2025-03-14T04:57:45.2019135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2019653Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2019730Z 2025-03-14T04:57:45.2020027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2021818Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2021911Z 2025-03-14T04:57:45.2022200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2022337Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:57:45.2022410Z 2025-03-14T04:57:45.2022658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2023162Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2023229Z 2025-03-14T04:57:45.2023533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2025568Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2025658Z 2025-03-14T04:57:45.2025970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2026119Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:57:45.2026195Z 2025-03-14T04:57:45.2026498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2026650Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:57:45.2026735Z 2025-03-14T04:57:45.2026994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2027472Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2027551Z 2025-03-14T04:57:45.2027837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2029636Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2029715Z 2025-03-14T04:57:45.2029999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2030144Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:57:45.2030211Z 2025-03-14T04:57:45.2030483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2030968Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2031042Z 2025-03-14T04:57:45.2031305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2033092Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2033173Z 2025-03-14T04:57:45.2033454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2033611Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:57:45.2033676Z 2025-03-14T04:57:45.2033936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2034431Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2034520Z 2025-03-14T04:57:45.2034790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2036581Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2036655Z 2025-03-14T04:57:45.2036942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2037108Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:57:45.2037184Z 2025-03-14T04:57:45.2037465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2037616Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:57:45.2037683Z 2025-03-14T04:57:45.2037943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2038423Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2038499Z 2025-03-14T04:57:45.2038763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2040594Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2040684Z 2025-03-14T04:57:45.2040967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2041133Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:57:45.2041198Z 2025-03-14T04:57:45.2041456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2041942Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2042017Z 2025-03-14T04:57:45.2042280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2044077Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2044153Z 2025-03-14T04:57:45.2044437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2044580Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:57:45.2044646Z 2025-03-14T04:57:45.2044901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2045390Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2045465Z 2025-03-14T04:57:45.2045724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2047525Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2047665Z 2025-03-14T04:57:45.2047942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2048101Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:57:45.2048165Z 2025-03-14T04:57:45.2048453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2048595Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:57:45.2048667Z 2025-03-14T04:57:45.2048911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2049395Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2049469Z 2025-03-14T04:57:45.2049731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2051510Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2051587Z 2025-03-14T04:57:45.2051878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2052022Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:57:45.2052086Z 2025-03-14T04:57:45.2052345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2052840Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2052914Z 2025-03-14T04:57:45.2053195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2054987Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2055078Z 2025-03-14T04:57:45.2055364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2055509Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:57:45.2055575Z 2025-03-14T04:57:45.2055833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2056315Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2056393Z 2025-03-14T04:57:45.2056673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2058464Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2058542Z 2025-03-14T04:57:45.2058825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2058983Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:57:45.2059051Z 2025-03-14T04:57:45.2059357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2059499Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:57:45.2059575Z 2025-03-14T04:57:45.2059837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2060322Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2060395Z 2025-03-14T04:57:45.2060673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2062478Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2062549Z 2025-03-14T04:57:45.2062840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2062985Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:57:45.2063052Z 2025-03-14T04:57:45.2063330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2063823Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2063905Z 2025-03-14T04:57:45.2064257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2066256Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2066342Z 2025-03-14T04:57:45.2066664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2066839Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:57:45.2066910Z 2025-03-14T04:57:45.2067205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2067755Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2067858Z 2025-03-14T04:57:45.2068154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2070155Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2070242Z 2025-03-14T04:57:45.2070557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2070744Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:57:45.2070818Z 2025-03-14T04:57:45.2071149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2071307Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:57:45.2071390Z 2025-03-14T04:57:45.2071675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2072178Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2072244Z 2025-03-14T04:57:45.2072517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2074326Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2074408Z 2025-03-14T04:57:45.2074702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2074854Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:57:45.2074929Z 2025-03-14T04:57:45.2075179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2075675Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2075748Z 2025-03-14T04:57:45.2076009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2077811Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2077891Z 2025-03-14T04:57:45.2078175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2078317Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:57:45.2078381Z 2025-03-14T04:57:45.2078635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2079119Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2079191Z 2025-03-14T04:57:45.2079453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2081244Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2081348Z 2025-03-14T04:57:45.2081822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2081986Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:57:45.2082053Z 2025-03-14T04:57:45.2082348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2082491Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:57:45.2082564Z 2025-03-14T04:57:45.2082814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2083299Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2083365Z 2025-03-14T04:57:45.2083635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2085461Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2085533Z 2025-03-14T04:57:45.2085822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2085969Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:57:45.2086044Z 2025-03-14T04:57:45.2086291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2086823Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2086891Z 2025-03-14T04:57:45.2087165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2089079Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2089178Z 2025-03-14T04:57:45.2089493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2089646Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:57:45.2089723Z 2025-03-14T04:57:45.2089993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2090501Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2090576Z 2025-03-14T04:57:45.2090843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2092664Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2092743Z 2025-03-14T04:57:45.2093020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2093183Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:57:45.2093249Z 2025-03-14T04:57:45.2093557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2093707Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:57:45.2093780Z 2025-03-14T04:57:45.2094044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2094533Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2094598Z 2025-03-14T04:57:45.2094884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2096669Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2096746Z 2025-03-14T04:57:45.2097036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2097174Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:57:45.2097247Z 2025-03-14T04:57:45.2097511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2098010Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2098077Z 2025-03-14T04:57:45.2098347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2100149Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2100217Z 2025-03-14T04:57:45.2100504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2100657Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:57:45.2100731Z 2025-03-14T04:57:45.2100983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2101488Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2101571Z 2025-03-14T04:57:45.2101843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2103624Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2103693Z 2025-03-14T04:57:45.2103978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2104218Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:57:45.2104302Z 2025-03-14T04:57:45.2104630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2104807Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:57:45.2104886Z 2025-03-14T04:57:45.2105181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2105745Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2105821Z 2025-03-14T04:57:45.2106120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2108144Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2108246Z 2025-03-14T04:57:45.2108579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2108753Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:57:45.2108836Z 2025-03-14T04:57:45.2109122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2109694Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2109769Z 2025-03-14T04:57:45.2110078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2112158Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2112251Z 2025-03-14T04:57:45.2112542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2112680Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:57:45.2112754Z 2025-03-14T04:57:45.2113001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2113500Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2113568Z 2025-03-14T04:57:45.2113836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2115628Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2116367Z 2025-03-14T04:57:45.2116656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2116819Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:57:45.2116896Z 2025-03-14T04:57:45.2117179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2117335Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:57:45.2117401Z 2025-03-14T04:57:45.2117657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2118135Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2118211Z 2025-03-14T04:57:45.2118483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2120278Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2120357Z 2025-03-14T04:57:45.2120643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2120791Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:57:45.2120865Z 2025-03-14T04:57:45.2121114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2121632Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2121699Z 2025-03-14T04:57:45.2121987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2123765Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2123857Z 2025-03-14T04:57:45.2124152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2124288Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:57:45.2124361Z 2025-03-14T04:57:45.2124613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2125114Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2125182Z 2025-03-14T04:57:45.2125471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2127246Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2127314Z 2025-03-14T04:57:45.2127601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2127758Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:57:45.2127856Z 2025-03-14T04:57:45.2128154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2128305Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:57:45.2128371Z 2025-03-14T04:57:45.2128644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2129135Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2129208Z 2025-03-14T04:57:45.2129494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2131271Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2131349Z 2025-03-14T04:57:45.2131633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2131778Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:57:45.2131845Z 2025-03-14T04:57:45.2132122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2132611Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2132686Z 2025-03-14T04:57:45.2132958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2134731Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2134809Z 2025-03-14T04:57:45.2135099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2135253Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:57:45.2135326Z 2025-03-14T04:57:45.2135578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2136083Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2136171Z 2025-03-14T04:57:45.2136441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2138232Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2138307Z 2025-03-14T04:57:45.2138594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2138766Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:57:45.2138841Z 2025-03-14T04:57:45.2139124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2139276Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:57:45.2139344Z 2025-03-14T04:57:45.2139602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2140084Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2140159Z 2025-03-14T04:57:45.2140423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2142222Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2142315Z 2025-03-14T04:57:45.2142600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2142766Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:57:45.2142832Z 2025-03-14T04:57:45.2143089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2143579Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2143653Z 2025-03-14T04:57:45.2143918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2145845Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2145932Z 2025-03-14T04:57:45.2146241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2146388Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:57:45.2146454Z 2025-03-14T04:57:45.2146724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2147254Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2147326Z 2025-03-14T04:57:45.2147614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2149494Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2149609Z 2025-03-14T04:57:45.2149884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2150403Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.2150487Z 2025-03-14T04:57:45.2150763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2152728Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2152810Z 2025-03-14T04:57:45.2153104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2153272Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:57:45.2153344Z 2025-03-14T04:57:45.2153647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2153799Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:57:45.2153878Z 2025-03-14T04:57:45.2154141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2154623Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2154689Z 2025-03-14T04:57:45.2155001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2156716Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2156810Z 2025-03-14T04:57:45.2157093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2157227Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:57:45.2157300Z 2025-03-14T04:57:45.2157544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2158021Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2158087Z 2025-03-14T04:57:45.2158353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2160087Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2160155Z 2025-03-14T04:57:45.2160439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2160572Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:57:45.2160645Z 2025-03-14T04:57:45.2160886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2161384Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2161457Z 2025-03-14T04:57:45.2161711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2163460Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2163548Z 2025-03-14T04:57:45.2163820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2163981Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:57:45.2164045Z 2025-03-14T04:57:45.2164329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2164472Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:57:45.2164547Z 2025-03-14T04:57:45.2164790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2165259Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.2165345Z 2025-03-14T04:57:45.2165609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2167342Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2167419Z 2025-03-14T04:57:45.2167700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2167847Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:57:45.2167919Z 2025-03-14T04:57:45.2168160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2168665Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.2168730Z 2025-03-14T04:57:45.2169005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2170985Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2171065Z 2025-03-14T04:57:45.2171360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2171491Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:57:45.2171563Z 2025-03-14T04:57:45.2171809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2172316Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.2172380Z 2025-03-14T04:57:45.2172644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.2174387Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.2174454Z 2025-03-14T04:57:45.2174745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.2174899Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:57:45.2174989Z 2025-03-14T04:57:45.2175265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.2175412Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:57:45.2175476Z 2025-03-14T04:57:45.2175726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2176305Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T04:57:45.2176369Z 2025-03-14T04:57:45.2176618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2177146Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T04:57:45.2177217Z 2025-03-14T04:57:45.2177614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.2177888Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T04:57:45.2177951Z 2025-03-14T04:57:45.2178205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2178776Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T04:57:45.2178852Z 2025-03-14T04:57:45.2179199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.2179401Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T04:57:45.2179476Z 2025-03-14T04:57:45.2179723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2180302Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T04:57:45.2180368Z 2025-03-14T04:57:45.2180793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.2181119Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T04:57:45.2181209Z 2025-03-14T04:57:45.2181542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2182133Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T04:57:45.2182242Z 2025-03-14T04:57:45.2182595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.2182804Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T04:57:45.2182879Z 2025-03-14T04:57:45.2183128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2183710Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T04:57:45.2183784Z 2025-03-14T04:57:45.2184228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.2184605Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T04:57:45.2184678Z 2025-03-14T04:57:45.2184989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2185631Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T04:57:45.2185710Z 2025-03-14T04:57:45.2186078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.2186309Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T04:57:45.2186378Z 2025-03-14T04:57:45.2186635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2187252Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T04:57:45.2187319Z 2025-03-14T04:57:45.2187709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T04:57:45.2187924Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T04:57:45.2188020Z 2025-03-14T04:57:45.2188457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2188621Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:57:45.2188685Z 2025-03-14T04:57:45.2188987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2189155Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:45.2189228Z 2025-03-14T04:57:45.2189662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2189827Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:57:45.2189894Z 2025-03-14T04:57:45.2190197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2190339Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:45.2190417Z 2025-03-14T04:57:45.2190792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.2190982Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:45.2191084Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:45.2191217Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:45.2191282Z 2025-03-14T04:57:45.2191631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.2191767Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:45.2191842Z 2025-03-14T04:57:45.2192163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.2192300Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:45.2192363Z 2025-03-14T04:57:45.2192747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.2192962Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:45.2193034Z 2025-03-14T04:57:45.2193456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.2193583Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:45.2194028Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:45.2194158Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:45.2194285Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:57:45.2194367Z 2025-03-14T04:57:45.2194809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2194961Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:57:45.2195034Z 2025-03-14T04:57:45.2195325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2195495Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:45.2195560Z 2025-03-14T04:57:45.2195990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2196137Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:57:45.2196213Z 2025-03-14T04:57:45.2196505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2196648Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:57:45.2196713Z 2025-03-14T04:57:45.2197078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.2197268Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:57:45.2197378Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:57:45.2197502Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:57:45.2197574Z 2025-03-14T04:57:45.2197908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.2198045Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:57:45.2198111Z 2025-03-14T04:57:45.2198429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.2198555Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:57:45.2198626Z 2025-03-14T04:57:45.2198987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.2199209Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:57:45.2199275Z 2025-03-14T04:57:45.2199705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.2199838Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:57:45.2200255Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:57:45.2200389Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:57:45.2200520Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:57:45.2200591Z 2025-03-14T04:57:45.2201005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2201158Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:57:45.2201238Z 2025-03-14T04:57:45.2201529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2201662Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:57:45.2201731Z 2025-03-14T04:57:45.2202141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2202289Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:57:45.2202353Z 2025-03-14T04:57:45.2202639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2202770Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:57:45.2202843Z 2025-03-14T04:57:45.2203203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.2203400Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:57:45.2203502Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:57:45.2203630Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:57:45.2203693Z 2025-03-14T04:57:45.2204032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.2204156Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:57:45.2204228Z 2025-03-14T04:57:45.2204543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.2204671Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:57:45.2204734Z 2025-03-14T04:57:45.2205109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.2205316Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:57:45.2205386Z 2025-03-14T04:57:45.2205789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.2205913Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:57:45.2206337Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:57:45.2206475Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:57:45.2206600Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T04:57:45.2206665Z 2025-03-14T04:57:45.2207099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2207245Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:57:45.2207338Z 2025-03-14T04:57:45.2207629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2207770Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:57:45.2207835Z 2025-03-14T04:57:45.2208270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2208413Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:57:45.2208485Z 2025-03-14T04:57:45.2208785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2208922Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:57:45.2208985Z 2025-03-14T04:57:45.2209347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.2209534Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:57:45.2209642Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:57:45.2209773Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:57:45.2209844Z 2025-03-14T04:57:45.2210166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.2210299Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:57:45.2210364Z 2025-03-14T04:57:45.2210698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.2210814Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:57:45.2210884Z 2025-03-14T04:57:45.2211247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.2211459Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:57:45.2211522Z 2025-03-14T04:57:45.2211930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.2212078Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:57:45.2212489Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:57:45.2212643Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:57:45.2212761Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T04:57:45.2212835Z 2025-03-14T04:57:45.2213258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2213425Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:57:45.2213490Z 2025-03-14T04:57:45.2213791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2213926Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:57:45.2214002Z 2025-03-14T04:57:45.2214430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.2214578Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:57:45.2214643Z 2025-03-14T04:57:45.2214940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2215078Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:57:45.2215152Z 2025-03-14T04:57:45.2215519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.2215721Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:57:45.2215821Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:57:45.2215966Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:57:45.2216033Z 2025-03-14T04:57:45.2216360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.2216488Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:57:45.2216562Z 2025-03-14T04:57:45.2216883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.2217013Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:57:45.2217080Z 2025-03-14T04:57:45.2217464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.2217671Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:57:45.2217745Z 2025-03-14T04:57:45.2218150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.2218304Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:57:45.2218741Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:57:45.2218879Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:57:45.2219001Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T04:57:45.2219066Z 2025-03-14T04:57:45.2219368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:45.2219513Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T04:57:45.2219652Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T04:57:45.2219778Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T04:57:45.2219905Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T04:57:45.2220023Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T04:57:45.2220097Z 2025-03-14T04:57:45.2220359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2220864Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T04:57:45.2220933Z 2025-03-14T04:57:45.2221215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.2221412Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T04:57:45.2221487Z 2025-03-14T04:57:45.2221885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.2222447Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.2222520Z 2025-03-14T04:57:45.2222909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.2223464Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T04:57:45.2223535Z 2025-03-14T04:57:45.2223811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2224428Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T04:57:45.2224516Z 2025-03-14T04:57:45.2224844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.2225073Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T04:57:45.2225168Z 2025-03-14T04:57:45.2225588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.2226136Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.2226233Z 2025-03-14T04:57:45.2226605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.2227148Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T04:57:45.2227225Z 2025-03-14T04:57:45.2227489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2227988Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T04:57:45.2228056Z 2025-03-14T04:57:45.2228350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.2228544Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T04:57:45.2228623Z 2025-03-14T04:57:45.2229028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.2229569Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.2229640Z 2025-03-14T04:57:45.2230019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.2230543Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T04:57:45.2230621Z 2025-03-14T04:57:45.2230894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2231377Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T04:57:45.2231452Z 2025-03-14T04:57:45.2231747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.2231951Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T04:57:45.2232036Z 2025-03-14T04:57:45.2232432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.2232951Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.2233046Z 2025-03-14T04:57:45.2233415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.2233945Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T04:57:45.2234015Z 2025-03-14T04:57:45.2234290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.2235093Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:45.2235165Z 2025-03-14T04:57:45.2235461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.2235649Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T04:57:45.2235725Z 2025-03-14T04:57:45.2236133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.2237033Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:45.2237104Z 2025-03-14T04:57:45.2237486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.2238364Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:45.2238437Z 2025-03-14T04:57:45.2238805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:45.2238979Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:45.2239160Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:45.2239332Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:57:45.2239494Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:57:45.2239661Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:57:45.2239844Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:57:45.2240000Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:57:45.2240151Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:57:45.2240311Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:57:45.2240453Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:57:45.2240520Z 2025-03-14T04:57:45.2240943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:45.2241121Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T04:57:45.2241314Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:57:45.2241494Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:57:45.2241666Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T04:57:45.2241840Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:57:45.2242037Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:57:45.2242197Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T04:57:45.2242364Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:57:45.2242539Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:57:45.2242684Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T04:57:45.2242851Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:57:45.2243017Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:57:45.2243169Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T04:57:45.2243325Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:57:45.2243497Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:57:45.2243567Z 2025-03-14T04:57:45.2243993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.2244200Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:45.2244287Z 2025-03-14T04:57:45.2244725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.2244894Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:45.2245043Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:45.2245211Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:45.2245279Z 2025-03-14T04:57:45.2245662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.2245832Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:45.2245911Z 2025-03-14T04:57:45.2246225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.2246377Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:45.2246442Z 2025-03-14T04:57:45.2246762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.2246899Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:45.2247033Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2247185Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:57:45.2247258Z 2025-03-14T04:57:45.2247575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.2247726Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:45.2247856Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:45.2248012Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:57:45.2248087Z 2025-03-14T04:57:45.2248399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.2248531Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2248623Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:57:45.2248760Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:57:45.2248826Z 2025-03-14T04:57:45.2249141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.2249288Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:45.2249390Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:57:45.2249524Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:57:45.2249603Z 2025-03-14T04:57:45.2249986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.2250158Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.2250275Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:57:45.2250367Z 2025-03-14T04:57:45.2250669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.2250833Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.2250947Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:57:45.2251047Z 2025-03-14T04:57:45.2251349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.2251510Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.2251626Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:57:45.2251707Z 2025-03-14T04:57:45.2252012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.2252209Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:45.2252325Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:57:45.2252403Z 2025-03-14T04:57:45.2252740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.2252897Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:45.2252966Z 2025-03-14T04:57:45.2253307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.2253450Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:45.2253528Z 2025-03-14T04:57:45.2253922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.2254070Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:45.2254209Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:57:45.2254364Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:45.2254512Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:57:45.2254578Z 2025-03-14T04:57:45.2254929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.2255074Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:45.2255206Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:57:45.2255359Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:45.2255502Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:57:45.2255568Z 2025-03-14T04:57:45.2255921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.2256044Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:45.2256214Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:45.2256363Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:57:45.2256435Z 2025-03-14T04:57:45.2256766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.2256891Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:45.2257075Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:45.2257220Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:57:45.2257286Z 2025-03-14T04:57:45.2257600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.2257699Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:45.2257826Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:45.2257893Z 2025-03-14T04:57:45.2258205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.2258301Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:45.2258421Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:45.2258489Z 2025-03-14T04:57:45.2258797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.2258912Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:45.2259052Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:45.2259119Z 2025-03-14T04:57:45.2259448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.2259564Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:45.2259697Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:45.2259762Z 2025-03-14T04:57:45.2260109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.2260293Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:45.2260366Z 2025-03-14T04:57:45.2260700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.2260872Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:57:45.2260938Z 2025-03-14T04:57:45.2261324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.2261500Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:45.2261575Z 2025-03-14T04:57:45.2261997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.2262220Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:57:45.2262305Z 2025-03-14T04:57:45.2262752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.2262917Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:57:45.2263074Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:57:45.2263243Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:57:45.2263313Z 2025-03-14T04:57:45.2263700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.2263875Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:57:45.2263952Z 2025-03-14T04:57:45.2264371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.2264535Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:57:45.2264602Z 2025-03-14T04:57:45.2264936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.2265084Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:57:45.2265229Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2265388Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:57:45.2265472Z 2025-03-14T04:57:45.2265806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.2265977Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:57:45.2266118Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:57:45.2266283Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:57:45.2266353Z 2025-03-14T04:57:45.2266677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.2266804Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2266910Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:57:45.2267049Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:57:45.2267125Z 2025-03-14T04:57:45.2267442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.2267606Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:57:45.2267704Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:57:45.2267849Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:57:45.2267916Z 2025-03-14T04:57:45.2268253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.2268416Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.2268561Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:57:45.2268630Z 2025-03-14T04:57:45.2268948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.2269104Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.2269229Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:57:45.2269312Z 2025-03-14T04:57:45.2269623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.2269783Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.2269898Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:57:45.2269974Z 2025-03-14T04:57:45.2270278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.2270477Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:57:45.2270593Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:57:45.2270665Z 2025-03-14T04:57:45.2271003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.2271158Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:57:45.2271224Z 2025-03-14T04:57:45.2271566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.2271711Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:57:45.2271785Z 2025-03-14T04:57:45.2272152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.2272303Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:57:45.2272440Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:57:45.2272623Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:57:45.2272768Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:57:45.2272847Z 2025-03-14T04:57:45.2273202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.2273358Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:57:45.2273488Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:57:45.2273656Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:57:45.2273803Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:57:45.2273881Z 2025-03-14T04:57:45.2274242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.2274375Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:57:45.2274556Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:57:45.2274708Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:57:45.2274775Z 2025-03-14T04:57:45.2275116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.2275235Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:57:45.2275433Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:57:45.2275572Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:57:45.2275648Z 2025-03-14T04:57:45.2275968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.2276078Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:57:45.2276211Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:57:45.2276279Z 2025-03-14T04:57:45.2276593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.2276696Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:57:45.2276824Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:57:45.2276890Z 2025-03-14T04:57:45.2277208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.2277328Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:57:45.2277476Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:57:45.2277542Z 2025-03-14T04:57:45.2277874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.2277995Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:57:45.2278136Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:57:45.2278204Z 2025-03-14T04:57:45.2278565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.2278767Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:57:45.2278843Z 2025-03-14T04:57:45.2279182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.2279360Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:57:45.2279429Z 2025-03-14T04:57:45.2279828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.2280028Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:57:45.2280102Z 2025-03-14T04:57:45.2280512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.2280750Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:57:45.2280817Z 2025-03-14T04:57:45.2281273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.2281636Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:57:45.2281872Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:57:45.2282015Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:57:45.2282094Z 2025-03-14T04:57:45.2282477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.2282666Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:57:45.2282754Z 2025-03-14T04:57:45.2283086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.2283237Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:57:45.2283317Z 2025-03-14T04:57:45.2283637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.2283782Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:57:45.2283911Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2284076Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:57:45.2284147Z 2025-03-14T04:57:45.2284507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.2284645Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:57:45.2284768Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:57:45.2284930Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:57:45.2284997Z 2025-03-14T04:57:45.2285315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.2285439Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2285553Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:57:45.2285685Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:57:45.2285760Z 2025-03-14T04:57:45.2286067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.2286238Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:57:45.2286334Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:57:45.2286493Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:57:45.2286559Z 2025-03-14T04:57:45.2286872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.2287026Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.2287172Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:57:45.2287238Z 2025-03-14T04:57:45.2287543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.2287696Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.2287834Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:57:45.2287898Z 2025-03-14T04:57:45.2288201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.2288350Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.2288472Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:57:45.2288538Z 2025-03-14T04:57:45.2288848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.2289031Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:57:45.2289150Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:57:45.2289216Z 2025-03-14T04:57:45.2289556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.2289698Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:57:45.2289773Z 2025-03-14T04:57:45.2290102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.2290261Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:57:45.2290328Z 2025-03-14T04:57:45.2290677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.2290819Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:57:45.2290945Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:57:45.2291102Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:57:45.2291241Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:57:45.2291317Z 2025-03-14T04:57:45.2291666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.2291809Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:57:45.2291931Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:57:45.2292089Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:57:45.2292251Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:57:45.2292325Z 2025-03-14T04:57:45.2292648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.2292795Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:57:45.2292954Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:57:45.2293096Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:57:45.2293162Z 2025-03-14T04:57:45.2293496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.2293627Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:57:45.2293803Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:57:45.2293937Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:57:45.2294008Z 2025-03-14T04:57:45.2294319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.2294423Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:57:45.2294540Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:57:45.2294611Z 2025-03-14T04:57:45.2294920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.2295024Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:57:45.2295144Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:57:45.2295216Z 2025-03-14T04:57:45.2295522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.2295649Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:57:45.2295783Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:57:45.2295872Z 2025-03-14T04:57:45.2296175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.2296298Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:57:45.2296430Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:57:45.2296502Z 2025-03-14T04:57:45.2296844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.2297043Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:57:45.2297108Z 2025-03-14T04:57:45.2297447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.2297607Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:57:45.2297680Z 2025-03-14T04:57:45.2298057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.2298264Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:57:45.2298341Z 2025-03-14T04:57:45.2323922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.2324529Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:57:45.2324611Z 2025-03-14T04:57:45.2325108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.2325305Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:57:45.2325473Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:57:45.2325628Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:57:45.2325706Z 2025-03-14T04:57:45.2326111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.2326342Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:57:45.2326427Z 2025-03-14T04:57:45.2326752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.2326911Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:57:45.2326982Z 2025-03-14T04:57:45.2327311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.2327448Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:57:45.2327583Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2327735Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:57:45.2327809Z 2025-03-14T04:57:45.2328169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.2328305Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:57:45.2328427Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:57:45.2328584Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:57:45.2328648Z 2025-03-14T04:57:45.2328965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.2329088Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2329191Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:57:45.2329327Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:57:45.2329405Z 2025-03-14T04:57:45.2329715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.2329875Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:57:45.2329973Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:57:45.2330137Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:57:45.2330204Z 2025-03-14T04:57:45.2330544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.2330745Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.2330865Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:57:45.2330942Z 2025-03-14T04:57:45.2331252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.2331422Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.2331556Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:57:45.2331631Z 2025-03-14T04:57:45.2331931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.2332089Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.2332201Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:57:45.2332276Z 2025-03-14T04:57:45.2332581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.2332776Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:57:45.2332888Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:57:45.2332963Z 2025-03-14T04:57:45.2333299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.2333449Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:57:45.2333516Z 2025-03-14T04:57:45.2333875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.2334014Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:57:45.2334090Z 2025-03-14T04:57:45.2334437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.2334585Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:57:45.2334711Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:57:45.2334873Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:57:45.2335015Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:57:45.2335090Z 2025-03-14T04:57:45.2335436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.2335579Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:57:45.2335702Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:57:45.2335864Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:57:45.2336020Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:57:45.2336093Z 2025-03-14T04:57:45.2336429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.2336569Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:57:45.2336737Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:57:45.2336873Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:57:45.2336948Z 2025-03-14T04:57:45.2337275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.2337458Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:57:45.2337626Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:57:45.2337765Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:57:45.2337835Z 2025-03-14T04:57:45.2338155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.2338261Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:57:45.2338394Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:57:45.2338465Z 2025-03-14T04:57:45.2338781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.2338881Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:57:45.2339010Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:57:45.2339078Z 2025-03-14T04:57:45.2339389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.2339509Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:57:45.2339673Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:57:45.2339739Z 2025-03-14T04:57:45.2340047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.2340160Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:57:45.2340300Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:57:45.2340366Z 2025-03-14T04:57:45.2340718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.2340911Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:57:45.2340988Z 2025-03-14T04:57:45.2341327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.2341500Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:57:45.2341566Z 2025-03-14T04:57:45.2341979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.2342157Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:57:45.2342232Z 2025-03-14T04:57:45.2342640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.2342876Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:57:45.2342943Z 2025-03-14T04:57:45.2343392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.2343562Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:57:45.2343729Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:57:45.2343867Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:57:45.2343953Z 2025-03-14T04:57:45.2344495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.2344678Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:57:45.2344758Z 2025-03-14T04:57:45.2345086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.2345257Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:57:45.2345328Z 2025-03-14T04:57:45.2345654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.2345788Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:57:45.2345932Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2346102Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:57:45.2346183Z 2025-03-14T04:57:45.2346508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.2346640Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:57:45.2346765Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:57:45.2346927Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:57:45.2346994Z 2025-03-14T04:57:45.2347317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.2347445Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:57:45.2347548Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:57:45.2347683Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:57:45.2347756Z 2025-03-14T04:57:45.2348070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.2348230Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:57:45.2348341Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:57:45.2348480Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:57:45.2348547Z 2025-03-14T04:57:45.2348863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.2349038Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.2349164Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:57:45.2349233Z 2025-03-14T04:57:45.2349544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.2349716Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.2349843Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:57:45.2349910Z 2025-03-14T04:57:45.2350219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.2350370Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.2350493Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:57:45.2350561Z 2025-03-14T04:57:45.2350877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.2351072Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:57:45.2351185Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:57:45.2351260Z 2025-03-14T04:57:45.2351600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.2351751Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:57:45.2351821Z 2025-03-14T04:57:45.2352180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.2352318Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:57:45.2352391Z 2025-03-14T04:57:45.2352745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.2352904Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:57:45.2353031Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:57:45.2353192Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:57:45.2353334Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:57:45.2353407Z 2025-03-14T04:57:45.2353765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.2353914Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:57:45.2354037Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:57:45.2354225Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:57:45.2354365Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:57:45.2354440Z 2025-03-14T04:57:45.2354774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.2354917Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:57:45.2355084Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:57:45.2355227Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:57:45.2355293Z 2025-03-14T04:57:45.2355639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.2355776Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:57:45.2355957Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:57:45.2356093Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:57:45.2356168Z 2025-03-14T04:57:45.2356485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.2356592Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:57:45.2356711Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:57:45.2356785Z 2025-03-14T04:57:45.2357097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.2357207Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:57:45.2357324Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:57:45.2357398Z 2025-03-14T04:57:45.2357714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.2357839Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:57:45.2357990Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:57:45.2358065Z 2025-03-14T04:57:45.2358362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.2358483Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:57:45.2358619Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:57:45.2358683Z 2025-03-14T04:57:45.2359026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.2359211Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:57:45.2359283Z 2025-03-14T04:57:45.2359611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.2359776Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:57:45.2359841Z 2025-03-14T04:57:45.2360239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.2360415Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:57:45.2360486Z 2025-03-14T04:57:45.2360965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:45.2361135Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:45.2361200Z 2025-03-14T04:57:45.2361504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2361660Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:57:45.2361732Z 2025-03-14T04:57:45.2362166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.2362288Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:57:45.2362394Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:57:45.2362516Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:45.2362583Z 2025-03-14T04:57:45.2363045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.2363176Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.2363417Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:57:45.2363482Z 2025-03-14T04:57:45.2363941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.2364110Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.2364201Z 2025-03-14T04:57:45.2364495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2364624Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:57:45.2364694Z 2025-03-14T04:57:45.2365127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.2365254Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:57:45.2365364Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:57:45.2365492Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:57:45.2365557Z 2025-03-14T04:57:45.2366018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.2366150Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.2366388Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:57:45.2366470Z 2025-03-14T04:57:45.2366932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.2367118Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.2367191Z 2025-03-14T04:57:45.2367484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2367620Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:57:45.2367684Z 2025-03-14T04:57:45.2368120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.2368254Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:57:45.2368366Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:57:45.2368482Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:57:45.2368556Z 2025-03-14T04:57:45.2369010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.2369151Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.2369386Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:57:45.2369462Z 2025-03-14T04:57:45.2369914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.2370086Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.2370153Z 2025-03-14T04:57:45.2370469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2370593Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:57:45.2370667Z 2025-03-14T04:57:45.2371090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.2371212Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:57:45.2371325Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:57:45.2371439Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:57:45.2371512Z 2025-03-14T04:57:45.2371960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.2372101Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.2372331Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:57:45.2372407Z 2025-03-14T04:57:45.2372865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.2373040Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.2373123Z 2025-03-14T04:57:45.2373422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2373545Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:57:45.2373619Z 2025-03-14T04:57:45.2374037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.2374206Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:57:45.2374310Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:57:45.2374433Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:57:45.2374497Z 2025-03-14T04:57:45.2374953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.2375121Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:45.2375360Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:57:45.2375426Z 2025-03-14T04:57:45.2375877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.2376041Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.2376116Z 2025-03-14T04:57:45.2376405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.2376536Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:57:45.2376624Z 2025-03-14T04:57:45.2376913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.2377297Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:57:45.2377365Z 2025-03-14T04:57:45.2377651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.2378114Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:57:45.2378190Z 2025-03-14T04:57:45.2378465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.2378674Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:57:45.2378741Z 2025-03-14T04:57:45.2379150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:45.2379292Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:57:45.2379383Z 2025-03-14T04:57:45.2379676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:45.2379837Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:57:45.2379902Z 2025-03-14T04:57:45.2380289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:45.2380441Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:57:45.2380516Z 2025-03-14T04:57:45.2380995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:45.2381142Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:57:45.2381263Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:45.2381629Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:45.2381773Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:45.2381850Z 2025-03-14T04:57:45.2382213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:45.2382344Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:45.2382412Z 2025-03-14T04:57:45.2382859Z 2025-03-14T04:57:45.2382956Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:45.2516713Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:57:45.2671861Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:57:45.2672627Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2673730Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2675143Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2676194Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2677125Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2678059Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2679036Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2680136Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2681190Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2682317Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2683316Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2684270Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2685485Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2686649Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2687572Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2688455Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2689359Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2690297Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2691210Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2692146Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2693021Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.2693943Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2694922Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2695869Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2696785Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2697670Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2698548Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2699508Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2700423Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2701329Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2702179Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2703070Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2704022Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2705041Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2705945Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2706812Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2707689Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2708629Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2709541Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2710424Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2711265Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2712154Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2713095Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2714014Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2714885Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2715726Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2716623Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2717570Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2718482Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2719358Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2720199Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2721084Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2722026Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2722930Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2723806Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2724648Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2725521Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2726444Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2727396Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2728275Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2729145Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2730042Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2731001Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2731901Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2732790Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2733640Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2734521Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2735454Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2736378Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2737265Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2738141Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.2739048Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2740014Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2740980Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2741967Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2742849Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2743779Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2744935Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2745896Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2746831Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2747709Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2748623Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2749594Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2750536Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2751459Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2752356Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2753272Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2754241Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2755201Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2756125Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2757007Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2757914Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2758848Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2759774Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2760658Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2761527Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2762407Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2763349Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2764261Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2765149Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2765998Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2766896Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2767864Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2768780Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2769675Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2770530Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2771424Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2772338Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2773245Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2774109Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2774905Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2775721Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2776601Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2777445Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2778255Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2779035Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2779852Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2780714Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2781759Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2782650Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2783535Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2784448Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2785438Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2786388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2787331Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2788224Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2789150Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2790096Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2793985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2794801Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2795575Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2796384Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2797259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2798111Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2798924Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2799751Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.2800597Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2801490Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2802368Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2803191Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2803966Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2804798Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2805659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2806515Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2807320Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2808139Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2808950Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2809827Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2810665Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2811475Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2812254Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2813077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2813938Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2814772Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2815583Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2816363Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2817170Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2818046Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2818877Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2819718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2820526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2821341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2822218Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2823063Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2823882Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2824839Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2825701Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2826567Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2827479Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2828345Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2829176Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2830018Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2830884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2831730Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2832572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2833364Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2834200Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2835062Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2835918Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2836738Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2837518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2838328Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2839189Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2840026Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2840857Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2841635Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2842451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2843318Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2844164Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2844978Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2845753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2846584Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2847451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2848317Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2849130Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2849946Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2850766Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2851640Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2852476Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2853289Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2854072Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2854904Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2855780Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2856610Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2857416Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2858198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2859001Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2859876Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2860712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2861537Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2862314Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2863137Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2864021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2865027Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2865880Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2866749Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2867661Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2868641Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2869612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2870526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2871400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2872267Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2873128Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2873966Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2874794Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2875576Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2876400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2877264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2878122Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2878932Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2879718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2880528Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2881390Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2882355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2883242Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2884019Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2884808Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2885658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2886476Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2887269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2888058Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2888854Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2889723Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2890542Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2891341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2892121Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2892914Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2893758Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2894573Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2895361Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2896116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2896916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2897757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2898584Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2899384Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2900158Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2900953Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2901829Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2902659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2903479Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2904449Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2905468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2906495Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2907560Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2908591Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2909595Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2910619Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2911687Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2912526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2913338Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2914114Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2914921Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2915786Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2916630Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2917498Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2918280Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2919114Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2919980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2920836Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2921657Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2922435Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2923249Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2924116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2924963Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2925798Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2926577Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2927392Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2928249Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2929089Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2929897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2930692Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2931502Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2932388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2933224Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2934057Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2934838Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2935654Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2936519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2937357Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2938181Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2938981Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2939796Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2940665Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2941511Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2942336Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2943118Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2943962Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2944957Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2945865Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2946729Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2947558Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2948453Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2949371Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2950265Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2951132Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2951958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2952819Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2953712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2954543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2955341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2956100Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2956893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2957734Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2958588Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2959382Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2960160Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2960954Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2961818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2962646Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2963458Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2964239Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2965052Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2965917Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2966775Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2967591Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2968380Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2969193Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2970065Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2970913Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2971745Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2972536Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2973357Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2974237Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2975090Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2975922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2976706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2977522Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2978385Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2979235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2980052Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2980855Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2981893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2982775Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2983626Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2984615Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2985467Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2986351Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2987265Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2988180Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2989044Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2989899Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.2990758Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2991673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2992568Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2993433Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2994261Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.2995633Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.2996508Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.2997363Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.2998180Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.2998965Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.2999777Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3000656Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3001507Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3002341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3003126Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3003941Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3004821Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3005660Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3006473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3007254Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3008076Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3008949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3009821Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3010652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3011483Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3012303Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3013172Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3014019Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3014854Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3015643Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3016515Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3017383Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3018248Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3019070Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3019867Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3020686Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3021566Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3022411Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3023246Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3024073Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3025080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3026013Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3026893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3027783Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3028643Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3029507Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3030440Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3031328Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3032199Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3033045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3033913Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3034831Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3035717Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3036581Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3037382Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3038214Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3039078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3039919Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3040732Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3041510Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3042315Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3043197Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3044049Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3044883Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3045667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3046501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3047373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3048223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3049034Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3049823Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3050636Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3051516Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3052355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3053167Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3053951Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3054750Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3055621Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3056474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3057288Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3058092Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3058908Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3059775Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3060649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3061468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3062256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3063073Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3063939Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3064896Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3065793Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3066621Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3067495Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3068430Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3069343Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3070198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3071038Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3071905Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3072841Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3073730Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3074601Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3075389Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3076201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3077069Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3077920Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3078750Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3079553Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3080362Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3081227Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3082249Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3083074Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3083852Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3084714Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3085587Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3086454Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3087265Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3088053Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3088894Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3089764Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3090608Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3091420Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3092193Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3092998Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3093881Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3094724Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3095536Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3096334Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.3097175Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3098062Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3098989Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3099836Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3100648Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3101465Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3102343Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3103181Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3104005Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3104878Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3105736Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3106627Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3107484Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3108294Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3108655Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3109065Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3109476Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3109859Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3110257Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3110616Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3111048Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3111462Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3111848Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3112253Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3112605Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3113024Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3113433Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3113823Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3114207Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3114577Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3114988Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3115395Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3115785Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3116171Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3116405Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T04:57:45.3116642Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T04:57:45.3116892Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T04:57:45.3117115Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T04:57:45.3117350Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T04:57:45.3117572Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T04:57:45.3117787Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T04:57:45.3118002Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T04:57:45.3118240Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T04:57:45.3118459Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T04:57:45.3118676Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T04:57:45.3118893Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T04:57:45.3119112Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T04:57:45.3119333Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T04:57:45.3119549Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T04:57:45.3119767Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T04:57:45.3120128Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:45.3120477Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:57:45.3120903Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:57:45.3121248Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:57:45.3121600Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:57:45.3121921Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:45.3122243Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:45.3122609Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:45.3122976Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:45.3123352Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:45.3123692Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:45.3123789Z 2025-03-14T04:57:45.3124104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3124662Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3124748Z 2025-03-14T04:57:45.3125046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3126803Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3126876Z 2025-03-14T04:57:45.3127177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:57:45.3127325Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:57:45.3127400Z 2025-03-14T04:57:45.3127779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:57:45.3128027Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:57:45.3128094Z 2025-03-14T04:57:45.3128359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3128849Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3128923Z 2025-03-14T04:57:45.3129193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3131011Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3131106Z 2025-03-14T04:57:45.3131401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3131566Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:57:45.3131632Z 2025-03-14T04:57:45.3131897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3132410Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3132481Z 2025-03-14T04:57:45.3132755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3134561Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3134639Z 2025-03-14T04:57:45.3134943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3135086Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:57:45.3135158Z 2025-03-14T04:57:45.3135411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3135945Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3136011Z 2025-03-14T04:57:45.3136289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3138073Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3138205Z 2025-03-14T04:57:45.3138482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3138987Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.3139064Z 2025-03-14T04:57:45.3139331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3141218Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3141297Z 2025-03-14T04:57:45.3141574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3141728Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:57:45.3141794Z 2025-03-14T04:57:45.3142084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3142236Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:57:45.3142312Z 2025-03-14T04:57:45.3142562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3143053Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3143119Z 2025-03-14T04:57:45.3143408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3145324Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3145431Z 2025-03-14T04:57:45.3145749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3145903Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:57:45.3145986Z 2025-03-14T04:57:45.3146256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3146798Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3146879Z 2025-03-14T04:57:45.3147174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3149084Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3149164Z 2025-03-14T04:57:45.3149477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3149635Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:57:45.3149705Z 2025-03-14T04:57:45.3149975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3150529Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3150608Z 2025-03-14T04:57:45.3150895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3152803Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3152925Z 2025-03-14T04:57:45.3153232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3153408Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:57:45.3153476Z 2025-03-14T04:57:45.3153789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3153946Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:57:45.3154024Z 2025-03-14T04:57:45.3154295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3154811Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3154881Z 2025-03-14T04:57:45.3155187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3157059Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3157131Z 2025-03-14T04:57:45.3157437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3157577Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:57:45.3157665Z 2025-03-14T04:57:45.3157918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3158413Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3158495Z 2025-03-14T04:57:45.3158770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3160567Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3160648Z 2025-03-14T04:57:45.3160944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3161086Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:57:45.3161161Z 2025-03-14T04:57:45.3161408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3161933Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3162008Z 2025-03-14T04:57:45.3162275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3164057Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3164131Z 2025-03-14T04:57:45.3164424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3164588Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:57:45.3164653Z 2025-03-14T04:57:45.3164942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3165110Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:57:45.3165180Z 2025-03-14T04:57:45.3165431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3165928Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3166007Z 2025-03-14T04:57:45.3166278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3168053Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3168130Z 2025-03-14T04:57:45.3168420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3168579Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:57:45.3168652Z 2025-03-14T04:57:45.3168904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3169406Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3169474Z 2025-03-14T04:57:45.3169750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3171528Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3171610Z 2025-03-14T04:57:45.3171902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3172046Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:57:45.3172120Z 2025-03-14T04:57:45.3172370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3172889Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3172957Z 2025-03-14T04:57:45.3173226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3175010Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3175092Z 2025-03-14T04:57:45.3175357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3175855Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.3175930Z 2025-03-14T04:57:45.3176203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3178070Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3178163Z 2025-03-14T04:57:45.3178447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3178596Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:57:45.3178670Z 2025-03-14T04:57:45.3178947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3179127Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:57:45.3179197Z 2025-03-14T04:57:45.3179468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3179969Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3180044Z 2025-03-14T04:57:45.3180303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3182454Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3182548Z 2025-03-14T04:57:45.3182869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3183043Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:57:45.3183117Z 2025-03-14T04:57:45.3183407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3183970Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3184051Z 2025-03-14T04:57:45.3184396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3186399Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3186534Z 2025-03-14T04:57:45.3186868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3187037Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:57:45.3187111Z 2025-03-14T04:57:45.3187400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3187955Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3188036Z 2025-03-14T04:57:45.3188387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3190366Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3190452Z 2025-03-14T04:57:45.3190778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3190961Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:57:45.3191045Z 2025-03-14T04:57:45.3191368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3191534Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:57:45.3191615Z 2025-03-14T04:57:45.3191897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3192455Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3192533Z 2025-03-14T04:57:45.3192830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3194679Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3194768Z 2025-03-14T04:57:45.3195055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3195204Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:57:45.3195269Z 2025-03-14T04:57:45.3195528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3196024Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3196101Z 2025-03-14T04:57:45.3196368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3198163Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3198241Z 2025-03-14T04:57:45.3198521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3198668Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:57:45.3198735Z 2025-03-14T04:57:45.3199000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3199488Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3199576Z 2025-03-14T04:57:45.3199839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3201609Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3201700Z 2025-03-14T04:57:45.3201980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3202141Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:57:45.3202209Z 2025-03-14T04:57:45.3202500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3202649Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:57:45.3202722Z 2025-03-14T04:57:45.3202970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3203478Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3203546Z 2025-03-14T04:57:45.3203818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3205609Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3205679Z 2025-03-14T04:57:45.3205974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3206114Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:57:45.3206199Z 2025-03-14T04:57:45.3206447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3206945Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3207035Z 2025-03-14T04:57:45.3207301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3209062Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3209138Z 2025-03-14T04:57:45.3209423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3209573Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:57:45.3209638Z 2025-03-14T04:57:45.3209910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3210399Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3210472Z 2025-03-14T04:57:45.3210734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3212519Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3212596Z 2025-03-14T04:57:45.3212899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3213063Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:57:45.3213129Z 2025-03-14T04:57:45.3213425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3213571Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:57:45.3213655Z 2025-03-14T04:57:45.3213913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3214389Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3214453Z 2025-03-14T04:57:45.3214721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3216452Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3216518Z 2025-03-14T04:57:45.3216807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3216947Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:57:45.3217020Z 2025-03-14T04:57:45.3217269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3217765Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3217831Z 2025-03-14T04:57:45.3218105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3219891Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3219973Z 2025-03-14T04:57:45.3220283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3220422Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:57:45.3220495Z 2025-03-14T04:57:45.3220744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3221245Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3221317Z 2025-03-14T04:57:45.3221581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3223371Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3223445Z 2025-03-14T04:57:45.3223694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3224268Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.3224349Z 2025-03-14T04:57:45.3224636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3226536Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3226622Z 2025-03-14T04:57:45.3226909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3227065Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:57:45.3227140Z 2025-03-14T04:57:45.3227421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3227573Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:57:45.3227639Z 2025-03-14T04:57:45.3227898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3228374Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3228447Z 2025-03-14T04:57:45.3228713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3230546Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3230622Z 2025-03-14T04:57:45.3230907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3231055Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:57:45.3231121Z 2025-03-14T04:57:45.3231379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3231862Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3231934Z 2025-03-14T04:57:45.3232211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3233984Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3234088Z 2025-03-14T04:57:45.3234375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3234517Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:57:45.3234583Z 2025-03-14T04:57:45.3234839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3235337Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3235405Z 2025-03-14T04:57:45.3235675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3237473Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3237550Z 2025-03-14T04:57:45.3237836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3237985Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:57:45.3238060Z 2025-03-14T04:57:45.3238337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3238485Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:57:45.3238551Z 2025-03-14T04:57:45.3238828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3239306Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3239396Z 2025-03-14T04:57:45.3239661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3241431Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3241522Z 2025-03-14T04:57:45.3241814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3241959Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:57:45.3242023Z 2025-03-14T04:57:45.3242284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3242779Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3242877Z 2025-03-14T04:57:45.3243139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3244902Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3244977Z 2025-03-14T04:57:45.3245259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3245411Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:57:45.3245477Z 2025-03-14T04:57:45.3245734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3246262Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3246338Z 2025-03-14T04:57:45.3246598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3248370Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3248447Z 2025-03-14T04:57:45.3248726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3248880Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:57:45.3248946Z 2025-03-14T04:57:45.3249235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3249393Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:57:45.3249467Z 2025-03-14T04:57:45.3249711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3250191Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3250267Z 2025-03-14T04:57:45.3250529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3252308Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3252399Z 2025-03-14T04:57:45.3252683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3252824Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:57:45.3252891Z 2025-03-14T04:57:45.3253142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3253637Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3253711Z 2025-03-14T04:57:45.3253975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3255787Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3255863Z 2025-03-14T04:57:45.3256171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3256312Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:57:45.3256377Z 2025-03-14T04:57:45.3256632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3257121Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3257196Z 2025-03-14T04:57:45.3257456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3259265Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3259357Z 2025-03-14T04:57:45.3259638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3259791Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:57:45.3259869Z 2025-03-14T04:57:45.3260164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3260305Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:57:45.3260380Z 2025-03-14T04:57:45.3260630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3261119Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3261184Z 2025-03-14T04:57:45.3261460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3263277Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3263348Z 2025-03-14T04:57:45.3263646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3263782Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:57:45.3263858Z 2025-03-14T04:57:45.3264163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3264665Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3264738Z 2025-03-14T04:57:45.3265004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3266846Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3266956Z 2025-03-14T04:57:45.3267261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3267417Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:57:45.3267483Z 2025-03-14T04:57:45.3267740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3268224Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3268300Z 2025-03-14T04:57:45.3268566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3270343Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3270425Z 2025-03-14T04:57:45.3270704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3270857Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:57:45.3270922Z 2025-03-14T04:57:45.3271213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3271352Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:57:45.3271426Z 2025-03-14T04:57:45.3271675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3272168Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3272246Z 2025-03-14T04:57:45.3272517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3274288Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3274372Z 2025-03-14T04:57:45.3274669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3274805Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:57:45.3274882Z 2025-03-14T04:57:45.3275134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3275627Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3275695Z 2025-03-14T04:57:45.3275987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3277743Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3277812Z 2025-03-14T04:57:45.3278102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3278236Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:57:45.3278308Z 2025-03-14T04:57:45.3278569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3279064Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3279151Z 2025-03-14T04:57:45.3279418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3281206Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3281295Z 2025-03-14T04:57:45.3281735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3281902Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:57:45.3281969Z 2025-03-14T04:57:45.3282264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3282406Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:57:45.3282484Z 2025-03-14T04:57:45.3282777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3283257Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3283326Z 2025-03-14T04:57:45.3283600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3285377Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3285455Z 2025-03-14T04:57:45.3285750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3285906Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:57:45.3285983Z 2025-03-14T04:57:45.3286235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3286728Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3286824Z 2025-03-14T04:57:45.3287094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3288880Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3288949Z 2025-03-14T04:57:45.3289247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3289395Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:57:45.3289469Z 2025-03-14T04:57:45.3289716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3290216Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3290285Z 2025-03-14T04:57:45.3290554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3292365Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3292449Z 2025-03-14T04:57:45.3292740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3292886Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:57:45.3292961Z 2025-03-14T04:57:45.3293243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3293406Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:57:45.3293472Z 2025-03-14T04:57:45.3293738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3294213Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3294280Z 2025-03-14T04:57:45.3294543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3296274Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3296352Z 2025-03-14T04:57:45.3296636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3296770Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:57:45.3296842Z 2025-03-14T04:57:45.3297086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3297564Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3297629Z 2025-03-14T04:57:45.3297894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3299622Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3299727Z 2025-03-14T04:57:45.3300015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3300148Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:57:45.3300221Z 2025-03-14T04:57:45.3300473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3300964Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3301029Z 2025-03-14T04:57:45.3301301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3303081Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3303151Z 2025-03-14T04:57:45.3303437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3303582Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:57:45.3303657Z 2025-03-14T04:57:45.3303936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3304133Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:57:45.3304210Z 2025-03-14T04:57:45.3304480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3304999Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3305080Z 2025-03-14T04:57:45.3305356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3307240Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3307332Z 2025-03-14T04:57:45.3307620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3307770Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:57:45.3307836Z 2025-03-14T04:57:45.3308091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3308588Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3308655Z 2025-03-14T04:57:45.3308926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3310710Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3310788Z 2025-03-14T04:57:45.3311080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3311218Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:57:45.3311289Z 2025-03-14T04:57:45.3311538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3312046Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3312134Z 2025-03-14T04:57:45.3312409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3314202Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3314519Z 2025-03-14T04:57:45.3314816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3314970Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:57:45.3315048Z 2025-03-14T04:57:45.3315337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3315486Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:57:45.3315552Z 2025-03-14T04:57:45.3315815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3316312Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3316386Z 2025-03-14T04:57:45.3316647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3318419Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3318509Z 2025-03-14T04:57:45.3318795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3318939Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:57:45.3319020Z 2025-03-14T04:57:45.3319276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3319753Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3319839Z 2025-03-14T04:57:45.3320101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3321878Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3321953Z 2025-03-14T04:57:45.3322238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3322385Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:57:45.3322451Z 2025-03-14T04:57:45.3322724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3323213Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3323279Z 2025-03-14T04:57:45.3323551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3325332Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3325410Z 2025-03-14T04:57:45.3325695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3325861Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:57:45.3325936Z 2025-03-14T04:57:45.3326221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3326369Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:57:45.3326451Z 2025-03-14T04:57:45.3326710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3327197Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3327272Z 2025-03-14T04:57:45.3327536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3329347Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3329427Z 2025-03-14T04:57:45.3329713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3329860Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:57:45.3329926Z 2025-03-14T04:57:45.3330182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3330668Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3330743Z 2025-03-14T04:57:45.3331009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3332851Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3332942Z 2025-03-14T04:57:45.3333240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3333404Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:57:45.3333469Z 2025-03-14T04:57:45.3333729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3334231Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3334318Z 2025-03-14T04:57:45.3334580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3336350Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3336425Z 2025-03-14T04:57:45.3336700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3336852Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:57:45.3336916Z 2025-03-14T04:57:45.3337199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3337337Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:57:45.3337412Z 2025-03-14T04:57:45.3337653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3338154Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3338228Z 2025-03-14T04:57:45.3338486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3340284Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3340374Z 2025-03-14T04:57:45.3340658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3340804Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:57:45.3340869Z 2025-03-14T04:57:45.3341129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3341614Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3341687Z 2025-03-14T04:57:45.3341947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3343759Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3343839Z 2025-03-14T04:57:45.3344198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3344360Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:57:45.3344427Z 2025-03-14T04:57:45.3344698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3345239Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3345333Z 2025-03-14T04:57:45.3345615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3347394Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3347488Z 2025-03-14T04:57:45.3347771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3347932Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:57:45.3347999Z 2025-03-14T04:57:45.3348297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3348438Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:57:45.3348514Z 2025-03-14T04:57:45.3348766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3349268Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3349343Z 2025-03-14T04:57:45.3349608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3351443Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3351509Z 2025-03-14T04:57:45.3351855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3352000Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:57:45.3352080Z 2025-03-14T04:57:45.3352329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3352827Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3352918Z 2025-03-14T04:57:45.3353188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3354929Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3355004Z 2025-03-14T04:57:45.3355281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3355424Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:57:45.3355487Z 2025-03-14T04:57:45.3355754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3356226Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3356303Z 2025-03-14T04:57:45.3356559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3358319Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3358395Z 2025-03-14T04:57:45.3358667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3358837Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:57:45.3358902Z 2025-03-14T04:57:45.3359183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3359320Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:57:45.3359405Z 2025-03-14T04:57:45.3359651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3360130Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3360196Z 2025-03-14T04:57:45.3360467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3362270Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3362339Z 2025-03-14T04:57:45.3362635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3362773Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:57:45.3362847Z 2025-03-14T04:57:45.3363098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3363594Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3363668Z 2025-03-14T04:57:45.3363932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3365742Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3365825Z 2025-03-14T04:57:45.3366114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3366271Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:57:45.3366337Z 2025-03-14T04:57:45.3366593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3367081Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3367157Z 2025-03-14T04:57:45.3367419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3369216Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3369297Z 2025-03-14T04:57:45.3369579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3369734Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:57:45.3369800Z 2025-03-14T04:57:45.3370091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3370235Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:57:45.3370310Z 2025-03-14T04:57:45.3370558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3371059Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3371127Z 2025-03-14T04:57:45.3371394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3373190Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3373287Z 2025-03-14T04:57:45.3373578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3373715Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:57:45.3373789Z 2025-03-14T04:57:45.3374036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3374522Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3374590Z 2025-03-14T04:57:45.3374861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3376642Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3376710Z 2025-03-14T04:57:45.3377006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3377141Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:57:45.3377214Z 2025-03-14T04:57:45.3377461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3377970Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3378043Z 2025-03-14T04:57:45.3378318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3380106Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3380195Z 2025-03-14T04:57:45.3380476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3380633Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:57:45.3380698Z 2025-03-14T04:57:45.3380986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3381126Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:57:45.3381197Z 2025-03-14T04:57:45.3381683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3382235Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3382305Z 2025-03-14T04:57:45.3382594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3384542Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3384629Z 2025-03-14T04:57:45.3384963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3385108Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:57:45.3385187Z 2025-03-14T04:57:45.3385474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3385994Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3386064Z 2025-03-14T04:57:45.3386382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3388259Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3388333Z 2025-03-14T04:57:45.3388643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3388786Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:57:45.3388864Z 2025-03-14T04:57:45.3389142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3389667Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3389740Z 2025-03-14T04:57:45.3390029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3391911Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3391984Z 2025-03-14T04:57:45.3392287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3392458Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:57:45.3392535Z 2025-03-14T04:57:45.3392838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3392996Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:57:45.3393080Z 2025-03-14T04:57:45.3393354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3393862Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3393933Z 2025-03-14T04:57:45.3394214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3396005Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3396083Z 2025-03-14T04:57:45.3396371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3396505Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:57:45.3396582Z 2025-03-14T04:57:45.3396829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3397319Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3397385Z 2025-03-14T04:57:45.3397654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3399435Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3399525Z 2025-03-14T04:57:45.3399824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3399975Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:57:45.3400048Z 2025-03-14T04:57:45.3400298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3400789Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3400857Z 2025-03-14T04:57:45.3401129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3402932Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3403002Z 2025-03-14T04:57:45.3403297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3403447Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:57:45.3403522Z 2025-03-14T04:57:45.3403806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3403957Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:57:45.3404022Z 2025-03-14T04:57:45.3404277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3404770Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3404846Z 2025-03-14T04:57:45.3405116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3406879Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3406982Z 2025-03-14T04:57:45.3407271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3407417Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:57:45.3407481Z 2025-03-14T04:57:45.3407739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3408235Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3408304Z 2025-03-14T04:57:45.3408576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3410359Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3410436Z 2025-03-14T04:57:45.3410725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3410863Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:57:45.3410936Z 2025-03-14T04:57:45.3411183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3411694Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3411760Z 2025-03-14T04:57:45.3412050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3413839Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3413921Z 2025-03-14T04:57:45.3414207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3414354Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:57:45.3414428Z 2025-03-14T04:57:45.3414709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3414858Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:57:45.3414924Z 2025-03-14T04:57:45.3415177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3415668Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3415744Z 2025-03-14T04:57:45.3416008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3417792Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3417868Z 2025-03-14T04:57:45.3418164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3418319Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:57:45.3418385Z 2025-03-14T04:57:45.3418657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3419154Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3419228Z 2025-03-14T04:57:45.3419521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3421300Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3421380Z 2025-03-14T04:57:45.3421669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3421817Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:57:45.3421890Z 2025-03-14T04:57:45.3422161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3422662Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3422730Z 2025-03-14T04:57:45.3423002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3424911Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3424998Z 2025-03-14T04:57:45.3425306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3425477Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:57:45.3425549Z 2025-03-14T04:57:45.3425835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3425995Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:57:45.3426064Z 2025-03-14T04:57:45.3426365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3426923Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3427004Z 2025-03-14T04:57:45.3427297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3429235Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3429316Z 2025-03-14T04:57:45.3429628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3429782Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:57:45.3429852Z 2025-03-14T04:57:45.3430146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3430672Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3430749Z 2025-03-14T04:57:45.3431046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3432985Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3433082Z 2025-03-14T04:57:45.3433381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3433553Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:57:45.3433621Z 2025-03-14T04:57:45.3433902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3434438Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3434510Z 2025-03-14T04:57:45.3434792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3436677Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3436755Z 2025-03-14T04:57:45.3437045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3437206Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:57:45.3437279Z 2025-03-14T04:57:45.3437563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3437719Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:57:45.3437785Z 2025-03-14T04:57:45.3438041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3438550Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3438625Z 2025-03-14T04:57:45.3438886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3440663Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3440765Z 2025-03-14T04:57:45.3441051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3441198Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:57:45.3441263Z 2025-03-14T04:57:45.3441520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3442015Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3442090Z 2025-03-14T04:57:45.3442352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3444159Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3444237Z 2025-03-14T04:57:45.3444522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3444667Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:57:45.3444733Z 2025-03-14T04:57:45.3444994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3445503Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3445578Z 2025-03-14T04:57:45.3445856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3447625Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3447718Z 2025-03-14T04:57:45.3447999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3448167Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:57:45.3448233Z 2025-03-14T04:57:45.3448526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3448671Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:57:45.3448745Z 2025-03-14T04:57:45.3448993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3449503Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3449579Z 2025-03-14T04:57:45.3449842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3451612Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3451689Z 2025-03-14T04:57:45.3451986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3452135Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:57:45.3452200Z 2025-03-14T04:57:45.3452471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3452958Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3453032Z 2025-03-14T04:57:45.3453308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3455101Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3455177Z 2025-03-14T04:57:45.3455457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3455611Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:57:45.3455678Z 2025-03-14T04:57:45.3455978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3456463Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3456537Z 2025-03-14T04:57:45.3456798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3458593Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3458670Z 2025-03-14T04:57:45.3458949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3459129Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:57:45.3459195Z 2025-03-14T04:57:45.3459490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3459634Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:57:45.3459727Z 2025-03-14T04:57:45.3459978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3460466Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3460541Z 2025-03-14T04:57:45.3460803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3462601Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3462671Z 2025-03-14T04:57:45.3462962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3463110Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:57:45.3463178Z 2025-03-14T04:57:45.3463432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3463930Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3464009Z 2025-03-14T04:57:45.3464346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3466247Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3466338Z 2025-03-14T04:57:45.3466628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3466799Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:57:45.3466866Z 2025-03-14T04:57:45.3467139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3467674Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3467751Z 2025-03-14T04:57:45.3468035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3469973Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3470053Z 2025-03-14T04:57:45.3470350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3470521Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:57:45.3470591Z 2025-03-14T04:57:45.3470893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3471045Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:57:45.3471123Z 2025-03-14T04:57:45.3471384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3471915Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3471985Z 2025-03-14T04:57:45.3472270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3474135Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3474229Z 2025-03-14T04:57:45.3474534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3474670Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:57:45.3474744Z 2025-03-14T04:57:45.3474991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3475485Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3475559Z 2025-03-14T04:57:45.3475827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3477623Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3477692Z 2025-03-14T04:57:45.3477982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3478129Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:57:45.3478193Z 2025-03-14T04:57:45.3478448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3478952Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3479026Z 2025-03-14T04:57:45.3479286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3481064Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3481155Z 2025-03-14T04:57:45.3481404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3482290Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.3482364Z 2025-03-14T04:57:45.3482638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3484540Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3484617Z 2025-03-14T04:57:45.3484913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3485058Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:57:45.3485128Z 2025-03-14T04:57:45.3485411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3485565Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:57:45.3485634Z 2025-03-14T04:57:45.3485915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3486397Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3486497Z 2025-03-14T04:57:45.3486759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3488493Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3488595Z 2025-03-14T04:57:45.3488872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3489014Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:57:45.3489080Z 2025-03-14T04:57:45.3489334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3489822Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3489896Z 2025-03-14T04:57:45.3490159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3491891Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3491965Z 2025-03-14T04:57:45.3492240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3492396Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:57:45.3492462Z 2025-03-14T04:57:45.3492717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3493231Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3493298Z 2025-03-14T04:57:45.3493568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3495350Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3495428Z 2025-03-14T04:57:45.3495717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3495878Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:57:45.3495950Z 2025-03-14T04:57:45.3496231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3496401Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:57:45.3496467Z 2025-03-14T04:57:45.3496722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3497193Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.3497266Z 2025-03-14T04:57:45.3497525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3499294Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3499385Z 2025-03-14T04:57:45.3499672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3499817Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:57:45.3499884Z 2025-03-14T04:57:45.3500143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3500636Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.3500711Z 2025-03-14T04:57:45.3500974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3502733Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3502808Z 2025-03-14T04:57:45.3503103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3503245Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:57:45.3503309Z 2025-03-14T04:57:45.3503570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3504128Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.3504215Z 2025-03-14T04:57:45.3504505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.3506313Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.3506405Z 2025-03-14T04:57:45.3506685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.3506849Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:57:45.3506939Z 2025-03-14T04:57:45.3507228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.3507381Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:57:45.3507448Z 2025-03-14T04:57:45.3507711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3508274Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T04:57:45.3508351Z 2025-03-14T04:57:45.3508603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3509155Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T04:57:45.3509222Z 2025-03-14T04:57:45.3509663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.3509933Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T04:57:45.3510007Z 2025-03-14T04:57:45.3510262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3510839Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T04:57:45.3510914Z 2025-03-14T04:57:45.3511262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.3511461Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T04:57:45.3511525Z 2025-03-14T04:57:45.3511784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3512358Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T04:57:45.3512453Z 2025-03-14T04:57:45.3512857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.3513186Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T04:57:45.3513269Z 2025-03-14T04:57:45.3513526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3514092Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T04:57:45.3514168Z 2025-03-14T04:57:45.3514519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.3514727Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T04:57:45.3514800Z 2025-03-14T04:57:45.3515050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3515631Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T04:57:45.3515702Z 2025-03-14T04:57:45.3516127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.3516449Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T04:57:45.3516523Z 2025-03-14T04:57:45.3516774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3517351Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T04:57:45.3517418Z 2025-03-14T04:57:45.3517770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.3517988Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T04:57:45.3518056Z 2025-03-14T04:57:45.3518326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3518933Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T04:57:45.3519022Z 2025-03-14T04:57:45.3519381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T04:57:45.3519602Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T04:57:45.3519685Z 2025-03-14T04:57:45.3520131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3520289Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:57:45.3520367Z 2025-03-14T04:57:45.3520666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3520816Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:45.3520882Z 2025-03-14T04:57:45.3521321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3521478Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:57:45.3521553Z 2025-03-14T04:57:45.3521847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3522001Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:45.3522065Z 2025-03-14T04:57:45.3522497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.3522673Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:45.3522780Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:45.3522900Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:45.3522970Z 2025-03-14T04:57:45.3523289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.3523423Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:45.3523490Z 2025-03-14T04:57:45.3523818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.3523948Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:45.3524012Z 2025-03-14T04:57:45.3524399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.3524621Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:45.3524692Z 2025-03-14T04:57:45.3525097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.3525243Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:45.3525655Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:45.3525784Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:45.3525925Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:57:45.3525995Z 2025-03-14T04:57:45.3526421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3526580Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:57:45.3526646Z 2025-03-14T04:57:45.3526944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3527088Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:45.3527160Z 2025-03-14T04:57:45.3527582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3527738Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:57:45.3527803Z 2025-03-14T04:57:45.3528101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3528241Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:57:45.3528315Z 2025-03-14T04:57:45.3528698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.3528904Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:57:45.3529009Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:57:45.3529145Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:57:45.3529213Z 2025-03-14T04:57:45.3529547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.3529677Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:57:45.3529752Z 2025-03-14T04:57:45.3530075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.3530210Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:57:45.3530276Z 2025-03-14T04:57:45.3530659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.3530914Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:57:45.3530982Z 2025-03-14T04:57:45.3531400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.3531545Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:57:45.3531973Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:57:45.3532098Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:57:45.3532236Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:57:45.3532302Z 2025-03-14T04:57:45.3532736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3532886Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:57:45.3532958Z 2025-03-14T04:57:45.3533248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3533394Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:57:45.3533459Z 2025-03-14T04:57:45.3533889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3534034Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:57:45.3534107Z 2025-03-14T04:57:45.3534395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3534537Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:57:45.3534601Z 2025-03-14T04:57:45.3534989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.3535182Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:57:45.3535291Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:57:45.3535412Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:57:45.3535486Z 2025-03-14T04:57:45.3535807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.3535943Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:57:45.3536009Z 2025-03-14T04:57:45.3536339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.3536467Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:57:45.3536533Z 2025-03-14T04:57:45.3536915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.3537148Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:57:45.3537222Z 2025-03-14T04:57:45.3537627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.3537779Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:57:45.3538194Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:57:45.3538336Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:57:45.3538451Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T04:57:45.3538526Z 2025-03-14T04:57:45.3538949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3539100Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:57:45.3539165Z 2025-03-14T04:57:45.3539467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3539600Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:57:45.3539673Z 2025-03-14T04:57:45.3540098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3540249Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:57:45.3540315Z 2025-03-14T04:57:45.3540610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3540759Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:57:45.3540833Z 2025-03-14T04:57:45.3541202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.3541401Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:57:45.3541502Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:57:45.3541626Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:57:45.3541690Z 2025-03-14T04:57:45.3542022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.3542146Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:57:45.3542218Z 2025-03-14T04:57:45.3542542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.3542669Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:57:45.3542737Z 2025-03-14T04:57:45.3543145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.3543367Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:57:45.3543431Z 2025-03-14T04:57:45.3543842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.3543985Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:57:45.3544481Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:57:45.3544634Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:57:45.3544767Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T04:57:45.3544837Z 2025-03-14T04:57:45.3545286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3545430Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:57:45.3545509Z 2025-03-14T04:57:45.3545800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3545946Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:57:45.3546013Z 2025-03-14T04:57:45.3546443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.3546585Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:57:45.3546664Z 2025-03-14T04:57:45.3546950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3547115Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:57:45.3547182Z 2025-03-14T04:57:45.3547558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.3547749Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:57:45.3547862Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:57:45.3547979Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:57:45.3548054Z 2025-03-14T04:57:45.3548375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.3548506Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:57:45.3548586Z 2025-03-14T04:57:45.3548927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.3549052Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:57:45.3549118Z 2025-03-14T04:57:45.3549509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.3549711Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:57:45.3549797Z 2025-03-14T04:57:45.3550191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.3550318Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:57:45.3550718Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:57:45.3550858Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:57:45.3550968Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T04:57:45.3551040Z 2025-03-14T04:57:45.3551335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:45.3551473Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T04:57:45.3551607Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T04:57:45.3551740Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T04:57:45.3551860Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T04:57:45.3551987Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T04:57:45.3552053Z 2025-03-14T04:57:45.3552323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3552821Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T04:57:45.3552897Z 2025-03-14T04:57:45.3553181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.3553386Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T04:57:45.3553450Z 2025-03-14T04:57:45.3553828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.3554337Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.3554403Z 2025-03-14T04:57:45.3554760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.3555272Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T04:57:45.3555346Z 2025-03-14T04:57:45.3555610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3556093Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T04:57:45.3556171Z 2025-03-14T04:57:45.3556456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.3556660Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T04:57:45.3556776Z 2025-03-14T04:57:45.3557144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.3557667Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.3557741Z 2025-03-14T04:57:45.3558097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.3558616Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T04:57:45.3558684Z 2025-03-14T04:57:45.3558945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3559414Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T04:57:45.3559513Z 2025-03-14T04:57:45.3559788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.3559976Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T04:57:45.3560045Z 2025-03-14T04:57:45.3560422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.3560914Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.3560987Z 2025-03-14T04:57:45.3561341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.3561855Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T04:57:45.3561931Z 2025-03-14T04:57:45.3562181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3562651Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T04:57:45.3562730Z 2025-03-14T04:57:45.3563008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.3563189Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T04:57:45.3563278Z 2025-03-14T04:57:45.3563653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.3564158Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.3564224Z 2025-03-14T04:57:45.3564590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.3565089Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T04:57:45.3565162Z 2025-03-14T04:57:45.3565421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.3566192Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:45.3566268Z 2025-03-14T04:57:45.3566539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.3566721Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T04:57:45.3566787Z 2025-03-14T04:57:45.3567160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.3568001Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:45.3568077Z 2025-03-14T04:57:45.3568440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.3569263Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:45.3569357Z 2025-03-14T04:57:45.3569695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:45.3569884Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:45.3570031Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:45.3570204Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:57:45.3570348Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:57:45.3570509Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:57:45.3570649Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:57:45.3570804Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:57:45.3570940Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:57:45.3571096Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:57:45.3571228Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:57:45.3571301Z 2025-03-14T04:57:45.3571729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:45.3571910Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T04:57:45.3572105Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:57:45.3572287Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:57:45.3572455Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T04:57:45.3572629Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:57:45.3572803Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:57:45.3572951Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T04:57:45.3573125Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:57:45.3573290Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:57:45.3573438Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T04:57:45.3573595Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:57:45.3573782Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:57:45.3573923Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T04:57:45.3574090Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:57:45.3574308Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:57:45.3574384Z 2025-03-14T04:57:45.3574793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.3575005Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:45.3575087Z 2025-03-14T04:57:45.3575532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.3575688Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:45.3575850Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:45.3575991Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:45.3576062Z 2025-03-14T04:57:45.3576436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.3576615Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:45.3576679Z 2025-03-14T04:57:45.3577008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.3577156Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:45.3577222Z 2025-03-14T04:57:45.3577538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.3577683Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:45.3577813Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3577961Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:57:45.3578034Z 2025-03-14T04:57:45.3578341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.3578472Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:45.3578591Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:45.3578747Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:57:45.3578811Z 2025-03-14T04:57:45.3579119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.3579238Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3579332Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:57:45.3579458Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:57:45.3579529Z 2025-03-14T04:57:45.3579845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.3579999Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:45.3580105Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:57:45.3580240Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:57:45.3580306Z 2025-03-14T04:57:45.3580633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.3580787Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.3580927Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:57:45.3580991Z 2025-03-14T04:57:45.3581295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.3581624Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.3581761Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:57:45.3581825Z 2025-03-14T04:57:45.3582129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.3582278Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.3582398Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:57:45.3582466Z 2025-03-14T04:57:45.3582786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.3582974Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:45.3583094Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:57:45.3583161Z 2025-03-14T04:57:45.3583545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.3583700Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:45.3583768Z 2025-03-14T04:57:45.3584147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.3584299Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:45.3584373Z 2025-03-14T04:57:45.3584718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.3584868Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:45.3584996Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:57:45.3585158Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:45.3585300Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:57:45.3585370Z 2025-03-14T04:57:45.3585713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.3585891Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:45.3586016Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:57:45.3586174Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:45.3586338Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:57:45.3586410Z 2025-03-14T04:57:45.3586738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.3586867Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:45.3587028Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:45.3587190Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:57:45.3587255Z 2025-03-14T04:57:45.3587589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.3587708Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:45.3587880Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:45.3588017Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:57:45.3588088Z 2025-03-14T04:57:45.3588399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.3588508Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:45.3588629Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:45.3588706Z 2025-03-14T04:57:45.3589012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.3589117Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:45.3589232Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:45.3589308Z 2025-03-14T04:57:45.3589624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.3589750Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:45.3589878Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:45.3589953Z 2025-03-14T04:57:45.3590252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.3590375Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:45.3590503Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:45.3590577Z 2025-03-14T04:57:45.3590919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.3591111Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:45.3591174Z 2025-03-14T04:57:45.3591517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.3591695Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:57:45.3591768Z 2025-03-14T04:57:45.3592149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.3592347Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:45.3592420Z 2025-03-14T04:57:45.3592817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.3593032Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:57:45.3593123Z 2025-03-14T04:57:45.3593562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.3593716Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:57:45.3593874Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:57:45.3594015Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:57:45.3594088Z 2025-03-14T04:57:45.3594456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.3594635Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:57:45.3594703Z 2025-03-14T04:57:45.3595021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.3595169Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:57:45.3595246Z 2025-03-14T04:57:45.3595554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.3595709Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:57:45.3595838Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3595999Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:57:45.3596066Z 2025-03-14T04:57:45.3596388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.3596511Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:57:45.3596639Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:57:45.3596795Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:57:45.3596871Z 2025-03-14T04:57:45.3597182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.3597316Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3597411Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:57:45.3597555Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:57:45.3597620Z 2025-03-14T04:57:45.3597951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.3598103Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:57:45.3598225Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:57:45.3598356Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:57:45.3598431Z 2025-03-14T04:57:45.3598732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.3598894Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.3599023Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:57:45.3599095Z 2025-03-14T04:57:45.3599397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.3599547Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.3599668Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:57:45.3599733Z 2025-03-14T04:57:45.3600039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.3600187Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.3600304Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:57:45.3600370Z 2025-03-14T04:57:45.3600677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.3600863Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:57:45.3600981Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:57:45.3601047Z 2025-03-14T04:57:45.3601402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.3604175Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:57:45.3604251Z 2025-03-14T04:57:45.3604585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.3604732Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:57:45.3604799Z 2025-03-14T04:57:45.3605151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.3605294Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:57:45.3605432Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:57:45.3605590Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:57:45.3605771Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:57:45.3605846Z 2025-03-14T04:57:45.3606221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.3606370Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:57:45.3606494Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:57:45.3606673Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:57:45.3606813Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:57:45.3606887Z 2025-03-14T04:57:45.3607215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.3607341Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:57:45.3607503Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:57:45.3607648Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:57:45.3607713Z 2025-03-14T04:57:45.3608046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.3608169Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:57:45.3608334Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:57:45.3608477Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:57:45.3608542Z 2025-03-14T04:57:45.3608858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.3608958Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:57:45.3609085Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:57:45.3609150Z 2025-03-14T04:57:45.3609465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.3609563Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:57:45.3609705Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:57:45.3609772Z 2025-03-14T04:57:45.3610155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.3610276Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:57:45.3610423Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:57:45.3610490Z 2025-03-14T04:57:45.3610798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.3610914Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:57:45.3611056Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:57:45.3611122Z 2025-03-14T04:57:45.3611483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.3611675Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:57:45.3611748Z 2025-03-14T04:57:45.3612080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.3612248Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:57:45.3612314Z 2025-03-14T04:57:45.3612694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.3612881Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:57:45.3612955Z 2025-03-14T04:57:45.3613340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.3613549Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:57:45.3613613Z 2025-03-14T04:57:45.3614033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.3614183Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:57:45.3614340Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:57:45.3614475Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:57:45.3614548Z 2025-03-14T04:57:45.3614904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.3615076Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:57:45.3615139Z 2025-03-14T04:57:45.3615448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.3615598Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:57:45.3615661Z 2025-03-14T04:57:45.3615986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.3616142Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:57:45.3616272Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3616420Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:57:45.3616489Z 2025-03-14T04:57:45.3616816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.3616945Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:57:45.3617064Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:57:45.3617219Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:57:45.3617283Z 2025-03-14T04:57:45.3617591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.3617711Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3617810Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:57:45.3617956Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:57:45.3618029Z 2025-03-14T04:57:45.3618337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.3618506Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:57:45.3618601Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:57:45.3618738Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:57:45.3618805Z 2025-03-14T04:57:45.3619118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.3619283Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.3619400Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:57:45.3619476Z 2025-03-14T04:57:45.3619773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.3619937Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.3620048Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:57:45.3620124Z 2025-03-14T04:57:45.3620418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.3620574Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.3620684Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:57:45.3620756Z 2025-03-14T04:57:45.3621060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.3621252Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:57:45.3621365Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:57:45.3621442Z 2025-03-14T04:57:45.3621790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.3621956Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:57:45.3622020Z 2025-03-14T04:57:45.3622364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.3622501Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:57:45.3622573Z 2025-03-14T04:57:45.3622915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.3623059Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:57:45.3623185Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:57:45.3623347Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:57:45.3623486Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:57:45.3623561Z 2025-03-14T04:57:45.3623925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.3624075Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:57:45.3624333Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:57:45.3624513Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:57:45.3624666Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:57:45.3624735Z 2025-03-14T04:57:45.3625083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.3625202Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:57:45.3625382Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:57:45.3625522Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:57:45.3625609Z 2025-03-14T04:57:45.3625944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.3626068Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:57:45.3626233Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:57:45.3626377Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:57:45.3626443Z 2025-03-14T04:57:45.3626757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.3626858Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:57:45.3626985Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:57:45.3627050Z 2025-03-14T04:57:45.3627363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.3627461Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:57:45.3627603Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:57:45.3627695Z 2025-03-14T04:57:45.3628005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.3628124Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:57:45.3628267Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:57:45.3628335Z 2025-03-14T04:57:45.3628642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.3628762Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:57:45.3628902Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:57:45.3628972Z 2025-03-14T04:57:45.3629323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.3629517Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:57:45.3629594Z 2025-03-14T04:57:45.3629947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.3630117Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:57:45.3630195Z 2025-03-14T04:57:45.3630584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.3630758Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:57:45.3630833Z 2025-03-14T04:57:45.3631233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.3631453Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:57:45.3631522Z 2025-03-14T04:57:45.3631964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.3632124Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:57:45.3632277Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:57:45.3632425Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:57:45.3632493Z 2025-03-14T04:57:45.3632873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.3633045Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:57:45.3633121Z 2025-03-14T04:57:45.3633432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.3633587Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:57:45.3633656Z 2025-03-14T04:57:45.3633988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.3634135Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:57:45.3634267Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3634416Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:57:45.3634490Z 2025-03-14T04:57:45.3634807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.3634938Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:57:45.3635057Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:57:45.3635215Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:57:45.3635283Z 2025-03-14T04:57:45.3635606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.3635729Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3635848Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:57:45.3635984Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:57:45.3636058Z 2025-03-14T04:57:45.3636373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.3636547Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:57:45.3636645Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:57:45.3636784Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:57:45.3636853Z 2025-03-14T04:57:45.3637174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.3637333Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.3637456Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:57:45.3637523Z 2025-03-14T04:57:45.3637844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.3638000Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.3638125Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:57:45.3638192Z 2025-03-14T04:57:45.3638499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.3638650Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.3638773Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:57:45.3638841Z 2025-03-14T04:57:45.3639152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.3639348Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:57:45.3639462Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:57:45.3639560Z 2025-03-14T04:57:45.3639904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.3640070Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:57:45.3640138Z 2025-03-14T04:57:45.3640482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.3640620Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:57:45.3640692Z 2025-03-14T04:57:45.3641041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.3641188Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:57:45.3641317Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:57:45.3641482Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:57:45.3641632Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:57:45.3641703Z 2025-03-14T04:57:45.3642056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.3642197Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:57:45.3642333Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:57:45.3642490Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:57:45.3642626Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:57:45.3642700Z 2025-03-14T04:57:45.3643019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.3643142Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:57:45.3643299Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:57:45.3643438Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:57:45.3643504Z 2025-03-14T04:57:45.3643836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.3643948Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:57:45.3644119Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:57:45.3644247Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:57:45.3644322Z 2025-03-14T04:57:45.3644627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.3644728Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:57:45.3644842Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:57:45.3644917Z 2025-03-14T04:57:45.3645219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.3645333Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:57:45.3645462Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:57:45.3645534Z 2025-03-14T04:57:45.3645826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.3645948Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:57:45.3646075Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:57:45.3646147Z 2025-03-14T04:57:45.3646438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.3646558Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:57:45.3646691Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:57:45.3646757Z 2025-03-14T04:57:45.3647107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.3647294Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:57:45.3647387Z 2025-03-14T04:57:45.3647713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.3647880Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:57:45.3647962Z 2025-03-14T04:57:45.3648362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.3648534Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:57:45.3648609Z 2025-03-14T04:57:45.3649015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.3649229Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:57:45.3649295Z 2025-03-14T04:57:45.3649740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.3649891Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:57:45.3650051Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:57:45.3650186Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:57:45.3650262Z 2025-03-14T04:57:45.3650639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.3650815Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:57:45.3650881Z 2025-03-14T04:57:45.3651206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.3651374Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:57:45.3651450Z 2025-03-14T04:57:45.3651782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.3651921Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:57:45.3652044Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3652200Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:57:45.3652266Z 2025-03-14T04:57:45.3652592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.3652715Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:57:45.3652842Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:57:45.3652991Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:57:45.3653065Z 2025-03-14T04:57:45.3653374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.3653501Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:57:45.3653648Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:57:45.3653781Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:57:45.3653854Z 2025-03-14T04:57:45.3654166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.3654335Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:57:45.3654427Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:57:45.3654562Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:57:45.3654628Z 2025-03-14T04:57:45.3654935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.3655089Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.3655209Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:57:45.3655274Z 2025-03-14T04:57:45.3655579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.3655732Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.3655860Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:57:45.3655925Z 2025-03-14T04:57:45.3656224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.3656367Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.3656486Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:57:45.3656550Z 2025-03-14T04:57:45.3656852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.3657032Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:57:45.3657170Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:57:45.3657238Z 2025-03-14T04:57:45.3657602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.3657741Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:57:45.3657817Z 2025-03-14T04:57:45.3658145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.3658286Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:57:45.3658351Z 2025-03-14T04:57:45.3658698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.3658836Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:57:45.3658969Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:57:45.3659121Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:57:45.3659268Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:57:45.3659346Z 2025-03-14T04:57:45.3659697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.3659838Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:57:45.3659976Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:57:45.3660132Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:57:45.3660266Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:57:45.3660338Z 2025-03-14T04:57:45.3660662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.3660785Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:57:45.3660945Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:57:45.3661086Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:57:45.3661153Z 2025-03-14T04:57:45.3661488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.3661602Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:57:45.3661776Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:57:45.3661905Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:57:45.3661978Z 2025-03-14T04:57:45.3662286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.3662391Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:57:45.3662506Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:57:45.3662580Z 2025-03-14T04:57:45.3662901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.3663002Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:57:45.3663134Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:57:45.3663206Z 2025-03-14T04:57:45.3663509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.3663634Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:57:45.3663767Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:57:45.3663839Z 2025-03-14T04:57:45.3664213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.3664349Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:57:45.3664483Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:57:45.3664560Z 2025-03-14T04:57:45.3664912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.3665132Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:57:45.3665201Z 2025-03-14T04:57:45.3665555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.3665717Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:57:45.3665811Z 2025-03-14T04:57:45.3666207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.3666386Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:57:45.3666451Z 2025-03-14T04:57:45.3666938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:45.3667074Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:45.3667147Z 2025-03-14T04:57:45.3667440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3667592Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:57:45.3667659Z 2025-03-14T04:57:45.3668096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.3668220Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:57:45.3668325Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:57:45.3668451Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:45.3668516Z 2025-03-14T04:57:45.3668978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.3669114Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.3669364Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:57:45.3669445Z 2025-03-14T04:57:45.3669906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.3670077Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.3670151Z 2025-03-14T04:57:45.3670446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3670578Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:57:45.3670645Z 2025-03-14T04:57:45.3671083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.3671203Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:57:45.3671321Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:57:45.3671439Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:57:45.3671528Z 2025-03-14T04:57:45.3671984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.3672151Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.3672386Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:57:45.3672463Z 2025-03-14T04:57:45.3672916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.3673089Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.3673156Z 2025-03-14T04:57:45.3673459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3673585Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:57:45.3673660Z 2025-03-14T04:57:45.3674087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.3674212Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:57:45.3674326Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:57:45.3674443Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:57:45.3674508Z 2025-03-14T04:57:45.3674964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.3675104Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.3675340Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:57:45.3675412Z 2025-03-14T04:57:45.3675874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.3676061Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.3676139Z 2025-03-14T04:57:45.3676437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3676560Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:57:45.3676632Z 2025-03-14T04:57:45.3677057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.3677180Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:57:45.3677287Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:57:45.3677408Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:57:45.3677474Z 2025-03-14T04:57:45.3677945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.3678078Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.3678315Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:57:45.3678396Z 2025-03-14T04:57:45.3678850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.3679013Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.3679087Z 2025-03-14T04:57:45.3679376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3679505Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:57:45.3679570Z 2025-03-14T04:57:45.3680000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.3680116Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:57:45.3680229Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:57:45.3680345Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:57:45.3680419Z 2025-03-14T04:57:45.3680876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.3681040Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:45.3681276Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:57:45.3681344Z 2025-03-14T04:57:45.3682046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.3682243Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.3682317Z 2025-03-14T04:57:45.3682608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.3682737Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:57:45.3682803Z 2025-03-14T04:57:45.3683086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.3683462Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:57:45.3683537Z 2025-03-14T04:57:45.3683814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.3684302Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:57:45.3684369Z 2025-03-14T04:57:45.3684648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.3684877Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:57:45.3684950Z 2025-03-14T04:57:45.3685353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:45.3685508Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:57:45.3685573Z 2025-03-14T04:57:45.3685882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:45.3686042Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:57:45.3686107Z 2025-03-14T04:57:45.3686498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:45.3686639Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:57:45.3686713Z 2025-03-14T04:57:45.3687215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:45.3687363Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:57:45.3687489Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:45.3687656Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:45.3687791Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:45.3687868Z 2025-03-14T04:57:45.3688274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:45.3688403Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:45.3688488Z 2025-03-14T04:57:45.3688953Z 2025-03-14T04:57:45.3689058Z class GraphModule(torch.nn.Module): 2025-03-14T04:57:45.3810817Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:57:45.3811800Z l_stack0_tensor = L_stack0_tensor 2025-03-14T04:57:45.3812214Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3812709Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3813173Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3813617Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3814046Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3814461Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3814986Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3815469Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3815947Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3816389Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3816862Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3817397Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3817964Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3818446Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3818998Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3819444Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3819984Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3820526Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3821012Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3821459Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3821920Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.3822444Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3822973Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3823435Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3823923Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3824437Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3824968Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3825488Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3825944Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3826365Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3826766Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3827223Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3827690Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3828130Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3829077Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3829466Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3829931Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3830364Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3830762Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3831192Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3831550Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3832002Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3832427Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3832833Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3833232Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3833591Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3834016Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3834416Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3834803Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3835204Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3835580Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3835999Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3836400Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3836796Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3837173Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3837535Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3837968Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3838373Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3838778Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3839154Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3839515Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3839930Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3840350Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3840753Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3841134Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3841489Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3841948Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3842371Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3842769Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3843146Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3843521Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.3843944Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3844384Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3844785Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3845202Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3845559Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3845971Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3846386Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3846773Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3847163Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3847511Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3847938Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3848375Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3848761Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3849159Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3849509Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3849926Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3850338Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3850738Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3851157Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3851511Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3851947Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3852355Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3852754Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3853128Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3853486Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3853902Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3854307Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3854697Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3855096Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3855465Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3855872Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3856280Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3856669Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3857046Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3857415Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3857830Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3858262Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3858645Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3859030Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3859388Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3859794Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3860219Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3860608Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3860999Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3861355Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3861807Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3862235Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3862624Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3863005Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3863355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3863770Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3864288Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3864726Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3865186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3865571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3866019Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3866455Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3866872Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3867274Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3867666Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3868119Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3868571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3869008Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3869418Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3869814Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.3870263Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3870718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3871184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3871595Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3871987Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3872427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3872873Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3873288Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3873695Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3874071Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3874511Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3874949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3875357Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3875816Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3876209Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3876656Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3877090Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3877498Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3877909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3878299Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3878735Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3879185Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3879591Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3880016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3880384Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3880828Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3881246Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3881844Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3882258Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3882677Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3883103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3883540Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3883936Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3884315Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3884675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3885093Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3885518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3885906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3886955Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3887406Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3887815Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3888228Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3888629Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3889015Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3889368Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3889768Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3890239Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3890649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3891029Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3891409Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3891823Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3892240Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3892650Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3893032Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3893404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3893818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3894238Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3894612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3894993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3895341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3895761Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3896147Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3896526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3896917Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3897287Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3897703Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3898105Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3898507Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3898881Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3899250Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3899662Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3900079Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3900469Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3900842Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3901200Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3901624Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3902035Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3902434Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3902819Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3903203Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3903629Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3904048Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3904523Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3904928Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3905302Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3905756Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3906172Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3906576Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3906964Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3907328Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3907743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3908159Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3908552Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3908942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3909299Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3909733Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3910176Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3910594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3910990Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3911345Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3911782Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3912209Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3912647Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3913050Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3913422Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3913854Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3914273Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3914675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3915075Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3915442Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3915897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3916339Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3916763Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3917143Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3917515Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3917922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3918353Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3918743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3919114Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3919486Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3919892Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3920322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3920713Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3921090Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3921444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3921851Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3922259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3922639Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3923021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3923393Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3923813Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3924225Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3924603Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3924983Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3925329Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3925751Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3926161Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3926561Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3926942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3927291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3927706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3928111Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3928503Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3928887Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3929242Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3929659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3930079Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3930485Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3930864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3931220Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3931638Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3932038Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3932444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3932817Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3933193Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3933599Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3934008Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3934403Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3934779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3935137Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3935544Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3935952Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3936355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3936771Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3937135Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3937543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3937954Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3938346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3938747Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3939100Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3939531Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3939942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3940332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3940719Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3941074Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3941493Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3941900Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3942297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3942699Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3943053Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3943486Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3943895Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3944361Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3944762Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3945132Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3945582Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3945997Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3946486Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3946881Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3947259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3947685Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3948099Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3948501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3948888Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3949256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3949694Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3950133Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3950542Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3950974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3951352Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3951771Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3952217Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3952612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3953024Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3953392Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3953815Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3954232Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3954634Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3955027Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3955388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3955815Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3956255Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3956651Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3957063Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3957421Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3957847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3958264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3958664Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3959101Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3959460Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3959910Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3960322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3960719Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3961090Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3961452Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3961869Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3962273Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3962668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3963070Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3963441Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3963856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3964266Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3964668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3965045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3965412Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3965824Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3966275Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3966661Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3967045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3967408Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3967829Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3968250Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3968643Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3969035Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3969427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3969857Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3970302Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3970695Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3971099Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3971468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3971906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3972350Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3972743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3973168Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3973529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3973963Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3974388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3974795Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3975199Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3975569Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3975994Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3976416Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3976821Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3977198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3977557Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3977974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3978377Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3978785Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3979159Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3979557Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3979963Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3980372Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3980761Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3981135Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3981670Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3982088Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3982504Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3982945Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3983331Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3983718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3984161Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3984579Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3984972Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3985396Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3987789Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3988222Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3988660Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3989060Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3989445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3989831Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3990244Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3990656Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3991052Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3991428Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3991792Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3992226Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3992648Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3993053Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3993434Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3993790Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.3994207Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3994676Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3995088Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3995482Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3995843Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.3996269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3996686Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3997151Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3997561Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3997919Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.3998346Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.3998766Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.3999190Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.3999589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.3999945Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.4000369Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4000802Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4001233Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4001640Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4001995Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.4002417Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4002833Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4003235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4003617Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4003984Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.4004406Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4004818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4005218Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4005610Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4005981Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.4006386Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4006797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4007193Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4007581Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4007953Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.4008381Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4008791Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4009177Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4009564Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4009926Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.4010334Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4010741Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4011122Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4011508Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4011854Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.4012284Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4012690Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4013070Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4013449Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4013810Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T04:57:45.4014271Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4014694Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4015112Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4015506Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4015857Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.4016267Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4016668Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4017054Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4017431Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4017786Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.4018198Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4018615Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4019004Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4019378Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4019731Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.4020139Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4020566Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4020972Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4021362Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4021719Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T04:57:45.4022125Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4022533Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4022918Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4023303Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4023660Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T04:57:45.4024068Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4025105Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4025535Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4025974Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4026348Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T04:57:45.4026765Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T04:57:45.4027190Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T04:57:45.4027584Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T04:57:45.4027996Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T04:57:45.4028256Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T04:57:45.4028514Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T04:57:45.4028743Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T04:57:45.4028971Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T04:57:45.4029197Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T04:57:45.4029427Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T04:57:45.4029659Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T04:57:45.4029875Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T04:57:45.4030110Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T04:57:45.4030331Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T04:57:45.4030563Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T04:57:45.4030776Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T04:57:45.4031006Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T04:57:45.4031225Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T04:57:45.4031455Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T04:57:45.4031668Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T04:57:45.4032055Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:57:45.4032414Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:57:45.4032842Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:57:45.4033209Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:57:45.4033573Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:57:45.4033912Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:57:45.4034256Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:57:45.4034662Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:57:45.4035053Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:57:45.4035429Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:57:45.4035780Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:57:45.4035865Z 2025-03-14T04:57:45.4036170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4036741Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4036822Z 2025-03-14T04:57:45.4037111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4038899Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4038996Z 2025-03-14T04:57:45.4039311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T04:57:45.4039469Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T04:57:45.4039537Z 2025-03-14T04:57:45.4039928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T04:57:45.4040180Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T04:57:45.4040257Z 2025-03-14T04:57:45.4040528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4041051Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4041136Z 2025-03-14T04:57:45.4041430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4043377Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4043487Z 2025-03-14T04:57:45.4043830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4043980Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T04:57:45.4044058Z 2025-03-14T04:57:45.4044328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4044859Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4045008Z 2025-03-14T04:57:45.4045283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4047078Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4047194Z 2025-03-14T04:57:45.4047493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4047635Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T04:57:45.4047711Z 2025-03-14T04:57:45.4047968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4048501Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4048568Z 2025-03-14T04:57:45.4048862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4050681Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4050749Z 2025-03-14T04:57:45.4051008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4051517Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.4051590Z 2025-03-14T04:57:45.4051863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4053737Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4053834Z 2025-03-14T04:57:45.4054124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4054283Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T04:57:45.4054346Z 2025-03-14T04:57:45.4054640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4054797Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T04:57:45.4054868Z 2025-03-14T04:57:45.4055134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4055650Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4055739Z 2025-03-14T04:57:45.4056005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4057793Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4057870Z 2025-03-14T04:57:45.4058164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4058318Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T04:57:45.4058386Z 2025-03-14T04:57:45.4058650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4059144Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4059217Z 2025-03-14T04:57:45.4059484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4061300Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4061378Z 2025-03-14T04:57:45.4061665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4061832Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T04:57:45.4061900Z 2025-03-14T04:57:45.4062160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4062688Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4062792Z 2025-03-14T04:57:45.4063073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4065154Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4065246Z 2025-03-14T04:57:45.4065552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4065730Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T04:57:45.4065803Z 2025-03-14T04:57:45.4066115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4066278Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T04:57:45.4066355Z 2025-03-14T04:57:45.4066623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4067170Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4067239Z 2025-03-14T04:57:45.4067526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4069422Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4069516Z 2025-03-14T04:57:45.4069848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4070000Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T04:57:45.4070080Z 2025-03-14T04:57:45.4070347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4070874Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4070951Z 2025-03-14T04:57:45.4071228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4073132Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4073212Z 2025-03-14T04:57:45.4073515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4073670Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T04:57:45.4073758Z 2025-03-14T04:57:45.4074032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4074562Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4074635Z 2025-03-14T04:57:45.4074905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4076749Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4076844Z 2025-03-14T04:57:45.4077134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4077302Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T04:57:45.4077367Z 2025-03-14T04:57:45.4077666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4077821Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T04:57:45.4077896Z 2025-03-14T04:57:45.4078155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4078654Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4078725Z 2025-03-14T04:57:45.4079009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4080788Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4080883Z 2025-03-14T04:57:45.4081185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4081334Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T04:57:45.4081409Z 2025-03-14T04:57:45.4081855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4082371Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4082441Z 2025-03-14T04:57:45.4082718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4084598Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4084697Z 2025-03-14T04:57:45.4085000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4085150Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T04:57:45.4085227Z 2025-03-14T04:57:45.4085483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4085996Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4086073Z 2025-03-14T04:57:45.4086346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4088158Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4088274Z 2025-03-14T04:57:45.4088534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4089052Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.4089123Z 2025-03-14T04:57:45.4089403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4091316Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4091716Z 2025-03-14T04:57:45.4092011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4092166Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T04:57:45.4092242Z 2025-03-14T04:57:45.4092527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4092696Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T04:57:45.4092763Z 2025-03-14T04:57:45.4093028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4093520Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4093592Z 2025-03-14T04:57:45.4093856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4095659Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4095754Z 2025-03-14T04:57:45.4096049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4096201Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T04:57:45.4096270Z 2025-03-14T04:57:45.4096533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4097045Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4097121Z 2025-03-14T04:57:45.4097412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4099205Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4099289Z 2025-03-14T04:57:45.4099577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4099731Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T04:57:45.4099795Z 2025-03-14T04:57:45.4100050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4100559Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4100627Z 2025-03-14T04:57:45.4100896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4102680Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4102797Z 2025-03-14T04:57:45.4103087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4103249Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T04:57:45.4103324Z 2025-03-14T04:57:45.4103644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4103813Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T04:57:45.4103882Z 2025-03-14T04:57:45.4104243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4104785Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4104864Z 2025-03-14T04:57:45.4105147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4107049Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4107138Z 2025-03-14T04:57:45.4107449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4107608Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T04:57:45.4107681Z 2025-03-14T04:57:45.4107956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4108475Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4108580Z 2025-03-14T04:57:45.4108862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4110768Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4110850Z 2025-03-14T04:57:45.4111166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4111345Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T04:57:45.4111413Z 2025-03-14T04:57:45.4111682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4112205Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4112284Z 2025-03-14T04:57:45.4112564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4114447Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4114528Z 2025-03-14T04:57:45.4114829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4115003Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T04:57:45.4115072Z 2025-03-14T04:57:45.4115382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4115565Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T04:57:45.4115642Z 2025-03-14T04:57:45.4115909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4116433Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4116510Z 2025-03-14T04:57:45.4116789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4118686Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4118779Z 2025-03-14T04:57:45.4119067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4119215Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T04:57:45.4119282Z 2025-03-14T04:57:45.4119541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4120030Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4120102Z 2025-03-14T04:57:45.4120364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4122152Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4122252Z 2025-03-14T04:57:45.4122538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4122687Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T04:57:45.4122752Z 2025-03-14T04:57:45.4123015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4123508Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4123584Z 2025-03-14T04:57:45.4123850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4125670Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4125763Z 2025-03-14T04:57:45.4126055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4126216Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T04:57:45.4126285Z 2025-03-14T04:57:45.4126583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4126735Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T04:57:45.4126811Z 2025-03-14T04:57:45.4127059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4127559Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4127636Z 2025-03-14T04:57:45.4127902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4129686Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4129769Z 2025-03-14T04:57:45.4130064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4130201Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T04:57:45.4130272Z 2025-03-14T04:57:45.4130524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4131029Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4131104Z 2025-03-14T04:57:45.4131381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4133181Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4133259Z 2025-03-14T04:57:45.4133546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4133690Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T04:57:45.4133754Z 2025-03-14T04:57:45.4134008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4134494Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4134567Z 2025-03-14T04:57:45.4134834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4136603Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4136703Z 2025-03-14T04:57:45.4136952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4137445Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.4137509Z 2025-03-14T04:57:45.4137794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4139630Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4139717Z 2025-03-14T04:57:45.4140006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4140147Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T04:57:45.4140220Z 2025-03-14T04:57:45.4140499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4140648Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T04:57:45.4140712Z 2025-03-14T04:57:45.4140971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4141451Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4141524Z 2025-03-14T04:57:45.4141786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4143620Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4143703Z 2025-03-14T04:57:45.4143999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4144222Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T04:57:45.4144301Z 2025-03-14T04:57:45.4144627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4145206Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4145299Z 2025-03-14T04:57:45.4145611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4147467Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4147549Z 2025-03-14T04:57:45.4147861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4148003Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T04:57:45.4148077Z 2025-03-14T04:57:45.4172269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4173053Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4173259Z 2025-03-14T04:57:45.4173583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4175422Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4175508Z 2025-03-14T04:57:45.4175841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4176010Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T04:57:45.4176074Z 2025-03-14T04:57:45.4176403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4176580Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T04:57:45.4176654Z 2025-03-14T04:57:45.4176913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4177409Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4177477Z 2025-03-14T04:57:45.4177758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4179583Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4179652Z 2025-03-14T04:57:45.4179956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4180105Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T04:57:45.4180218Z 2025-03-14T04:57:45.4180484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4180990Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4181057Z 2025-03-14T04:57:45.4181342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4183517Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4183617Z 2025-03-14T04:57:45.4183912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4184052Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T04:57:45.4184183Z 2025-03-14T04:57:45.4184449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4185007Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4185099Z 2025-03-14T04:57:45.4185380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4187210Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4187277Z 2025-03-14T04:57:45.4187564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4187753Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T04:57:45.4187820Z 2025-03-14T04:57:45.4188116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4188261Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T04:57:45.4188332Z 2025-03-14T04:57:45.4188589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4189080Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4189146Z 2025-03-14T04:57:45.4189421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4191240Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4191353Z 2025-03-14T04:57:45.4191653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4191790Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T04:57:45.4191863Z 2025-03-14T04:57:45.4192117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4192611Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4192676Z 2025-03-14T04:57:45.4192948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4194713Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4194795Z 2025-03-14T04:57:45.4195089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4195227Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T04:57:45.4195300Z 2025-03-14T04:57:45.4195552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4196047Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4196114Z 2025-03-14T04:57:45.4196403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4198203Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4198289Z 2025-03-14T04:57:45.4198580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4198729Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T04:57:45.4198804Z 2025-03-14T04:57:45.4199091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4199237Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T04:57:45.4199301Z 2025-03-14T04:57:45.4199549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4200019Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4200090Z 2025-03-14T04:57:45.4200350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4202046Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4202135Z 2025-03-14T04:57:45.4202413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4202558Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T04:57:45.4202630Z 2025-03-14T04:57:45.4202880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4203398Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4203481Z 2025-03-14T04:57:45.4203749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4205486Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4205560Z 2025-03-14T04:57:45.4205846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4205976Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T04:57:45.4206047Z 2025-03-14T04:57:45.4206295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4206778Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4206842Z 2025-03-14T04:57:45.4207108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4208857Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4208924Z 2025-03-14T04:57:45.4209199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4209342Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T04:57:45.4209430Z 2025-03-14T04:57:45.4209706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4209876Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T04:57:45.4209956Z 2025-03-14T04:57:45.4210213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4210673Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4210744Z 2025-03-14T04:57:45.4210996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4212703Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4212777Z 2025-03-14T04:57:45.4213055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4213191Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T04:57:45.4213254Z 2025-03-14T04:57:45.4213503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4213985Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4214055Z 2025-03-14T04:57:45.4214315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4216040Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4216114Z 2025-03-14T04:57:45.4216422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4216575Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T04:57:45.4216640Z 2025-03-14T04:57:45.4216900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4217388Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4217452Z 2025-03-14T04:57:45.4217726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4219482Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4219558Z 2025-03-14T04:57:45.4219848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4219992Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T04:57:45.4220115Z 2025-03-14T04:57:45.4220404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4220551Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T04:57:45.4220618Z 2025-03-14T04:57:45.4220879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4221355Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4221428Z 2025-03-14T04:57:45.4221694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4223503Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4223593Z 2025-03-14T04:57:45.4223882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4224031Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T04:57:45.4224214Z 2025-03-14T04:57:45.4224499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4225008Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4225088Z 2025-03-14T04:57:45.4225363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4227151Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4227255Z 2025-03-14T04:57:45.4227539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4227680Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T04:57:45.4227745Z 2025-03-14T04:57:45.4228006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4228484Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4228559Z 2025-03-14T04:57:45.4228821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4230617Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4230706Z 2025-03-14T04:57:45.4230985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4231137Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T04:57:45.4231202Z 2025-03-14T04:57:45.4231492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4231638Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T04:57:45.4231702Z 2025-03-14T04:57:45.4231960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4232430Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4232502Z 2025-03-14T04:57:45.4232765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4234536Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4234627Z 2025-03-14T04:57:45.4234910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4235061Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T04:57:45.4235125Z 2025-03-14T04:57:45.4235379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4235874Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4235947Z 2025-03-14T04:57:45.4236237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4238027Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4238100Z 2025-03-14T04:57:45.4238382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4238523Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T04:57:45.4238586Z 2025-03-14T04:57:45.4238842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4239326Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4239402Z 2025-03-14T04:57:45.4239663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4241434Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4241526Z 2025-03-14T04:57:45.4241810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4241966Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T04:57:45.4242032Z 2025-03-14T04:57:45.4242344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4242486Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T04:57:45.4242557Z 2025-03-14T04:57:45.4242821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4243323Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4243400Z 2025-03-14T04:57:45.4243663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4245446Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4245516Z 2025-03-14T04:57:45.4245800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4245951Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T04:57:45.4246019Z 2025-03-14T04:57:45.4246271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4246749Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4246844Z 2025-03-14T04:57:45.4247108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4248888Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4248964Z 2025-03-14T04:57:45.4249245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4249406Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T04:57:45.4249487Z 2025-03-14T04:57:45.4249745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4250223Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4250296Z 2025-03-14T04:57:45.4250559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4252337Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4252411Z 2025-03-14T04:57:45.4252690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4252853Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T04:57:45.4252918Z 2025-03-14T04:57:45.4253208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4253377Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T04:57:45.4253448Z 2025-03-14T04:57:45.4253694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4254179Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4254244Z 2025-03-14T04:57:45.4254514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4256312Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4256394Z 2025-03-14T04:57:45.4256687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4256824Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T04:57:45.4256897Z 2025-03-14T04:57:45.4257145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4257634Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4257709Z 2025-03-14T04:57:45.4257971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4259748Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4259837Z 2025-03-14T04:57:45.4260126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4260269Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T04:57:45.4260335Z 2025-03-14T04:57:45.4260594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4261075Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4261149Z 2025-03-14T04:57:45.4261413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4263223Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4263310Z 2025-03-14T04:57:45.4263591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4263753Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T04:57:45.4263817Z 2025-03-14T04:57:45.4264165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4264318Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T04:57:45.4264392Z 2025-03-14T04:57:45.4264640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4265151Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4265221Z 2025-03-14T04:57:45.4265521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4267358Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4267461Z 2025-03-14T04:57:45.4267774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4267919Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T04:57:45.4267996Z 2025-03-14T04:57:45.4268259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4268800Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4268869Z 2025-03-14T04:57:45.4269175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4271079Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4271151Z 2025-03-14T04:57:45.4271456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4271596Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T04:57:45.4271671Z 2025-03-14T04:57:45.4271929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4272450Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4272527Z 2025-03-14T04:57:45.4272803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4274675Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4274775Z 2025-03-14T04:57:45.4275072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4275244Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T04:57:45.4275321Z 2025-03-14T04:57:45.4275611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4275766Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T04:57:45.4275837Z 2025-03-14T04:57:45.4276097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4276596Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4276662Z 2025-03-14T04:57:45.4276932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4278712Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4278779Z 2025-03-14T04:57:45.4279071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4279206Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T04:57:45.4279276Z 2025-03-14T04:57:45.4279527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4280013Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4280096Z 2025-03-14T04:57:45.4280368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4282412Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4282486Z 2025-03-14T04:57:45.4282828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4282999Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T04:57:45.4283100Z 2025-03-14T04:57:45.4283367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4283887Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4283957Z 2025-03-14T04:57:45.4284253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4286079Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4286146Z 2025-03-14T04:57:45.4286435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4286595Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T04:57:45.4286659Z 2025-03-14T04:57:45.4286950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4287132Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T04:57:45.4287205Z 2025-03-14T04:57:45.4287454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4287940Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4288008Z 2025-03-14T04:57:45.4288275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4290083Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4290184Z 2025-03-14T04:57:45.4290477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4290616Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T04:57:45.4290690Z 2025-03-14T04:57:45.4290940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4291429Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4291495Z 2025-03-14T04:57:45.4291766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4293548Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4293634Z 2025-03-14T04:57:45.4293924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4294058Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T04:57:45.4294130Z 2025-03-14T04:57:45.4294379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4294872Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4294937Z 2025-03-14T04:57:45.4295207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4297049Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4297131Z 2025-03-14T04:57:45.4297420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4297573Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T04:57:45.4297645Z 2025-03-14T04:57:45.4297927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4298079Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T04:57:45.4298142Z 2025-03-14T04:57:45.4298400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4298885Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4298949Z 2025-03-14T04:57:45.4299221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4300988Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4301080Z 2025-03-14T04:57:45.4301370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4301507Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T04:57:45.4301578Z 2025-03-14T04:57:45.4301822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4302326Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4302392Z 2025-03-14T04:57:45.4302676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4304515Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4304627Z 2025-03-14T04:57:45.4304934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4305077Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T04:57:45.4305153Z 2025-03-14T04:57:45.4305413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4305919Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4305985Z 2025-03-14T04:57:45.4306259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4308134Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4308225Z 2025-03-14T04:57:45.4308525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4308685Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T04:57:45.4308760Z 2025-03-14T04:57:45.4309055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4309226Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T04:57:45.4309294Z 2025-03-14T04:57:45.4309583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4310106Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4310184Z 2025-03-14T04:57:45.4310461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4312353Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4312432Z 2025-03-14T04:57:45.4312734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4312885Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T04:57:45.4312951Z 2025-03-14T04:57:45.4313221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4313750Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4313836Z 2025-03-14T04:57:45.4314124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4315914Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4315987Z 2025-03-14T04:57:45.4316295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4316457Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T04:57:45.4316547Z 2025-03-14T04:57:45.4316803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4317298Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4317364Z 2025-03-14T04:57:45.4317636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4319417Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4319493Z 2025-03-14T04:57:45.4319780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4319930Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T04:57:45.4320003Z 2025-03-14T04:57:45.4320290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4320460Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T04:57:45.4320524Z 2025-03-14T04:57:45.4320780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4321263Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4321337Z 2025-03-14T04:57:45.4321600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4323400Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4323519Z 2025-03-14T04:57:45.4323808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4323956Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T04:57:45.4324019Z 2025-03-14T04:57:45.4324282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4324771Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4324845Z 2025-03-14T04:57:45.4325107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4326885Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4326978Z 2025-03-14T04:57:45.4327269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4327412Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T04:57:45.4327474Z 2025-03-14T04:57:45.4327735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4328223Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4328288Z 2025-03-14T04:57:45.4328557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4330360Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4330449Z 2025-03-14T04:57:45.4330737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4330887Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T04:57:45.4330957Z 2025-03-14T04:57:45.4331242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4331392Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T04:57:45.4331458Z 2025-03-14T04:57:45.4331717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4332197Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4332272Z 2025-03-14T04:57:45.4332536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4334360Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4334453Z 2025-03-14T04:57:45.4334735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4334877Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T04:57:45.4334941Z 2025-03-14T04:57:45.4335193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4335687Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4335760Z 2025-03-14T04:57:45.4336020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4337824Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4337914Z 2025-03-14T04:57:45.4338204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4338348Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T04:57:45.4338416Z 2025-03-14T04:57:45.4338674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4339157Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4339230Z 2025-03-14T04:57:45.4339497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4341285Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4341378Z 2025-03-14T04:57:45.4341657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4341815Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T04:57:45.4341880Z 2025-03-14T04:57:45.4342171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4342344Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T04:57:45.4342410Z 2025-03-14T04:57:45.4342663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4343157Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4343244Z 2025-03-14T04:57:45.4343506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4345443Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4345525Z 2025-03-14T04:57:45.4345828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4345980Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T04:57:45.4346058Z 2025-03-14T04:57:45.4346318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4346819Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4346918Z 2025-03-14T04:57:45.4347198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4349099Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4349180Z 2025-03-14T04:57:45.4349497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4349662Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T04:57:45.4349731Z 2025-03-14T04:57:45.4350019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4350529Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4350608Z 2025-03-14T04:57:45.4350882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4352769Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4352849Z 2025-03-14T04:57:45.4353143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4353309Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T04:57:45.4353376Z 2025-03-14T04:57:45.4353682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4353848Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T04:57:45.4353932Z 2025-03-14T04:57:45.4354173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4354647Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4354717Z 2025-03-14T04:57:45.4354974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4356759Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4356846Z 2025-03-14T04:57:45.4357132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4357283Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T04:57:45.4357345Z 2025-03-14T04:57:45.4357604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4358093Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4358165Z 2025-03-14T04:57:45.4358433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4360239Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4360334Z 2025-03-14T04:57:45.4360621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4360770Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T04:57:45.4360835Z 2025-03-14T04:57:45.4361096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4361590Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4361665Z 2025-03-14T04:57:45.4361928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4363751Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4363839Z 2025-03-14T04:57:45.4364120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4364287Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T04:57:45.4364352Z 2025-03-14T04:57:45.4364645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4364793Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T04:57:45.4364869Z 2025-03-14T04:57:45.4365131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4365652Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4365721Z 2025-03-14T04:57:45.4366011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4367826Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4367915Z 2025-03-14T04:57:45.4368208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4368350Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T04:57:45.4368422Z 2025-03-14T04:57:45.4368670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4369180Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4369254Z 2025-03-14T04:57:45.4369530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4371338Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4371425Z 2025-03-14T04:57:45.4371712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4371860Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T04:57:45.4371926Z 2025-03-14T04:57:45.4372191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4372710Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4372787Z 2025-03-14T04:57:45.4373068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4374937Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4375033Z 2025-03-14T04:57:45.4375323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4375502Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T04:57:45.4375573Z 2025-03-14T04:57:45.4375876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4376046Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T04:57:45.4376123Z 2025-03-14T04:57:45.4376387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4376937Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4377022Z 2025-03-14T04:57:45.4377307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4379176Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4379249Z 2025-03-14T04:57:45.4379561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4379706Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T04:57:45.4379784Z 2025-03-14T04:57:45.4380048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4380570Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4380663Z 2025-03-14T04:57:45.4380949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4383016Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4383093Z 2025-03-14T04:57:45.4383469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4383655Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T04:57:45.4383739Z 2025-03-14T04:57:45.4384037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4384616Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4384704Z 2025-03-14T04:57:45.4384998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4386904Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4386989Z 2025-03-14T04:57:45.4387265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4387429Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T04:57:45.4387496Z 2025-03-14T04:57:45.4387803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4387985Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T04:57:45.4388064Z 2025-03-14T04:57:45.4388329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4388850Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4388917Z 2025-03-14T04:57:45.4389201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4391118Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4391211Z 2025-03-14T04:57:45.4391523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4391669Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T04:57:45.4391743Z 2025-03-14T04:57:45.4392010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4392534Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4392603Z 2025-03-14T04:57:45.4392890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4394762Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4394854Z 2025-03-14T04:57:45.4395163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4395309Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T04:57:45.4395386Z 2025-03-14T04:57:45.4395650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4396183Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4396259Z 2025-03-14T04:57:45.4396536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4398455Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4398539Z 2025-03-14T04:57:45.4398842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4399016Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T04:57:45.4399083Z 2025-03-14T04:57:45.4399386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4399540Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T04:57:45.4399613Z 2025-03-14T04:57:45.4399876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4400402Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4400466Z 2025-03-14T04:57:45.4400737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4402522Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4402612Z 2025-03-14T04:57:45.4402907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4403046Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T04:57:45.4403115Z 2025-03-14T04:57:45.4403366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4403876Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4403943Z 2025-03-14T04:57:45.4404210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4406010Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4406093Z 2025-03-14T04:57:45.4406382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4406517Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T04:57:45.4406591Z 2025-03-14T04:57:45.4406838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4407340Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4407404Z 2025-03-14T04:57:45.4407674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4409459Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4409544Z 2025-03-14T04:57:45.4409834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4409991Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T04:57:45.4410065Z 2025-03-14T04:57:45.4410350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4410518Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T04:57:45.4410583Z 2025-03-14T04:57:45.4410856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4411342Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4411424Z 2025-03-14T04:57:45.4411693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4413549Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4413627Z 2025-03-14T04:57:45.4413936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4414079Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T04:57:45.4414154Z 2025-03-14T04:57:45.4414416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4414935Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4415027Z 2025-03-14T04:57:45.4415314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4417077Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4417153Z 2025-03-14T04:57:45.4417488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4417646Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T04:57:45.4417720Z 2025-03-14T04:57:45.4417986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4418489Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4418555Z 2025-03-14T04:57:45.4418838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4420703Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4420775Z 2025-03-14T04:57:45.4421045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4421569Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T04:57:45.4421647Z 2025-03-14T04:57:45.4421941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4423913Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4423993Z 2025-03-14T04:57:45.4424354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4424555Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T04:57:45.4424626Z 2025-03-14T04:57:45.4424952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4425122Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T04:57:45.4425200Z 2025-03-14T04:57:45.4425462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4425986Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4426063Z 2025-03-14T04:57:45.4426342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4428223Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4428303Z 2025-03-14T04:57:45.4428603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4428754Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T04:57:45.4428822Z 2025-03-14T04:57:45.4429114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4429627Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4429703Z 2025-03-14T04:57:45.4429982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4431886Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4431975Z 2025-03-14T04:57:45.4432262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4432406Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T04:57:45.4432474Z 2025-03-14T04:57:45.4432729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4433221Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4433296Z 2025-03-14T04:57:45.4433559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4435330Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4435407Z 2025-03-14T04:57:45.4435685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4435868Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T04:57:45.4435931Z 2025-03-14T04:57:45.4436216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4436359Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T04:57:45.4436433Z 2025-03-14T04:57:45.4436682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4437169Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T04:57:45.4437235Z 2025-03-14T04:57:45.4437504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4439301Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4439381Z 2025-03-14T04:57:45.4439672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4439805Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T04:57:45.4439878Z 2025-03-14T04:57:45.4440125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4440627Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T04:57:45.4440702Z 2025-03-14T04:57:45.4440965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4442746Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4442838Z 2025-03-14T04:57:45.4443122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4443264Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T04:57:45.4443330Z 2025-03-14T04:57:45.4443584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4444076Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T04:57:45.4444152Z 2025-03-14T04:57:45.4444437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T04:57:45.4446223Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T04:57:45.4446309Z 2025-03-14T04:57:45.4446588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T04:57:45.4446748Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T04:57:45.4446811Z 2025-03-14T04:57:45.4447096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T04:57:45.4447236Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T04:57:45.4447309Z 2025-03-14T04:57:45.4447556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4448121Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T04:57:45.4448186Z 2025-03-14T04:57:45.4448439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4448967Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T04:57:45.4449053Z 2025-03-14T04:57:45.4449463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.4449750Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T04:57:45.4449822Z 2025-03-14T04:57:45.4450065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4450621Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T04:57:45.4450686Z 2025-03-14T04:57:45.4451053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.4451275Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T04:57:45.4451360Z 2025-03-14T04:57:45.4451602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4452150Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T04:57:45.4452214Z 2025-03-14T04:57:45.4452608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.4452920Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T04:57:45.4452991Z 2025-03-14T04:57:45.4453238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4453785Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T04:57:45.4453858Z 2025-03-14T04:57:45.4454194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.4454407Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T04:57:45.4454471Z 2025-03-14T04:57:45.4454721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4455296Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T04:57:45.4455371Z 2025-03-14T04:57:45.4455759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T04:57:45.4456082Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T04:57:45.4456146Z 2025-03-14T04:57:45.4456398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4456978Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T04:57:45.4457041Z 2025-03-14T04:57:45.4457396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T04:57:45.4457618Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T04:57:45.4457688Z 2025-03-14T04:57:45.4457929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4458534Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T04:57:45.4458598Z 2025-03-14T04:57:45.4458953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T04:57:45.4459161Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T04:57:45.4459231Z 2025-03-14T04:57:45.4459654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4459815Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:57:45.4459878Z 2025-03-14T04:57:45.4460175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4460313Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:57:45.4460386Z 2025-03-14T04:57:45.4460809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4460962Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:57:45.4461049Z 2025-03-14T04:57:45.4461337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4461481Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:57:45.4461543Z 2025-03-14T04:57:45.4461916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.4462095Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:57:45.4462202Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:57:45.4462321Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:57:45.4462392Z 2025-03-14T04:57:45.4462713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.4462853Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:57:45.4462917Z 2025-03-14T04:57:45.4463271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.4463394Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:57:45.4463465Z 2025-03-14T04:57:45.4463862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.4464175Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:57:45.4464249Z 2025-03-14T04:57:45.4464679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.4464822Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:57:45.4465306Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:57:45.4465449Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:57:45.4465593Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:57:45.4465665Z 2025-03-14T04:57:45.4466163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4466325Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:57:45.4466403Z 2025-03-14T04:57:45.4466715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4466871Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:57:45.4466941Z 2025-03-14T04:57:45.4467393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4467556Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:57:45.4467656Z 2025-03-14T04:57:45.4467989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4468134Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:57:45.4468209Z 2025-03-14T04:57:45.4468596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.4468812Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:57:45.4468923Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:57:45.4469061Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:57:45.4469129Z 2025-03-14T04:57:45.4469486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.4469615Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:57:45.4469688Z 2025-03-14T04:57:45.4470031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.4470165Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:57:45.4470245Z 2025-03-14T04:57:45.4470647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.4470862Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:57:45.4470935Z 2025-03-14T04:57:45.4471343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.4471483Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:57:45.4471896Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:57:45.4472034Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:57:45.4472151Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:57:45.4472223Z 2025-03-14T04:57:45.4472648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4472805Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:57:45.4472869Z 2025-03-14T04:57:45.4473165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4473301Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:57:45.4473374Z 2025-03-14T04:57:45.4473797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4473964Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:57:45.4474035Z 2025-03-14T04:57:45.4474328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4474477Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:57:45.4474544Z 2025-03-14T04:57:45.4474936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.4475139Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:57:45.4475253Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:57:45.4475381Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:57:45.4475456Z 2025-03-14T04:57:45.4475794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.4475931Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:57:45.4475998Z 2025-03-14T04:57:45.4476357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.4476500Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:57:45.4476592Z 2025-03-14T04:57:45.4476992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.4477221Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:57:45.4477289Z 2025-03-14T04:57:45.4477726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.4477859Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:57:45.4478302Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:57:45.4478432Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:57:45.4478559Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T04:57:45.4478627Z 2025-03-14T04:57:45.4479090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4479242Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:57:45.4479317Z 2025-03-14T04:57:45.4479625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4479774Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:57:45.4479842Z 2025-03-14T04:57:45.4480300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4480475Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:57:45.4480543Z 2025-03-14T04:57:45.4480858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4481007Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:57:45.4481087Z 2025-03-14T04:57:45.4481700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.4481936Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:57:45.4482059Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:57:45.4482193Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:57:45.4482261Z 2025-03-14T04:57:45.4482619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.4482793Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:57:45.4482868Z 2025-03-14T04:57:45.4483226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.4483358Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:57:45.4483447Z 2025-03-14T04:57:45.4483843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.4484063Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:57:45.4484141Z 2025-03-14T04:57:45.4484566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.4484710Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:57:45.4485138Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:57:45.4485278Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:57:45.4485401Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T04:57:45.4485478Z 2025-03-14T04:57:45.4485917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4486077Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:57:45.4486144Z 2025-03-14T04:57:45.4486454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4486594Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:57:45.4486669Z 2025-03-14T04:57:45.4487104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:57:45.4487281Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:57:45.4487354Z 2025-03-14T04:57:45.4487651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4487794Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:57:45.4487859Z 2025-03-14T04:57:45.4488244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:57:45.4488440Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:57:45.4488547Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:57:45.4488670Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:57:45.4488741Z 2025-03-14T04:57:45.4489071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:57:45.4489223Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:57:45.4489291Z 2025-03-14T04:57:45.4489640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:57:45.4489791Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:57:45.4489863Z 2025-03-14T04:57:45.4490249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:57:45.4490470Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:57:45.4490535Z 2025-03-14T04:57:45.4490954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:57:45.4491080Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:57:45.4491507Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:57:45.4491631Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:57:45.4491758Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T04:57:45.4491825Z 2025-03-14T04:57:45.4492138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:45.4492273Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T04:57:45.4492413Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T04:57:45.4492543Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T04:57:45.4492678Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T04:57:45.4492799Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T04:57:45.4492872Z 2025-03-14T04:57:45.4493134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4493673Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T04:57:45.4493750Z 2025-03-14T04:57:45.4494035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.4494246Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T04:57:45.4494313Z 2025-03-14T04:57:45.4494710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.4495234Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.4495307Z 2025-03-14T04:57:45.4495688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.4496238Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T04:57:45.4496319Z 2025-03-14T04:57:45.4496591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4497085Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T04:57:45.4497159Z 2025-03-14T04:57:45.4497441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.4497655Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T04:57:45.4497730Z 2025-03-14T04:57:45.4498104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.4498621Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.4498686Z 2025-03-14T04:57:45.4499045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.4499554Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T04:57:45.4499629Z 2025-03-14T04:57:45.4499913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4500391Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T04:57:45.4500455Z 2025-03-14T04:57:45.4500733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.4500918Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T04:57:45.4500988Z 2025-03-14T04:57:45.4501364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.4501887Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.4501962Z 2025-03-14T04:57:45.4502332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.4502849Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T04:57:45.4502916Z 2025-03-14T04:57:45.4503173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4503641Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T04:57:45.4503714Z 2025-03-14T04:57:45.4504010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.4504303Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T04:57:45.4504380Z 2025-03-14T04:57:45.4504802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.4505355Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:57:45.4505438Z 2025-03-14T04:57:45.4505839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.4506336Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T04:57:45.4506433Z 2025-03-14T04:57:45.4506686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:57:45.4507446Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:57:45.4507514Z 2025-03-14T04:57:45.4507793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:57:45.4507967Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T04:57:45.4508044Z 2025-03-14T04:57:45.4508410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:57:45.4509290Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:57:45.4509378Z 2025-03-14T04:57:45.4509736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:57:45.4510549Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:57:45.4510613Z 2025-03-14T04:57:45.4510965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:57:45.4511132Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:57:45.4511283Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:57:45.4511447Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:57:45.4511601Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:57:45.4511756Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:57:45.4511902Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:57:45.4512057Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:57:45.4512194Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:57:45.4512347Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:57:45.4512478Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:57:45.4512565Z 2025-03-14T04:57:45.4512987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:57:45.4513176Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T04:57:45.4513361Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:57:45.4513550Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:57:45.4513714Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T04:57:45.4513896Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:57:45.4514068Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:57:45.4514224Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T04:57:45.4514406Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:57:45.4514582Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:57:45.4514750Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T04:57:45.4514933Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:57:45.4515096Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:57:45.4515248Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T04:57:45.4515403Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:57:45.4515576Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:57:45.4515643Z 2025-03-14T04:57:45.4516052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.4516262Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:57:45.4516326Z 2025-03-14T04:57:45.4516760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.4516920Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:57:45.4517075Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:57:45.4517213Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:57:45.4517283Z 2025-03-14T04:57:45.4517661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.4517841Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:57:45.4517904Z 2025-03-14T04:57:45.4518219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.4518385Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:57:45.4518456Z 2025-03-14T04:57:45.4518769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.4518910Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:57:45.4519039Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4519202Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:57:45.4519266Z 2025-03-14T04:57:45.4519591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.4519720Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:57:45.4519851Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:57:45.4520005Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:57:45.4520093Z 2025-03-14T04:57:45.4520403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.4520552Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4520658Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:57:45.4520794Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:57:45.4520859Z 2025-03-14T04:57:45.4521176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.4521328Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:57:45.4521428Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:57:45.4521559Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:57:45.4521630Z 2025-03-14T04:57:45.4521965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.4522133Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.4522248Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:57:45.4522322Z 2025-03-14T04:57:45.4522619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.4522784Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.4522898Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:57:45.4522972Z 2025-03-14T04:57:45.4523276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.4523429Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.4523549Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:57:45.4523613Z 2025-03-14T04:57:45.4523917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.4524126Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:57:45.4524244Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:57:45.4524308Z 2025-03-14T04:57:45.4524650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.4524792Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:57:45.4524866Z 2025-03-14T04:57:45.4525199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.4525341Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:57:45.4525406Z 2025-03-14T04:57:45.4525751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.4525889Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:57:45.4526043Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:57:45.4526200Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:57:45.4526362Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:57:45.4526443Z 2025-03-14T04:57:45.4526794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.4526933Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:57:45.4527065Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:57:45.4527215Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:57:45.4527360Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:57:45.4527424Z 2025-03-14T04:57:45.4527765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.4527887Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:57:45.4528052Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:57:45.4528183Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:57:45.4528256Z 2025-03-14T04:57:45.4528585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.4528707Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:57:45.4528873Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:57:45.4529014Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:57:45.4529078Z 2025-03-14T04:57:45.4529393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.4529492Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:57:45.4529617Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:57:45.4529696Z 2025-03-14T04:57:45.4530008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.4530102Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:57:45.4530225Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:57:45.4530288Z 2025-03-14T04:57:45.4530600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.4530722Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:57:45.4530854Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:57:45.4530917Z 2025-03-14T04:57:45.4531221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.4531344Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:57:45.4531473Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:57:45.4531546Z 2025-03-14T04:57:45.4531958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.4532171Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:57:45.4532254Z 2025-03-14T04:57:45.4532600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.4532767Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:57:45.4532843Z 2025-03-14T04:57:45.4533233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.4533424Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:57:45.4533492Z 2025-03-14T04:57:45.4533916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.4534129Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:57:45.4534201Z 2025-03-14T04:57:45.4534627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.4534791Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:57:45.4534942Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:57:45.4535091Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:57:45.4535155Z 2025-03-14T04:57:45.4535536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.4535708Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:57:45.4535782Z 2025-03-14T04:57:45.4536088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.4536262Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:57:45.4536327Z 2025-03-14T04:57:45.4536646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.4536779Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:57:45.4536915Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4537069Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:57:45.4537153Z 2025-03-14T04:57:45.4537466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.4537600Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:57:45.4537721Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:57:45.4537881Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:57:45.4537969Z 2025-03-14T04:57:45.4538288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.4538432Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4538543Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:57:45.4538684Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:57:45.4538748Z 2025-03-14T04:57:45.4539064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.4539215Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:57:45.4539318Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:57:45.4539451Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:57:45.4539521Z 2025-03-14T04:57:45.4539819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.4539983Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.4540098Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:57:45.4540170Z 2025-03-14T04:57:45.4540465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.4540627Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.4540741Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:57:45.4540812Z 2025-03-14T04:57:45.4541110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.4541271Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.4541384Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:57:45.4541457Z 2025-03-14T04:57:45.4541756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.4541973Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:57:45.4542087Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:57:45.4542160Z 2025-03-14T04:57:45.4542506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.4542663Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:57:45.4542730Z 2025-03-14T04:57:45.4543070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.4543211Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:57:45.4543284Z 2025-03-14T04:57:45.4543629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.4543776Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:57:45.4543924Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:57:45.4544155Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:57:45.4544338Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:57:45.4544422Z 2025-03-14T04:57:45.4544789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.4544934Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:57:45.4545079Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:57:45.4545235Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:57:45.4545385Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:57:45.4545452Z 2025-03-14T04:57:45.4545788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.4545907Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:57:45.4546075Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:57:45.4546211Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:57:45.4546287Z 2025-03-14T04:57:45.4546615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.4546738Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:57:45.4546904Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:57:45.4547047Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:57:45.4547112Z 2025-03-14T04:57:45.4547429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.4547529Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:57:45.4547675Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:57:45.4547739Z 2025-03-14T04:57:45.4548052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.4548150Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:57:45.4548275Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:57:45.4548340Z 2025-03-14T04:57:45.4548651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.4548772Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:57:45.4548916Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:57:45.4548980Z 2025-03-14T04:57:45.4549286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.4549402Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:57:45.4549543Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:57:45.4549624Z 2025-03-14T04:57:45.4549998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.4550188Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:57:45.4550273Z 2025-03-14T04:57:45.4550597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.4550772Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:57:45.4550834Z 2025-03-14T04:57:45.4551215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.4551386Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:57:45.4551456Z 2025-03-14T04:57:45.4551844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.4552055Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:57:45.4552125Z 2025-03-14T04:57:45.4552544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.4552699Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:57:45.4552848Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:57:45.4552991Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:57:45.4553053Z 2025-03-14T04:57:45.4553421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.4553587Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:57:45.4553673Z 2025-03-14T04:57:45.4553977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.4554127Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:57:45.4554191Z 2025-03-14T04:57:45.4554506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.4554632Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:57:45.4554761Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4554907Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:57:45.4554976Z 2025-03-14T04:57:45.4555284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.4555411Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:57:45.4555528Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:57:45.4555698Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:57:45.4555761Z 2025-03-14T04:57:45.4556083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.4556217Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4556314Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:57:45.4556441Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:57:45.4556512Z 2025-03-14T04:57:45.4556812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.4556962Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:57:45.4557053Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:57:45.4557186Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:57:45.4557248Z 2025-03-14T04:57:45.4557547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.4557699Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.4557817Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:57:45.4557882Z 2025-03-14T04:57:45.4558187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.4558335Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.4558456Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:57:45.4558519Z 2025-03-14T04:57:45.4558823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.4558980Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.4559089Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:57:45.4559159Z 2025-03-14T04:57:45.4559455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.4559670Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:57:45.4559780Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:57:45.4559853Z 2025-03-14T04:57:45.4560191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.4560338Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:57:45.4560402Z 2025-03-14T04:57:45.4560734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.4560871Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:57:45.4560943Z 2025-03-14T04:57:45.4561281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.4561440Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:57:45.4561567Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:57:45.4561744Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:57:45.4561899Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:57:45.4561972Z 2025-03-14T04:57:45.4562313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.4562457Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:57:45.4562579Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:57:45.4562740Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:57:45.4562876Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:57:45.4562949Z 2025-03-14T04:57:45.4563278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.4563404Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:57:45.4563562Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:57:45.4563706Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:57:45.4563771Z 2025-03-14T04:57:45.4564104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.4564218Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:57:45.4564388Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:57:45.4564519Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:57:45.4564592Z 2025-03-14T04:57:45.4564896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.4565022Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:57:45.4565145Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:57:45.4565209Z 2025-03-14T04:57:45.4565527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.4565623Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:57:45.4565743Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:57:45.4565806Z 2025-03-14T04:57:45.4566113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.4566231Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:57:45.4566371Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:57:45.4566436Z 2025-03-14T04:57:45.4566742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.4566856Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:57:45.4567009Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:57:45.4567074Z 2025-03-14T04:57:45.4567439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.4567643Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:57:45.4567715Z 2025-03-14T04:57:45.4568046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.4568217Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:57:45.4568281Z 2025-03-14T04:57:45.4568668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.4568844Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:57:45.4568915Z 2025-03-14T04:57:45.4569312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.4569523Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:57:45.4569588Z 2025-03-14T04:57:45.4570021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.4570174Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:57:45.4570329Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:57:45.4570468Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:57:45.4570541Z 2025-03-14T04:57:45.4570909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.4571102Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:57:45.4571169Z 2025-03-14T04:57:45.4571487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.4571637Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:57:45.4571717Z 2025-03-14T04:57:45.4572031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.4572170Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:57:45.4572306Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4572456Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:57:45.4572530Z 2025-03-14T04:57:45.4572844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.4572980Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:57:45.4573117Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:57:45.4573275Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:57:45.4573340Z 2025-03-14T04:57:45.4573666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.4573802Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4573903Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:57:45.4574032Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:57:45.4574103Z 2025-03-14T04:57:45.4574411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.4574564Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:57:45.4574660Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:57:45.4574795Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:57:45.4574861Z 2025-03-14T04:57:45.4575164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.4575314Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.4575435Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:57:45.4575498Z 2025-03-14T04:57:45.4575802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.4575953Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.4576073Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:57:45.4576136Z 2025-03-14T04:57:45.4576440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.4576592Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.4576710Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:57:45.4576791Z 2025-03-14T04:57:45.4577098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.4577282Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:57:45.4577402Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:57:45.4577467Z 2025-03-14T04:57:45.4577817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.4577962Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:57:45.4578036Z 2025-03-14T04:57:45.4578379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.4578525Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:57:45.4578588Z 2025-03-14T04:57:45.4578958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.4579102Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:57:45.4579247Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:57:45.4579440Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:57:45.4579584Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:57:45.4579658Z 2025-03-14T04:57:45.4580006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.4580152Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:57:45.4580276Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:57:45.4580438Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:57:45.4580579Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:57:45.4580652Z 2025-03-14T04:57:45.4580986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.4581111Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:57:45.4581276Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:57:45.4581591Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:57:45.4581666Z 2025-03-14T04:57:45.4582024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.4582142Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:57:45.4582323Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:57:45.4582461Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:57:45.4582536Z 2025-03-14T04:57:45.4582853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.4583000Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:57:45.4583121Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:57:45.4583195Z 2025-03-14T04:57:45.4583508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.4583613Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:57:45.4583732Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:57:45.4583808Z 2025-03-14T04:57:45.4584160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.4584300Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:57:45.4584440Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:57:45.4584513Z 2025-03-14T04:57:45.4584821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.4584975Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:57:45.4585112Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:57:45.4585189Z 2025-03-14T04:57:45.4585565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.4585795Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:57:45.4585860Z 2025-03-14T04:57:45.4586209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.4586373Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:57:45.4586446Z 2025-03-14T04:57:45.4586834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.4587022Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:57:45.4587097Z 2025-03-14T04:57:45.4587504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:57:45.4587721Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:57:45.4587787Z 2025-03-14T04:57:45.4588232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:57:45.4588386Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:57:45.4588549Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:57:45.4588689Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:57:45.4588763Z 2025-03-14T04:57:45.4589140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:57:45.4589335Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:57:45.4589399Z 2025-03-14T04:57:45.4589719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:57:45.4589868Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:57:45.4589939Z 2025-03-14T04:57:45.4590259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:57:45.4590400Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:57:45.4590526Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4590683Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:57:45.4590749Z 2025-03-14T04:57:45.4591077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:57:45.4591201Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:57:45.4591349Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:57:45.4591504Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:57:45.4591592Z 2025-03-14T04:57:45.4592852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:57:45.4593019Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:57:45.4593126Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:57:45.4593270Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:57:45.4593340Z 2025-03-14T04:57:45.4593680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:57:45.4593835Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:57:45.4593940Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:57:45.4594073Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:57:45.4594153Z 2025-03-14T04:57:45.4594475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:57:45.4594641Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:57:45.4594760Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:57:45.4594834Z 2025-03-14T04:57:45.4595148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:57:45.4595299Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:57:45.4595420Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:57:45.4595485Z 2025-03-14T04:57:45.4595800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:57:45.4595952Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:57:45.4596071Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:57:45.4596168Z 2025-03-14T04:57:45.4596504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:57:45.4596701Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:57:45.4596815Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:57:45.4596879Z 2025-03-14T04:57:45.4597222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:57:45.4597360Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:57:45.4597431Z 2025-03-14T04:57:45.4597762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:57:45.4597906Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:57:45.4597971Z 2025-03-14T04:57:45.4598339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:57:45.4598474Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:57:45.4598623Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:57:45.4598793Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:57:45.4598944Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:57:45.4599010Z 2025-03-14T04:57:45.4599361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:57:45.4599494Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:57:45.4599623Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:57:45.4599774Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:57:45.4599919Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:57:45.4599985Z 2025-03-14T04:57:45.4600328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:57:45.4600446Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:57:45.4600618Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:57:45.4600755Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:57:45.4600828Z 2025-03-14T04:57:45.4601161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:57:45.4601285Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:57:45.4601461Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:57:45.4601593Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:57:45.4601667Z 2025-03-14T04:57:45.4601986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:57:45.4602109Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:57:45.4602227Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:57:45.4602300Z 2025-03-14T04:57:45.4602617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:57:45.4602720Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:57:45.4602839Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:57:45.4602910Z 2025-03-14T04:57:45.4603219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:57:45.4603345Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:57:45.4603490Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:57:45.4603559Z 2025-03-14T04:57:45.4603861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:57:45.4603996Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:57:45.4604127Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:57:45.4604197Z 2025-03-14T04:57:45.4604564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:57:45.4604776Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:57:45.4604841Z 2025-03-14T04:57:45.4605182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:57:45.4605341Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:57:45.4605412Z 2025-03-14T04:57:45.4605796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:57:45.4605978Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:57:45.4606043Z 2025-03-14T04:57:45.4606532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:57:45.4606671Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:57:45.4606745Z 2025-03-14T04:57:45.4607039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4607195Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:57:45.4607262Z 2025-03-14T04:57:45.4607717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.4607836Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:57:45.4607951Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:57:45.4608068Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:57:45.4608162Z 2025-03-14T04:57:45.4608632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.4608778Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.4609012Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:57:45.4609091Z 2025-03-14T04:57:45.4609569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.4609733Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.4609806Z 2025-03-14T04:57:45.4610098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4610227Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:57:45.4610289Z 2025-03-14T04:57:45.4610758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.4610893Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:57:45.4611010Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:57:45.4611132Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:57:45.4611202Z 2025-03-14T04:57:45.4611657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.4611796Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.4612032Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:57:45.4612105Z 2025-03-14T04:57:45.4612554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.4612727Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.4612792Z 2025-03-14T04:57:45.4613094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4613219Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:57:45.4613291Z 2025-03-14T04:57:45.4613723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.4613849Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:57:45.4613962Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:57:45.4614089Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:57:45.4614155Z 2025-03-14T04:57:45.4614613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.4614766Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.4615011Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:57:45.4615075Z 2025-03-14T04:57:45.4615530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.4615707Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.4615770Z 2025-03-14T04:57:45.4616070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4616195Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:57:45.4616266Z 2025-03-14T04:57:45.4616706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.4616829Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:57:45.4616948Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:57:45.4617086Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:57:45.4617152Z 2025-03-14T04:57:45.4617615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.4617752Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:57:45.4617995Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:57:45.4618060Z 2025-03-14T04:57:45.4618520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.4618685Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.4618759Z 2025-03-14T04:57:45.4619054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4619187Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:57:45.4619251Z 2025-03-14T04:57:45.4619686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:57:45.4619801Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:57:45.4619914Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:57:45.4620031Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:57:45.4620107Z 2025-03-14T04:57:45.4620559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:57:45.4620754Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:57:45.4620994Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:57:45.4621067Z 2025-03-14T04:57:45.4621528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:57:45.4621701Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:57:45.4621774Z 2025-03-14T04:57:45.4622074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:57:45.4622207Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:57:45.4622273Z 2025-03-14T04:57:45.4622565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.4623363Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:57:45.4623442Z 2025-03-14T04:57:45.4623745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.4624322Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:57:45.4624399Z 2025-03-14T04:57:45.4624690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:57:45.4624896Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:57:45.4624973Z 2025-03-14T04:57:45.4625366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:57:45.4625522Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:57:45.4625589Z 2025-03-14T04:57:45.4625902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:57:45.4626057Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:57:45.4626135Z 2025-03-14T04:57:45.4626518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:57:45.4626665Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:57:45.4626733Z 2025-03-14T04:57:45.4627231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:57:45.4627374Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:57:45.4627503Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:57:45.4627716Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:57:45.4627859Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:57:45.4627925Z 2025-03-14T04:57:45.4628308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:57:45.4628439Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:57:45.4628507Z 2025-03-14T04:58:08.4172233Z 2025-03-14T04:58:08.4176915Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:08.4181218Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:58:08.4184367Z l_features_p2_ = L_features_p2_ 2025-03-14T04:58:08.4184609Z l_features_p3_ = L_features_p3_ 2025-03-14T04:58:08.4184864Z l_features_p4_ = L_features_p4_ 2025-03-14T04:58:08.4185121Z l_features_p5_ = L_features_p5_ 2025-03-14T04:58:08.4185359Z l_features_p6_ = L_features_p6_ 2025-03-14T04:58:08.4185835Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:58:08.4186497Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:58:08.4187139Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:58:08.4187758Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:58:08.4188355Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:58:08.4188901Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:58:08.4189407Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:58:08.4189966Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:58:08.4190574Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:58:08.4191163Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:58:08.4191821Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:58:08.4192260Z 2025-03-14T04:58:08.4192915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4193622Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:58:08.4193913Z 2025-03-14T04:58:08.4194336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4194869Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:58:08.4195146Z 2025-03-14T04:58:08.4195707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4197436Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:58:08.4197746Z 2025-03-14T04:58:08.4198217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4199106Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:58:08.4199389Z 2025-03-14T04:58:08.4199904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4200524Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:58:08.4200866Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:58:08.4201150Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:58:08.4201393Z 2025-03-14T04:58:08.4201816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4202339Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:58:08.4202590Z 2025-03-14T04:58:08.4203008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4203522Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:58:08.4203768Z 2025-03-14T04:58:08.4204240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4204894Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:58:08.4205228Z 2025-03-14T04:58:08.4205742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4206345Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:58:08.4206859Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:58:08.4207356Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:58:08.4207689Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:58:08.4207921Z 2025-03-14T04:58:08.4208447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4209093Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:58:08.4209378Z 2025-03-14T04:58:08.4209788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4210307Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:58:08.4210583Z 2025-03-14T04:58:08.4211131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4211791Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:58:08.4212073Z 2025-03-14T04:58:08.4212497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4213028Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:58:08.4213305Z 2025-03-14T04:58:08.4213766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4214413Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:58:08.4214768Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:58:08.4215050Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:58:08.4215299Z 2025-03-14T04:58:08.4215711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4216244Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:58:08.4216503Z 2025-03-14T04:58:08.4216945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4217481Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:58:08.4217743Z 2025-03-14T04:58:08.4218236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4218927Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:58:08.4219278Z 2025-03-14T04:58:08.4219808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4220440Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:58:08.4220966Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:58:08.4221484Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:58:08.4221825Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T04:58:08.4222082Z 2025-03-14T04:58:08.4222615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4223261Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:58:08.4223535Z 2025-03-14T04:58:08.4223925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4224517Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:58:08.4224789Z 2025-03-14T04:58:08.4225335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4226007Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:58:08.4226291Z 2025-03-14T04:58:08.4226710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4227230Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:58:08.4227544Z 2025-03-14T04:58:08.4228023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4228715Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:58:08.4229082Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:58:08.4229371Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:58:08.4229639Z 2025-03-14T04:58:08.4230066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4230615Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:58:08.4230886Z 2025-03-14T04:58:08.4231312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4231833Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:58:08.4232082Z 2025-03-14T04:58:08.4232557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4233212Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:58:08.4233545Z 2025-03-14T04:58:08.4234059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4235786Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:58:08.4236329Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:58:08.4237108Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:58:08.4237558Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T04:58:08.4237813Z 2025-03-14T04:58:08.4238362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4239027Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:58:08.4239307Z 2025-03-14T04:58:08.4239708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4240213Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:58:08.4240477Z 2025-03-14T04:58:08.4241005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4241644Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:58:08.4241915Z 2025-03-14T04:58:08.4242331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4242826Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:58:08.4243112Z 2025-03-14T04:58:08.4243609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4244240Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:58:08.4244604Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:58:08.4244893Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:58:08.4245832Z 2025-03-14T04:58:08.4246297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4246837Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:58:08.4247087Z 2025-03-14T04:58:08.4247517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4248036Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:58:08.4248288Z 2025-03-14T04:58:08.4248766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4249427Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:58:08.4249762Z 2025-03-14T04:58:08.4250273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4250883Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:58:08.4251392Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:58:08.4251888Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:58:08.4252230Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:58:08.4252469Z 2025-03-14T04:58:08.4253008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4253661Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:58:08.4253937Z 2025-03-14T04:58:08.4254334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4254848Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:58:08.4255108Z 2025-03-14T04:58:08.4255626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4256280Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:58:08.4256549Z 2025-03-14T04:58:08.4256961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4257449Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:58:08.4257720Z 2025-03-14T04:58:08.4260312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4260985Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:58:08.4261358Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:58:08.4261649Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:58:08.4261933Z 2025-03-14T04:58:08.4262365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4262888Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:58:08.4263138Z 2025-03-14T04:58:08.4263563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4264078Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:58:08.4264422Z 2025-03-14T04:58:08.4264906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4265572Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:58:08.4265900Z 2025-03-14T04:58:08.4266402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4266991Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:58:08.4267506Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:58:08.4268001Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:58:08.4268393Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:58:08.4268634Z 2025-03-14T04:58:08.4269033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:58:08.4269529Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:58:08.4269841Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T04:58:08.4270147Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T04:58:08.4270715Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T04:58:08.4271035Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T04:58:08.4271286Z 2025-03-14T04:58:08.4271659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4272432Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T04:58:08.4272989Z 2025-03-14T04:58:08.4273444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4274021Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T04:58:08.4274362Z 2025-03-14T04:58:08.4274843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4276308Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4276885Z 2025-03-14T04:58:08.4277365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4278220Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T04:58:08.4278765Z 2025-03-14T04:58:08.4279127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4279855Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T04:58:08.4280396Z 2025-03-14T04:58:08.4280764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4281290Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T04:58:08.4281908Z 2025-03-14T04:58:08.4282399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4283253Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4284958Z 2025-03-14T04:58:08.4285433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4286255Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T04:58:08.4286782Z 2025-03-14T04:58:08.4287130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4287834Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T04:58:08.4288349Z 2025-03-14T04:58:08.4288712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4289281Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T04:58:08.4289583Z 2025-03-14T04:58:08.4290112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4290981Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4291497Z 2025-03-14T04:58:08.4291951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4292761Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T04:58:08.4293275Z 2025-03-14T04:58:08.4293621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4294329Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T04:58:08.4294842Z 2025-03-14T04:58:08.4295203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4295710Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T04:58:08.4296008Z 2025-03-14T04:58:08.4296470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4297287Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4297790Z 2025-03-14T04:58:08.4298238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4299074Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T04:58:08.4299590Z 2025-03-14T04:58:08.4299929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4300809Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:58:08.4301496Z 2025-03-14T04:58:08.4301860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4302362Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T04:58:08.4302655Z 2025-03-14T04:58:08.4303143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4304315Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:58:08.4305139Z 2025-03-14T04:58:08.4305594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4306626Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:58:08.4307350Z 2025-03-14T04:58:08.4307793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:58:08.4308371Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:58:08.4308746Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:58:08.4309120Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:58:08.4309495Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:58:08.4309864Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:58:08.4310219Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:58:08.4310575Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:58:08.4310927Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:58:08.4311276Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:58:08.4311651Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:58:08.4311925Z 2025-03-14T04:58:08.4312465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:58:08.4313130Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T04:58:08.4313565Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:58:08.4313999Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:58:08.4314407Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T04:58:08.4314819Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:58:08.4315234Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:58:08.4315647Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T04:58:08.4316023Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:58:08.4316436Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:58:08.4316830Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T04:58:08.4317200Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:58:08.4317589Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:58:08.4317962Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T04:58:08.4318327Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:58:08.4318712Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:58:08.4319006Z 2025-03-14T04:58:08.4319518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4320199Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:58:08.4320532Z 2025-03-14T04:58:08.4321079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4321737Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:58:08.4322113Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:58:08.4322468Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:58:08.4322738Z 2025-03-14T04:58:08.4323220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4323839Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:58:08.4324166Z 2025-03-14T04:58:08.4327577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4329056Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:58:08.4329576Z 2025-03-14T04:58:08.4330397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4333569Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4333908Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4334257Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:08.4334542Z 2025-03-14T04:58:08.4334982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4335552Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4335866Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4336347Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:58:08.4336629Z 2025-03-14T04:58:08.4337072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4337608Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4337884Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:58:08.4338160Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:58:08.4338408Z 2025-03-14T04:58:08.4338816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4339349Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:08.4339657Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:58:08.4339947Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:58:08.4340203Z 2025-03-14T04:58:08.4340647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4341178Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4341524Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:58:08.4341769Z 2025-03-14T04:58:08.4342175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4342703Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4343046Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:58:08.4343290Z 2025-03-14T04:58:08.4343691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4344305Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4344770Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:58:08.4345029Z 2025-03-14T04:58:08.4345448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4346064Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:08.4346437Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:58:08.4346683Z 2025-03-14T04:58:08.4347134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4347701Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:08.4347982Z 2025-03-14T04:58:08.4348422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4348975Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:08.4349250Z 2025-03-14T04:58:08.4349702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4350690Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:08.4351076Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:58:08.4351454Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:08.4351832Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:58:08.4352139Z 2025-03-14T04:58:08.4352606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4353437Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:08.4353786Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:58:08.4354149Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:08.4354530Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:58:08.4354812Z 2025-03-14T04:58:08.4355270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4355813Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:08.4356166Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:08.4356541Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:58:08.4356817Z 2025-03-14T04:58:08.4357237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4357743Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:08.4358082Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:08.4358448Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:58:08.4358712Z 2025-03-14T04:58:08.4359113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4359590Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:08.4359893Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:08.4360137Z 2025-03-14T04:58:08.4360543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4361017Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:08.4361280Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:08.4361520Z 2025-03-14T04:58:08.4361922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4362412Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:08.4362722Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:08.4363233Z 2025-03-14T04:58:08.4363641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4364365Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:08.4364667Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:08.4364923Z 2025-03-14T04:58:08.4365391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4366006Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:08.4366590Z 2025-03-14T04:58:08.4367024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4367590Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:58:08.4367879Z 2025-03-14T04:58:08.4368357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4368976Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:58:08.4369283Z 2025-03-14T04:58:08.4369772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4370438Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:58:08.4370766Z 2025-03-14T04:58:08.4371289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4371934Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:58:08.4372302Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:58:08.4372653Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:58:08.4372918Z 2025-03-14T04:58:08.4373388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4373988Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:58:08.4374308Z 2025-03-14T04:58:08.4374713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4375231Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:58:08.4375499Z 2025-03-14T04:58:08.4375903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4376411Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4376730Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4377067Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:58:08.4377341Z 2025-03-14T04:58:08.4377748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4378248Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4378557Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4378913Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:58:08.4379187Z 2025-03-14T04:58:08.4379602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4380133Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4380424Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:58:08.4380718Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:58:08.4380980Z 2025-03-14T04:58:08.4381390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4382217Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:58:08.4382540Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:58:08.4382839Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:58:08.4383103Z 2025-03-14T04:58:08.4383523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4384046Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4384440Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:58:08.4384703Z 2025-03-14T04:58:08.4385113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4385647Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4385995Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:58:08.4386258Z 2025-03-14T04:58:08.4386663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4387184Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4387516Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:58:08.4387760Z 2025-03-14T04:58:08.4388161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4388841Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:58:08.4389202Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:58:08.4389446Z 2025-03-14T04:58:08.4389881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4390432Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:58:08.4390707Z 2025-03-14T04:58:08.4391143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4391686Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:58:08.4391956Z 2025-03-14T04:58:08.4392411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4393015Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:58:08.4393357Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:58:08.4393736Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:58:08.4394147Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:58:08.4394428Z 2025-03-14T04:58:08.4394887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4395463Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:58:08.4395802Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:58:08.4396160Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:58:08.4396537Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:58:08.4396818Z 2025-03-14T04:58:08.4397268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4397806Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:58:08.4398167Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:58:08.4398552Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:58:08.4398827Z 2025-03-14T04:58:08.4399273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4399806Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:58:08.4400174Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:58:08.4400560Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:58:08.4400834Z 2025-03-14T04:58:08.4401261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4401757Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:58:08.4402085Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:58:08.4402341Z 2025-03-14T04:58:08.4402751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4403247Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:58:08.4403524Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:58:08.4403776Z 2025-03-14T04:58:08.4404200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4404715Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:58:08.4405048Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:58:08.4405318Z 2025-03-14T04:58:08.4405734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4406237Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:58:08.4406586Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:58:08.4406856Z 2025-03-14T04:58:08.4407334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4407983Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:58:08.4408307Z 2025-03-14T04:58:08.4408753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4409337Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:58:08.4409642Z 2025-03-14T04:58:08.4410141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4410822Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:58:08.4411156Z 2025-03-14T04:58:08.4411699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4412429Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:58:08.4412792Z 2025-03-14T04:58:08.4413352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4414025Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:58:08.4414409Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:58:08.4414779Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:58:08.4415055Z 2025-03-14T04:58:08.4415542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4416166Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:58:08.4416495Z 2025-03-14T04:58:08.4416921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4417468Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:58:08.4417754Z 2025-03-14T04:58:08.4418212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4418745Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4419083Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4419445Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:58:08.4419737Z 2025-03-14T04:58:08.4420181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4420716Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4421067Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4421420Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:58:08.4421704Z 2025-03-14T04:58:08.4422139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4422676Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4422967Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:58:08.4423264Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:58:08.4423532Z 2025-03-14T04:58:08.4423951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4424601Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:58:08.4424927Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:58:08.4425216Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:58:08.4425485Z 2025-03-14T04:58:08.4425905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4426448Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4426799Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:58:08.4427054Z 2025-03-14T04:58:08.4427467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4428008Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4428353Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:58:08.4428605Z 2025-03-14T04:58:08.4429016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4429553Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4429875Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:58:08.4430139Z 2025-03-14T04:58:08.4430533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4431079Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:58:08.4431428Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:58:08.4431663Z 2025-03-14T04:58:08.4432089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4432623Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:58:08.4432888Z 2025-03-14T04:58:08.4433303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4433834Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:58:08.4434094Z 2025-03-14T04:58:08.4434543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4435086Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:58:08.4435426Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:58:08.4435785Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:58:08.4436139Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:58:08.4436404Z 2025-03-14T04:58:08.4436846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4437396Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:58:08.4437729Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:58:08.4438081Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:58:08.4438436Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:58:08.4438699Z 2025-03-14T04:58:08.4439123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4439630Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:58:08.4439969Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:58:08.4440327Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:58:08.4440591Z 2025-03-14T04:58:08.4441017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4441545Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:58:08.4441881Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:58:08.4442244Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:58:08.4442503Z 2025-03-14T04:58:08.4443450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4443991Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:58:08.4444274Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:58:08.4444527Z 2025-03-14T04:58:08.4444932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4445410Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:58:08.4445672Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:58:08.4445921Z 2025-03-14T04:58:08.4446333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4446824Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:58:08.4447146Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:58:08.4447412Z 2025-03-14T04:58:08.4447819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4448332Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:58:08.4448648Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:58:08.4448911Z 2025-03-14T04:58:08.4449382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4450031Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:58:08.4450349Z 2025-03-14T04:58:08.4450782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4451349Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:58:08.4451643Z 2025-03-14T04:58:08.4452124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4452750Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:58:08.4453057Z 2025-03-14T04:58:08.4453556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4454238Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:58:08.4454577Z 2025-03-14T04:58:08.4455110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4455762Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:58:08.4456132Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:58:08.4456491Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:58:08.4456762Z 2025-03-14T04:58:08.4457234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4457867Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:58:08.4458167Z 2025-03-14T04:58:08.4458577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4459101Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:58:08.4459376Z 2025-03-14T04:58:08.4459790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4460304Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4460632Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4460963Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:58:08.4461237Z 2025-03-14T04:58:08.4461642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4462155Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4462458Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4462788Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:58:08.4463111Z 2025-03-14T04:58:08.4463528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4464017Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4464392Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:58:08.4464706Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:58:08.4464996Z 2025-03-14T04:58:08.4465440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4466030Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:58:08.4466363Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:58:08.4466686Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:58:08.4466959Z 2025-03-14T04:58:08.4467389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4467928Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4468283Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:58:08.4468537Z 2025-03-14T04:58:08.4468943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4469475Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4469824Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:58:08.4470077Z 2025-03-14T04:58:08.4470483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4471017Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4471358Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:58:08.4471638Z 2025-03-14T04:58:08.4472050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4472626Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:58:08.4473002Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:58:08.4473253Z 2025-03-14T04:58:08.4473704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4474274Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:58:08.4474560Z 2025-03-14T04:58:08.4474992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4475535Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:58:08.4475805Z 2025-03-14T04:58:08.4476759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4477331Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:58:08.4477689Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:58:08.4478060Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:58:08.4478427Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:58:08.4478706Z 2025-03-14T04:58:08.4479156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4479720Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:58:08.4480056Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:58:08.4480748Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:58:08.4481118Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:58:08.4481395Z 2025-03-14T04:58:08.4481997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4482523Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:58:08.4482876Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:58:08.4483248Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:58:08.4483519Z 2025-03-14T04:58:08.4484005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4484531Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:58:08.4484881Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:58:08.4485252Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:58:08.4485515Z 2025-03-14T04:58:08.4485933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4486870Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:58:08.4487155Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:58:08.4487728Z 2025-03-14T04:58:08.4488139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4488613Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:58:08.4489142Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:58:08.4489710Z 2025-03-14T04:58:08.4490120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4490613Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:58:08.4490933Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:58:08.4491197Z 2025-03-14T04:58:08.4491597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4492130Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:58:08.4492447Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:58:08.4492737Z 2025-03-14T04:58:08.4493222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4493836Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:58:08.4494146Z 2025-03-14T04:58:08.4494571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4495138Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:58:08.4495434Z 2025-03-14T04:58:08.4495916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4496539Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:58:08.4496839Z 2025-03-14T04:58:08.4497328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4498005Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:58:08.4498331Z 2025-03-14T04:58:08.4498843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4499470Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:58:08.4499828Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:58:08.4500179Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:58:08.4500445Z 2025-03-14T04:58:08.4500921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4501557Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:58:08.4501854Z 2025-03-14T04:58:08.4502258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4502779Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:58:08.4503054Z 2025-03-14T04:58:08.4503464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4503978Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4504361Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4504713Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:58:08.4504996Z 2025-03-14T04:58:08.4505421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4505970Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4506285Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4506656Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:58:08.4506956Z 2025-03-14T04:58:08.4507367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4507861Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4508137Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:58:08.4508422Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:58:08.4508681Z 2025-03-14T04:58:08.4509083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4509618Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:58:08.4509912Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:58:08.4510192Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:58:08.4510450Z 2025-03-14T04:58:08.4510855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4511377Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4511709Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:58:08.4511948Z 2025-03-14T04:58:08.4512345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4512863Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4513192Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:58:08.4513432Z 2025-03-14T04:58:08.4513825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4514332Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4514684Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:58:08.4514923Z 2025-03-14T04:58:08.4515321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4515870Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:58:08.4516222Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:58:08.4516461Z 2025-03-14T04:58:08.4516897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4517444Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:58:08.4517710Z 2025-03-14T04:58:08.4518142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4518676Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:58:08.4518939Z 2025-03-14T04:58:08.4519401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4519970Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:58:08.4520323Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:58:08.4520666Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:58:08.4521029Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:58:08.4521301Z 2025-03-14T04:58:08.4521746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4522300Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:58:08.4522627Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:58:08.4522966Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:58:08.4523321Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:58:08.4523596Z 2025-03-14T04:58:08.4524025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4524549Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:58:08.4524889Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:58:08.4525247Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:58:08.4525514Z 2025-03-14T04:58:08.4525951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4526466Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:58:08.4526809Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:58:08.4527170Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:58:08.4527429Z 2025-03-14T04:58:08.4527841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4528337Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:58:08.4528614Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:58:08.4528849Z 2025-03-14T04:58:08.4529266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4529727Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:58:08.4529994Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:58:08.4530233Z 2025-03-14T04:58:08.4530628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4531111Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:58:08.4531423Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:58:08.4531693Z 2025-03-14T04:58:08.4532106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4532583Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:58:08.4532906Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:58:08.4533159Z 2025-03-14T04:58:08.4533622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4534227Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:58:08.4534546Z 2025-03-14T04:58:08.4534982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4535548Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:58:08.4535852Z 2025-03-14T04:58:08.4536328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4536939Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:58:08.4537237Z 2025-03-14T04:58:08.4537820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:58:08.4538555Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:58:08.4538820Z 2025-03-14T04:58:08.4539225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4539740Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:58:08.4540017Z 2025-03-14T04:58:08.4540567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4541192Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:58:08.4541478Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:58:08.4541797Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:58:08.4542035Z 2025-03-14T04:58:08.4542602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4543267Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4543701Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:58:08.4544057Z 2025-03-14T04:58:08.4544694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4545418Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4545723Z 2025-03-14T04:58:08.4546129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4546665Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:58:08.4546921Z 2025-03-14T04:58:08.4547487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4548144Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:58:08.4548442Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:58:08.4548743Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:58:08.4548997Z 2025-03-14T04:58:08.4549570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4550252Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4550703Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:58:08.4551073Z 2025-03-14T04:58:08.4551643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4552352Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4552659Z 2025-03-14T04:58:08.4553058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4553560Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:58:08.4553824Z 2025-03-14T04:58:08.4554365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4555055Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:58:08.4555344Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:58:08.4555641Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:58:08.4555896Z 2025-03-14T04:58:08.4556464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4557172Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4557651Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:58:08.4558026Z 2025-03-14T04:58:08.4558578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4559259Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4559544Z 2025-03-14T04:58:08.4559936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4560875Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:58:08.4561134Z 2025-03-14T04:58:08.4561720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4562362Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:58:08.4562646Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:58:08.4562956Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:58:08.4563203Z 2025-03-14T04:58:08.4563753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4564411Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4564852Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:58:08.4565218Z 2025-03-14T04:58:08.4565773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4566463Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4566759Z 2025-03-14T04:58:08.4567150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4567636Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:58:08.4567885Z 2025-03-14T04:58:08.4568418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4569029Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:58:08.4569311Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:58:08.4569596Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:58:08.4569838Z 2025-03-14T04:58:08.4570398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4571102Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:58:08.4571568Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:58:08.4571928Z 2025-03-14T04:58:08.4572485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4573165Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4573456Z 2025-03-14T04:58:08.4574127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4574625Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:58:08.4574882Z 2025-03-14T04:58:08.4575257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:08.4576005Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:58:08.4576501Z 2025-03-14T04:58:08.4577142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:08.4577987Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:58:08.4578597Z 2025-03-14T04:58:08.4578986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:08.4579548Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:58:08.4579884Z 2025-03-14T04:58:08.4580413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:58:08.4581004Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:58:08.4581278Z 2025-03-14T04:58:08.4581839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:58:08.4582365Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:58:08.4582653Z 2025-03-14T04:58:08.4583146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:58:08.4583740Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:58:08.4584019Z 2025-03-14T04:58:08.4584665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:58:08.4585379Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:58:08.4585792Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:08.4586146Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:58:08.4586521Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:58:08.4586790Z 2025-03-14T04:58:08.4588252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:58:08.4589152Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:58:08.4589411Z 2025-03-14T04:58:08.4589507Z 2025-03-14T04:58:08.4589614Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:08.4592902Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T04:58:08.4595328Z l_features_p2_ = L_features_p2_ 2025-03-14T04:58:08.4595561Z l_features_p3_ = L_features_p3_ 2025-03-14T04:58:08.4595792Z l_features_p4_ = L_features_p4_ 2025-03-14T04:58:08.4596012Z l_features_p5_ = L_features_p5_ 2025-03-14T04:58:08.4596235Z l_features_p6_ = L_features_p6_ 2025-03-14T04:58:08.4596642Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T04:58:08.4597218Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T04:58:08.4597792Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T04:58:08.4598358Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T04:58:08.4598923Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T04:58:08.4599466Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T04:58:08.4599970Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T04:58:08.4600525Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T04:58:08.4601133Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T04:58:08.4601718Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T04:58:08.4602315Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T04:58:08.4602695Z 2025-03-14T04:58:08.4603261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4603931Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T04:58:08.4604216Z 2025-03-14T04:58:08.4604619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4605132Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:58:08.4605400Z 2025-03-14T04:58:08.4605948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4606615Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T04:58:08.4606919Z 2025-03-14T04:58:08.4607325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4607854Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T04:58:08.4608152Z 2025-03-14T04:58:08.4608639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4609289Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T04:58:08.4609623Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T04:58:08.4609898Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T04:58:08.4610141Z 2025-03-14T04:58:08.4610556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4611064Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T04:58:08.4612065Z 2025-03-14T04:58:08.4612931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4613492Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T04:58:08.4613740Z 2025-03-14T04:58:08.4614212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4614861Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T04:58:08.4615194Z 2025-03-14T04:58:08.4616036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4617567Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T04:58:08.4618115Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T04:58:08.4618722Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T04:58:08.4619035Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T04:58:08.4619283Z 2025-03-14T04:58:08.4619841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4620532Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T04:58:08.4620820Z 2025-03-14T04:58:08.4621227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4621747Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T04:58:08.4622029Z 2025-03-14T04:58:08.4622580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4623247Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T04:58:08.4623531Z 2025-03-14T04:58:08.4623997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4624628Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T04:58:08.4624937Z 2025-03-14T04:58:08.4625472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4626174Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T04:58:08.4626571Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T04:58:08.4626890Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T04:58:08.4627165Z 2025-03-14T04:58:08.4627614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4628202Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T04:58:08.4628478Z 2025-03-14T04:58:08.4628953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4629531Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T04:58:08.4629790Z 2025-03-14T04:58:08.4630281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4630958Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T04:58:08.4631303Z 2025-03-14T04:58:08.4631831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4632455Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T04:58:08.4632980Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T04:58:08.4633528Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T04:58:08.4635760Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T04:58:08.4636057Z 2025-03-14T04:58:08.4637519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4639859Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T04:58:08.4640852Z 2025-03-14T04:58:08.4641264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4641784Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T04:58:08.4642062Z 2025-03-14T04:58:08.4642616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4643282Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T04:58:08.4643561Z 2025-03-14T04:58:08.4644040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4644584Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T04:58:08.4644886Z 2025-03-14T04:58:08.4645375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4646027Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T04:58:08.4646402Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T04:58:08.4646702Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T04:58:08.4646958Z 2025-03-14T04:58:08.4647397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4647937Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T04:58:08.4648196Z 2025-03-14T04:58:08.4648631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4649158Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T04:58:08.4649433Z 2025-03-14T04:58:08.4649924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4650599Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T04:58:08.4650943Z 2025-03-14T04:58:08.4651473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4652095Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T04:58:08.4652615Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T04:58:08.4653158Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T04:58:08.4657679Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T04:58:08.4657933Z 2025-03-14T04:58:08.4658493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4659171Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T04:58:08.4659454Z 2025-03-14T04:58:08.4659857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4660368Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T04:58:08.4660639Z 2025-03-14T04:58:08.4661183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4661838Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T04:58:08.4662109Z 2025-03-14T04:58:08.4662541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4663058Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T04:58:08.4664823Z 2025-03-14T04:58:08.4665232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4665447Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T04:58:08.4665558Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T04:58:08.4665695Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T04:58:08.4665765Z 2025-03-14T04:58:08.4666132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4666262Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T04:58:08.4666336Z 2025-03-14T04:58:08.4666670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4666803Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T04:58:08.4666870Z 2025-03-14T04:58:08.4667573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4667809Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T04:58:08.4667887Z 2025-03-14T04:58:08.4668338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4668484Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T04:58:08.4668816Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T04:58:08.4668987Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T04:58:08.4669108Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T04:58:08.4669187Z 2025-03-14T04:58:08.4669640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4669811Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:58:08.4669879Z 2025-03-14T04:58:08.4670185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4670328Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T04:58:08.4670406Z 2025-03-14T04:58:08.4670858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T04:58:08.4671018Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T04:58:08.4671085Z 2025-03-14T04:58:08.4671418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4671578Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T04:58:08.4671695Z 2025-03-14T04:58:08.4672091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T04:58:08.4672305Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T04:58:08.4672421Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T04:58:08.4672548Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T04:58:08.4672623Z 2025-03-14T04:58:08.4672976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T04:58:08.4673116Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T04:58:08.4673183Z 2025-03-14T04:58:08.4673538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T04:58:08.4673665Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T04:58:08.4673738Z 2025-03-14T04:58:08.4674142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T04:58:08.4674376Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T04:58:08.4674442Z 2025-03-14T04:58:08.4674888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T04:58:08.4675021Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T04:58:08.4675351Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T04:58:08.4675496Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T04:58:08.4675624Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T04:58:08.4675691Z 2025-03-14T04:58:08.4676015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:58:08.4676144Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T04:58:08.4676283Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T04:58:08.4676412Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T04:58:08.4676544Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T04:58:08.4676665Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T04:58:08.4676742Z 2025-03-14T04:58:08.4677011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4677482Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T04:58:08.4677554Z 2025-03-14T04:58:08.4677856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4678070Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T04:58:08.4678163Z 2025-03-14T04:58:08.4678562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4678999Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4679076Z 2025-03-14T04:58:08.4679448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4679887Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T04:58:08.4679955Z 2025-03-14T04:58:08.4680229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4680653Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T04:58:08.4680729Z 2025-03-14T04:58:08.4681014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4681217Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T04:58:08.4681284Z 2025-03-14T04:58:08.4681955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4682382Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4682557Z 2025-03-14T04:58:08.4682928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4683350Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T04:58:08.4683428Z 2025-03-14T04:58:08.4683705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4684114Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T04:58:08.4684183Z 2025-03-14T04:58:08.4684469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4684687Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T04:58:08.4684765Z 2025-03-14T04:58:08.4685219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4685663Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4685733Z 2025-03-14T04:58:08.4686105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4686503Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T04:58:08.4686578Z 2025-03-14T04:58:08.4686833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4687242Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T04:58:08.4687313Z 2025-03-14T04:58:08.4687601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4687792Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T04:58:08.4687859Z 2025-03-14T04:58:08.4688248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4688646Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T04:58:08.4688722Z 2025-03-14T04:58:08.4689084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4689505Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T04:58:08.4689572Z 2025-03-14T04:58:08.4689834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T04:58:08.4690416Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T04:58:08.4690495Z 2025-03-14T04:58:08.4690768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T04:58:08.4690950Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T04:58:08.4691031Z 2025-03-14T04:58:08.4691421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T04:58:08.4692090Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T04:58:08.4692174Z 2025-03-14T04:58:08.4692544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T04:58:08.4693145Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T04:58:08.4693220Z 2025-03-14T04:58:08.4693565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T04:58:08.4693743Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T04:58:08.4693892Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T04:58:08.4694066Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T04:58:08.4694216Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T04:58:08.4694382Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T04:58:08.4694526Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T04:58:08.4694685Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T04:58:08.4694825Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T04:58:08.4694980Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T04:58:08.4695133Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T04:58:08.4695206Z 2025-03-14T04:58:08.4695636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T04:58:08.4695823Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T04:58:08.4696022Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T04:58:08.4696207Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T04:58:08.4696380Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T04:58:08.4696564Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T04:58:08.4696747Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T04:58:08.4696915Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T04:58:08.4697096Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T04:58:08.4697296Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T04:58:08.4697477Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T04:58:08.4697641Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T04:58:08.4697820Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T04:58:08.4697965Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T04:58:08.4698137Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T04:58:08.4698303Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T04:58:08.4698379Z 2025-03-14T04:58:08.4698796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4699015Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T04:58:08.4699082Z 2025-03-14T04:58:08.4699537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4699704Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T04:58:08.4699858Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:58:08.4700011Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:58:08.4700077Z 2025-03-14T04:58:08.4700466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4700642Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:58:08.4700732Z 2025-03-14T04:58:08.4701054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4701211Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:58:08.4701279Z 2025-03-14T04:58:08.4701611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4701749Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4701889Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4702045Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:08.4702117Z 2025-03-14T04:58:08.4702447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4702585Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4702712Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4702891Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T04:58:08.4702958Z 2025-03-14T04:58:08.4703300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4703445Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4703543Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:58:08.4703675Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T04:58:08.4703748Z 2025-03-14T04:58:08.4704073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4704308Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:08.4704411Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:58:08.4704558Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T04:58:08.4704625Z 2025-03-14T04:58:08.4704996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4705166Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4705299Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T04:58:08.4705369Z 2025-03-14T04:58:08.4705705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4705864Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4705995Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T04:58:08.4706063Z 2025-03-14T04:58:08.4706377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4706536Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4706658Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T04:58:08.4706723Z 2025-03-14T04:58:08.4707047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4707271Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:08.4707389Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T04:58:08.4707465Z 2025-03-14T04:58:08.4707828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4707990Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:08.4708059Z 2025-03-14T04:58:08.4708421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4708570Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:08.4708644Z 2025-03-14T04:58:08.4709003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4709171Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:08.4709305Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T04:58:08.4709493Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:08.4709657Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T04:58:08.4709732Z 2025-03-14T04:58:08.4710096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4710252Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:08.4710381Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T04:58:08.4710547Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:08.4710691Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T04:58:08.4710766Z 2025-03-14T04:58:08.4711119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4711255Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:08.4711423Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:08.4711571Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T04:58:08.4711638Z 2025-03-14T04:58:08.4711994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4712118Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:08.4712305Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:08.4712450Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T04:58:08.4712529Z 2025-03-14T04:58:08.4712855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4712967Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:08.4713112Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:08.4713189Z 2025-03-14T04:58:08.4713513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4713625Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:08.4713746Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:08.4713825Z 2025-03-14T04:58:08.4714147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4714281Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:08.4714418Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:08.4714498Z 2025-03-14T04:58:08.4714817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4714942Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:08.4715092Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:08.4715169Z 2025-03-14T04:58:08.4715554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4715769Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:08.4715844Z 2025-03-14T04:58:08.4716193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4716376Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:58:08.4716445Z 2025-03-14T04:58:08.4716855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4717041Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:58:08.4717115Z 2025-03-14T04:58:08.4717532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4717762Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T04:58:08.4717831Z 2025-03-14T04:58:08.4718292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4718459Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T04:58:08.4718625Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:58:08.4718781Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:58:08.4718854Z 2025-03-14T04:58:08.4719232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4719410Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:58:08.4719492Z 2025-03-14T04:58:08.4719821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4719970Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:58:08.4720047Z 2025-03-14T04:58:08.4720368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4720516Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4720650Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4720814Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T04:58:08.4720880Z 2025-03-14T04:58:08.4721212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4721340Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4721493Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4722205Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T04:58:08.4722293Z 2025-03-14T04:58:08.4722633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4722787Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4722889Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:58:08.4723038Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T04:58:08.4723113Z 2025-03-14T04:58:08.4723448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4723604Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:58:08.4723714Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:58:08.4723854Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T04:58:08.4723930Z 2025-03-14T04:58:08.4724253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4724415Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4724543Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T04:58:08.4724611Z 2025-03-14T04:58:08.4724927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4725082Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4725208Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T04:58:08.4725274Z 2025-03-14T04:58:08.4725619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4725774Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4725895Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T04:58:08.4725961Z 2025-03-14T04:58:08.4726294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4726484Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:58:08.4726610Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T04:58:08.4726676Z 2025-03-14T04:58:08.4727028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4727174Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:58:08.4727248Z 2025-03-14T04:58:08.4727586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4727741Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:58:08.4727805Z 2025-03-14T04:58:08.4728166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4728325Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:58:08.4728464Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T04:58:08.4728643Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:58:08.4728813Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T04:58:08.4728880Z 2025-03-14T04:58:08.4729241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4729385Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:58:08.4729522Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T04:58:08.4729688Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:58:08.4729833Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T04:58:08.4729908Z 2025-03-14T04:58:08.4730245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4730375Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:58:08.4730542Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:58:08.4730688Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T04:58:08.4730756Z 2025-03-14T04:58:08.4731099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4731218Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:58:08.4731397Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:58:08.4731536Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T04:58:08.4731609Z 2025-03-14T04:58:08.4731924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4732062Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:58:08.4732189Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:58:08.4732262Z 2025-03-14T04:58:08.4732573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4732678Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:58:08.4732796Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:58:08.4732871Z 2025-03-14T04:58:08.4733184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4733311Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:58:08.4733449Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:58:08.4733524Z 2025-03-14T04:58:08.4733830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4733968Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:58:08.4734104Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:58:08.4734178Z 2025-03-14T04:58:08.4734552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4734774Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:58:08.4735228Z 2025-03-14T04:58:08.4735598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4735771Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:58:08.4735851Z 2025-03-14T04:58:08.4736259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4736697Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:58:08.4736777Z 2025-03-14T04:58:08.4737195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4737409Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T04:58:08.4737482Z 2025-03-14T04:58:08.4737928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4738097Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T04:58:08.4738263Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:58:08.4738411Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:58:08.4738489Z 2025-03-14T04:58:08.4738878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4739091Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T04:58:08.4739159Z 2025-03-14T04:58:08.4739494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4739647Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:58:08.4739723Z 2025-03-14T04:58:08.4740047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4740190Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4740321Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4740486Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T04:58:08.4740554Z 2025-03-14T04:58:08.4740890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4741019Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4741170Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4741330Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T04:58:08.4741422Z 2025-03-14T04:58:08.4741763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4741899Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4741996Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:58:08.4742146Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T04:58:08.4742212Z 2025-03-14T04:58:08.4742550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4742714Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:58:08.4742826Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:58:08.4742970Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T04:58:08.4743050Z 2025-03-14T04:58:08.4743389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4743569Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4743704Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T04:58:08.4743780Z 2025-03-14T04:58:08.4744091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4744324Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4744449Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T04:58:08.4744530Z 2025-03-14T04:58:08.4744856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4745029Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4745161Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T04:58:08.4745260Z 2025-03-14T04:58:08.4745608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4745804Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:58:08.4745929Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T04:58:08.4745997Z 2025-03-14T04:58:08.4746376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4746535Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:58:08.4746615Z 2025-03-14T04:58:08.4746985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4747148Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:58:08.4747218Z 2025-03-14T04:58:08.4747626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4747776Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:58:08.4747940Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T04:58:08.4748129Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:58:08.4748300Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T04:58:08.4748368Z 2025-03-14T04:58:08.4748734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4748877Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:58:08.4749011Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T04:58:08.4749167Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:58:08.4749317Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T04:58:08.4749384Z 2025-03-14T04:58:08.4750076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4750205Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:58:08.4750387Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:58:08.4750532Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T04:58:08.4750609Z 2025-03-14T04:58:08.4750957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4751085Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:58:08.4751260Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:58:08.4751410Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T04:58:08.4751478Z 2025-03-14T04:58:08.4751807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4751953Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:58:08.4752087Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:58:08.4752153Z 2025-03-14T04:58:08.4752488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4752591Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:58:08.4752721Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:58:08.4752790Z 2025-03-14T04:58:08.4753118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4753242Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:58:08.4753393Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:58:08.4753460Z 2025-03-14T04:58:08.4753789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4753941Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:58:08.4754080Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:58:08.4754173Z 2025-03-14T04:58:08.4754537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4754766Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:58:08.4754836Z 2025-03-14T04:58:08.4755194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4755365Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:58:08.4755442Z 2025-03-14T04:58:08.4755845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4756043Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:58:08.4756115Z 2025-03-14T04:58:08.4756540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4756760Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T04:58:08.4756836Z 2025-03-14T04:58:08.4757289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4757456Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T04:58:08.4757618Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:58:08.4757773Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:58:08.4757841Z 2025-03-14T04:58:08.4758238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4758434Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T04:58:08.4758510Z 2025-03-14T04:58:08.4758834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4758995Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:58:08.4759061Z 2025-03-14T04:58:08.4759409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4759545Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4759680Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4759835Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T04:58:08.4759910Z 2025-03-14T04:58:08.4760232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4760386Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4760515Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4760696Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T04:58:08.4760777Z 2025-03-14T04:58:08.4761104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4761235Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4761331Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:58:08.4761476Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T04:58:08.4761540Z 2025-03-14T04:58:08.4761868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4762020Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:58:08.4762258Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:58:08.4762435Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T04:58:08.4762556Z 2025-03-14T04:58:08.4762893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4763112Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4763493Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T04:58:08.4763605Z 2025-03-14T04:58:08.4763965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4764146Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4781385Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T04:58:08.4781906Z 2025-03-14T04:58:08.4782342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4782527Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4782865Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T04:58:08.4782945Z 2025-03-14T04:58:08.4783289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4783502Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:58:08.4783626Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T04:58:08.4783700Z 2025-03-14T04:58:08.4784067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4784300Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:58:08.4784381Z 2025-03-14T04:58:08.4784787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4784945Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:58:08.4785038Z 2025-03-14T04:58:08.4785474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4785669Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:58:08.4785860Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T04:58:08.4786031Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:58:08.4786192Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T04:58:08.4786265Z 2025-03-14T04:58:08.4786648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4786797Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:58:08.4786940Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T04:58:08.4787112Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:58:08.4787272Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T04:58:08.4787345Z 2025-03-14T04:58:08.4787705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4787836Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:58:08.4788021Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:58:08.4788168Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T04:58:08.4788248Z 2025-03-14T04:58:08.4788602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4788737Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:58:08.4788916Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:58:08.4789068Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T04:58:08.4789138Z 2025-03-14T04:58:08.4789495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4789603Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:58:08.4789740Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:58:08.4789811Z 2025-03-14T04:58:08.4790153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4790253Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:58:08.4790391Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:58:08.4790461Z 2025-03-14T04:58:08.4790802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4790927Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:58:08.4791072Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:58:08.4791137Z 2025-03-14T04:58:08.4791486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4791606Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:58:08.4791785Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:58:08.4791872Z 2025-03-14T04:58:08.4792259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4792466Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:58:08.4792546Z 2025-03-14T04:58:08.4792904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4793101Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:58:08.4793169Z 2025-03-14T04:58:08.4793581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4795585Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:58:08.4796008Z 2025-03-14T04:58:08.4797443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:08.4798732Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T04:58:08.4798819Z 2025-03-14T04:58:08.4799911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:08.4800084Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T04:58:08.4800633Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:58:08.4800793Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:58:08.4800866Z 2025-03-14T04:58:08.4801265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:08.4801503Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T04:58:08.4801579Z 2025-03-14T04:58:08.4801901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:08.4802062Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:58:08.4802131Z 2025-03-14T04:58:08.4802463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:08.4802599Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:58:08.4802739Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4802893Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T04:58:08.4802970Z 2025-03-14T04:58:08.4803321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:08.4803457Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:58:08.4803596Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:58:08.4803759Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T04:58:08.4803849Z 2025-03-14T04:58:08.4804178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:08.4804305Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:58:08.4804408Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:58:08.4804544Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T04:58:08.4804620Z 2025-03-14T04:58:08.4804943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:08.4805105Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:58:08.4805202Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:58:08.4805345Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T04:58:08.4805413Z 2025-03-14T04:58:08.4805739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:08.4805901Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:08.4806028Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T04:58:08.4806096Z 2025-03-14T04:58:08.4806419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:08.4806580Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:08.4806711Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T04:58:08.4806780Z 2025-03-14T04:58:08.4807096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:08.4807256Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:08.4807385Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T04:58:08.4807461Z 2025-03-14T04:58:08.4807765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:08.4807961Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:58:08.4808074Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T04:58:08.4808150Z 2025-03-14T04:58:08.4808493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:08.4808642Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:58:08.4808711Z 2025-03-14T04:58:08.4809059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:08.4809195Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:58:08.4809269Z 2025-03-14T04:58:08.4809636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:08.4809804Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:58:08.4809947Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T04:58:08.4810112Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:58:08.4810254Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T04:58:08.4810330Z 2025-03-14T04:58:08.4810681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:08.4810829Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:58:08.4810956Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T04:58:08.4811117Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:58:08.4811256Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T04:58:08.4811332Z 2025-03-14T04:58:08.4811672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:08.4811803Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:58:08.4811969Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:58:08.4812112Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T04:58:08.4812183Z 2025-03-14T04:58:08.4812536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:08.4812654Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:58:08.4812834Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:58:08.4812969Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T04:58:08.4813063Z 2025-03-14T04:58:08.4813805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:08.4813929Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:58:08.4814060Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:58:08.4814135Z 2025-03-14T04:58:08.4814464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:08.4814567Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:58:08.4814699Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:58:08.4814768Z 2025-03-14T04:58:08.4815085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:08.4815206Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:58:08.4815355Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:58:08.4815422Z 2025-03-14T04:58:08.4815761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:08.4815879Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:58:08.4816037Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:58:08.4816120Z 2025-03-14T04:58:08.4816487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:08.4816680Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:58:08.4816757Z 2025-03-14T04:58:08.4817096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:08.4817271Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:58:08.4817339Z 2025-03-14T04:58:08.4817739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:08.4817921Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:58:08.4817999Z 2025-03-14T04:58:08.4818498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:58:08.4818654Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:58:08.4818724Z 2025-03-14T04:58:08.4819039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4819189Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T04:58:08.4819268Z 2025-03-14T04:58:08.4819713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4819841Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T04:58:08.4819968Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:58:08.4820095Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:58:08.4820162Z 2025-03-14T04:58:08.4820648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4820787Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4821037Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T04:58:08.4821105Z 2025-03-14T04:58:08.4821595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4821771Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4821845Z 2025-03-14T04:58:08.4822147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4822314Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:58:08.4822384Z 2025-03-14T04:58:08.4822853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4823003Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T04:58:08.4823115Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:58:08.4823243Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:58:08.4823311Z 2025-03-14T04:58:08.4823776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4823912Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4824229Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T04:58:08.4824309Z 2025-03-14T04:58:08.4824797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4824971Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4825052Z 2025-03-14T04:58:08.4825663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4825814Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:58:08.4825885Z 2025-03-14T04:58:08.4826347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4826467Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T04:58:08.4826588Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:58:08.4826713Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:58:08.4826817Z 2025-03-14T04:58:08.4827294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4827441Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4827694Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T04:58:08.4827774Z 2025-03-14T04:58:08.4828245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4828431Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4828502Z 2025-03-14T04:58:08.4828817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4828950Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:58:08.4829028Z 2025-03-14T04:58:08.4829493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4829645Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T04:58:08.4829779Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:58:08.4829903Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:58:08.4829973Z 2025-03-14T04:58:08.4830454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4830606Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:08.4830855Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T04:58:08.4830930Z 2025-03-14T04:58:08.4831401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4831582Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4831651Z 2025-03-14T04:58:08.4831966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4832098Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:58:08.4832174Z 2025-03-14T04:58:08.4832620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:08.4832745Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T04:58:08.4832855Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:58:08.4832985Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:58:08.4833053Z 2025-03-14T04:58:08.4833528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:08.4833716Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:58:08.4833972Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T04:58:08.4834040Z 2025-03-14T04:58:08.4834519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:08.4834690Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:08.4834768Z 2025-03-14T04:58:08.4835073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:08.4835208Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:58:08.4835277Z 2025-03-14T04:58:08.4835579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:08.4836030Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:58:08.4836117Z 2025-03-14T04:58:08.4836419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:08.4836903Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:58:08.4836981Z 2025-03-14T04:58:08.4837273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:08.4837493Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T04:58:08.4837561Z 2025-03-14T04:58:08.4837976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:58:08.4838128Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:58:08.4838208Z 2025-03-14T04:58:08.4838523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:58:08.4838692Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T04:58:08.4838780Z 2025-03-14T04:58:08.4839188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:58:08.4839336Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:58:08.4839418Z 2025-03-14T04:58:08.4839929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:58:08.4840085Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T04:58:08.4840239Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:08.4840406Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:58:08.4840540Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:58:08.4840620Z 2025-03-14T04:58:08.4840995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:58:08.4841127Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:58:08.4841196Z 2025-03-14T04:58:13.9078605Z 2025-03-14T04:58:13.9079655Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:13.9082301Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 269952, 4][1079808, 4, 1]cpu", L_anchors_0_tensor: "f32[269952, 4][4, 1]cpu", L_pred_anchor_deltas_1_: "f32[4, 67488, 4][269952, 4, 1]cpu", L_anchors_1_tensor: "f32[67488, 4][4, 1]cpu", L_pred_anchor_deltas_2_: "f32[4, 16872, 4][67488, 4, 1]cpu", L_anchors_2_tensor: "f32[16872, 4][4, 1]cpu", L_pred_anchor_deltas_3_: "f32[4, 4218, 4][16872, 4, 1]cpu", L_anchors_3_tensor: "f32[4218, 4][4, 1]cpu", L_pred_anchor_deltas_4_: "f32[4, 1083, 4][4332, 4, 1]cpu", L_anchors_4_tensor: "f32[1083, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 269952][269952, 1]cpu", L_pred_objectness_logits_1_: "f32[4, 67488][67488, 1]cpu", L_pred_objectness_logits_2_: "f32[4, 16872][16872, 1]cpu", L_pred_objectness_logits_3_: "f32[4, 4218][4218, 1]cpu", L_pred_objectness_logits_4_: "f32[4, 1083][1083, 1]cpu"): 2025-03-14T04:58:13.9084127Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T04:58:13.9084422Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T04:58:13.9084719Z l_pred_anchor_deltas_1_ = L_pred_anchor_deltas_1_ 2025-03-14T04:58:13.9085083Z l_anchors_1_tensor = L_anchors_1_tensor 2025-03-14T04:58:13.9085375Z l_pred_anchor_deltas_2_ = L_pred_anchor_deltas_2_ 2025-03-14T04:58:13.9085698Z l_anchors_2_tensor = L_anchors_2_tensor 2025-03-14T04:58:13.9085978Z l_pred_anchor_deltas_3_ = L_pred_anchor_deltas_3_ 2025-03-14T04:58:13.9086245Z l_anchors_3_tensor = L_anchors_3_tensor 2025-03-14T04:58:13.9086586Z l_pred_anchor_deltas_4_ = L_pred_anchor_deltas_4_ 2025-03-14T04:58:13.9086856Z l_anchors_4_tensor = L_anchors_4_tensor 2025-03-14T04:58:13.9087162Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T04:58:13.9087547Z l_pred_objectness_logits_1_ = L_pred_objectness_logits_1_ 2025-03-14T04:58:13.9087869Z l_pred_objectness_logits_2_ = L_pred_objectness_logits_2_ 2025-03-14T04:58:13.9088276Z l_pred_objectness_logits_3_ = L_pred_objectness_logits_3_ 2025-03-14T04:58:13.9088585Z l_pred_objectness_logits_4_ = L_pred_objectness_logits_4_ 2025-03-14T04:58:13.9088918Z 2025-03-14T04:58:13.9089564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:13.9090474Z pred_anchor_deltas_i: "f32[1079808, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T04:58:13.9090855Z 2025-03-14T04:58:13.9091563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:13.9092468Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T04:58:13.9092999Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T04:58:13.9093389Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T04:58:13.9093819Z 2025-03-14T04:58:13.9094434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:13.9095196Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T04:58:13.9095516Z 2025-03-14T04:58:13.9096064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:13.9096689Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T04:58:13.9097003Z 2025-03-14T04:58:13.9097535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:13.9098105Z getitem: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:13.9098536Z getitem_1: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9098921Z widths: "f32[1079808][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T04:58:13.9099287Z 2025-03-14T04:58:13.9099807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:13.9100376Z getitem_2: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:13.9100802Z getitem_3: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:13.9101154Z heights: "f32[1079808][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T04:58:13.9101528Z 2025-03-14T04:58:13.9101954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:13.9102565Z getitem_4: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9102893Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T04:58:13.9103200Z ctr_x: "f32[1079808][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T04:58:13.9103480Z 2025-03-14T04:58:13.9103976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:13.9104771Z getitem_5: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:13.9105128Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T04:58:13.9105502Z ctr_y: "f32[1079808][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T04:58:13.9105785Z 2025-03-14T04:58:13.9106310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:13.9106923Z getitem_6: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:13.9107270Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T04:58:13.9107565Z 2025-03-14T04:58:13.9107988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:13.9108620Z getitem_7: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:13.9108979Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T04:58:13.9109301Z 2025-03-14T04:58:13.9109716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:13.9110350Z getitem_8: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:13.9110760Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T04:58:13.9111012Z 2025-03-14T04:58:13.9111504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:13.9112084Z getitem_9: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:13.9112516Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T04:58:13.9112765Z 2025-03-14T04:58:13.9113286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:13.9113920Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:13.9114198Z 2025-03-14T04:58:13.9114730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:13.9115371Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:13.9115644Z 2025-03-14T04:58:13.9116211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:13.9116837Z getitem_10: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:13.9117188Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T04:58:13.9117572Z getitem_11: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:13.9117968Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T04:58:13.9118250Z 2025-03-14T04:58:13.9118753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:13.9119395Z getitem_12: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:13.9119729Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T04:58:13.9120146Z getitem_13: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:13.9120510Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T04:58:13.9120857Z 2025-03-14T04:58:13.9121299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:13.9122026Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:13.9122433Z getitem_14: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:13.9122795Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T04:58:13.9123125Z 2025-03-14T04:58:13.9123568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:13.9124177Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:13.9124583Z getitem_15: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:13.9124989Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T04:58:13.9125256Z 2025-03-14T04:58:13.9125757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:13.9126237Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:13.9126510Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:13.9126753Z 2025-03-14T04:58:13.9127231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:13.9127708Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:13.9127979Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:13.9128221Z 2025-03-14T04:58:13.9128623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:13.9129172Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:13.9129487Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:13.9129742Z 2025-03-14T04:58:13.9130160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:13.9130665Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:13.9131012Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:13.9131272Z 2025-03-14T04:58:13.9131730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:13.9132335Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:13.9132644Z 2025-03-14T04:58:13.9133167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:13.9133750Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T04:58:13.9134047Z 2025-03-14T04:58:13.9134530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:13.9135174Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T04:58:13.9135477Z 2025-03-14T04:58:13.9135982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:13.9136678Z pred_anchor_deltas_i_1: "f32[269952, 4][4, 1]cpu" = l_pred_anchor_deltas_1_.reshape(-1, 4); l_pred_anchor_deltas_1_ = None 2025-03-14T04:58:13.9137011Z 2025-03-14T04:58:13.9137553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:13.9138281Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = l_anchors_1_tensor.unsqueeze(0); l_anchors_1_tensor = None 2025-03-14T04:58:13.9138704Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T04:58:13.9139067Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T04:58:13.9139358Z 2025-03-14T04:58:13.9139898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:13.9140527Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T04:58:13.9140835Z 2025-03-14T04:58:13.9141256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:13.9141796Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T04:58:13.9142081Z 2025-03-14T04:58:13.9142510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:13.9143046Z getitem_16: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T04:58:13.9143377Z getitem_17: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9143735Z widths_1: "f32[269952][1]cpu" = getitem_16 - getitem_17; getitem_16 = getitem_17 = None 2025-03-14T04:58:13.9144025Z 2025-03-14T04:58:13.9144583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:13.9145178Z getitem_18: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T04:58:13.9145541Z getitem_19: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T04:58:13.9145920Z heights_1: "f32[269952][1]cpu" = getitem_18 - getitem_19; getitem_18 = getitem_19 = None 2025-03-14T04:58:13.9146209Z 2025-03-14T04:58:13.9146635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:13.9147158Z getitem_20: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9147446Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T04:58:13.9147737Z ctr_x_1: "f32[269952][1]cpu" = getitem_20 + mul_10; getitem_20 = mul_10 = None 2025-03-14T04:58:13.9148006Z 2025-03-14T04:58:13.9148430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:13.9148985Z getitem_21: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T04:58:13.9149305Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T04:58:13.9149602Z ctr_y_1: "f32[269952][1]cpu" = getitem_21 + mul_11; getitem_21 = mul_11 = None 2025-03-14T04:58:13.9149874Z 2025-03-14T04:58:13.9150307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:13.9150855Z getitem_22: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:13.9151206Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_22 / 1.0; getitem_22 = None 2025-03-14T04:58:13.9151481Z 2025-03-14T04:58:13.9151898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:13.9152455Z getitem_23: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:13.9152800Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_23 / 1.0; getitem_23 = None 2025-03-14T04:58:13.9153051Z 2025-03-14T04:58:13.9153550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:13.9154115Z getitem_24: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:13.9154459Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_24 / 1.0; getitem_24 = None 2025-03-14T04:58:13.9154710Z 2025-03-14T04:58:13.9155123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:13.9155691Z getitem_25: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T04:58:13.9156063Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_25 / 1.0; getitem_25 = None 2025-03-14T04:58:13.9156303Z 2025-03-14T04:58:13.9156750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:13.9157310Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T04:58:13.9157588Z 2025-03-14T04:58:13.9158049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:13.9158609Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T04:58:13.9158882Z 2025-03-14T04:58:13.9159360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:13.9159953Z getitem_26: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T04:58:13.9160293Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_26; dx_1 = getitem_26 = None 2025-03-14T04:58:13.9160653Z getitem_27: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T04:58:13.9161028Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_27; mul_12 = getitem_27 = None 2025-03-14T04:58:13.9161313Z 2025-03-14T04:58:13.9161774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:13.9162341Z getitem_28: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T04:58:13.9162684Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_28; dy_1 = getitem_28 = None 2025-03-14T04:58:13.9163037Z getitem_29: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T04:58:13.9163409Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_29; mul_13 = getitem_29 = None 2025-03-14T04:58:13.9163688Z 2025-03-14T04:58:13.9164137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:13.9164669Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T04:58:13.9165012Z getitem_30: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T04:58:13.9165377Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_30; exp_2 = getitem_30 = None 2025-03-14T04:58:13.9165645Z 2025-03-14T04:58:13.9166077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:13.9166592Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T04:58:13.9166941Z getitem_31: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T04:58:13.9167337Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_31; exp_3 = getitem_31 = None 2025-03-14T04:58:13.9167601Z 2025-03-14T04:58:13.9168017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:13.9168493Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T04:58:13.9168774Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T04:58:13.9169031Z 2025-03-14T04:58:13.9169450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:13.9169933Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T04:58:13.9170211Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T04:58:13.9170463Z 2025-03-14T04:58:13.9170880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:13.9171386Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T04:58:13.9171743Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T04:58:13.9172018Z 2025-03-14T04:58:13.9172451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:13.9172968Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T04:58:13.9173291Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T04:58:13.9173562Z 2025-03-14T04:58:13.9174007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:13.9174647Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T04:58:13.9174960Z 2025-03-14T04:58:13.9175401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:13.9175983Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T04:58:13.9176290Z 2025-03-14T04:58:13.9176785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:13.9177428Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T04:58:13.9177739Z 2025-03-14T04:58:13.9178239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:13.9178930Z pred_anchor_deltas_i_2: "f32[67488, 4][4, 1]cpu" = l_pred_anchor_deltas_2_.reshape(-1, 4); l_pred_anchor_deltas_2_ = None 2025-03-14T04:58:13.9179277Z 2025-03-14T04:58:13.9180022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:13.9180738Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = l_anchors_2_tensor.unsqueeze(0); l_anchors_2_tensor = None 2025-03-14T04:58:13.9181160Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T04:58:13.9181814Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T04:58:13.9182101Z 2025-03-14T04:58:13.9182598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:13.9183244Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_2.float(); pred_anchor_deltas_i_2 = None 2025-03-14T04:58:13.9183573Z 2025-03-14T04:58:13.9184050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:13.9184662Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T04:58:13.9184954Z 2025-03-14T04:58:13.9185380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:13.9185935Z getitem_32: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T04:58:13.9186284Z getitem_33: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9186743Z widths_2: "f32[67488][1]cpu" = getitem_32 - getitem_33; getitem_32 = getitem_33 = None 2025-03-14T04:58:13.9187049Z 2025-03-14T04:58:13.9187544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:13.9188113Z getitem_34: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T04:58:13.9188434Z getitem_35: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T04:58:13.9188786Z heights_2: "f32[67488][1]cpu" = getitem_34 - getitem_35; getitem_34 = getitem_35 = None 2025-03-14T04:58:13.9189074Z 2025-03-14T04:58:13.9189502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:13.9190026Z getitem_36: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9190320Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T04:58:13.9190615Z ctr_x_2: "f32[67488][1]cpu" = getitem_36 + mul_20; getitem_36 = mul_20 = None 2025-03-14T04:58:13.9190886Z 2025-03-14T04:58:13.9191308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:13.9191873Z getitem_37: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T04:58:13.9192207Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T04:58:13.9192521Z ctr_y_2: "f32[67488][1]cpu" = getitem_37 + mul_21; getitem_37 = mul_21 = None 2025-03-14T04:58:13.9192801Z 2025-03-14T04:58:13.9193248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:13.9193840Z getitem_38: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:13.9194207Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_38 / 1.0; getitem_38 = None 2025-03-14T04:58:13.9194473Z 2025-03-14T04:58:13.9194884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:13.9195420Z getitem_39: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:13.9195761Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_39 / 1.0; getitem_39 = None 2025-03-14T04:58:13.9196054Z 2025-03-14T04:58:13.9196459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:13.9196996Z getitem_40: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:13.9197336Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_40 / 1.0; getitem_40 = None 2025-03-14T04:58:13.9197584Z 2025-03-14T04:58:13.9197997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:13.9198567Z getitem_41: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T04:58:13.9198938Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_41 / 1.0; getitem_41 = None 2025-03-14T04:58:13.9199181Z 2025-03-14T04:58:13.9199630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:13.9200196Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T04:58:13.9200477Z 2025-03-14T04:58:13.9200948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:13.9201524Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T04:58:13.9201825Z 2025-03-14T04:58:13.9202282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:13.9202850Z getitem_42: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T04:58:13.9203194Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_42; dx_2 = getitem_42 = None 2025-03-14T04:58:13.9203549Z getitem_43: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T04:58:13.9203923Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_43; mul_22 = getitem_43 = None 2025-03-14T04:58:13.9204204Z 2025-03-14T04:58:13.9204656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:13.9205220Z getitem_44: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T04:58:13.9205557Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_44; dy_2 = getitem_44 = None 2025-03-14T04:58:13.9205908Z getitem_45: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T04:58:13.9206278Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_45; mul_23 = getitem_45 = None 2025-03-14T04:58:13.9206554Z 2025-03-14T04:58:13.9207122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:13.9207711Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T04:58:13.9208073Z getitem_46: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T04:58:13.9208469Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_46; exp_4 = getitem_46 = None 2025-03-14T04:58:13.9208754Z 2025-03-14T04:58:13.9209265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:13.9209842Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T04:58:13.9210249Z getitem_47: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T04:58:13.9210623Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_47; exp_5 = getitem_47 = None 2025-03-14T04:58:13.9210894Z 2025-03-14T04:58:13.9211317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:13.9211816Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T04:58:13.9212099Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T04:58:13.9212355Z 2025-03-14T04:58:13.9212774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:13.9213261Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T04:58:13.9213542Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T04:58:13.9213794Z 2025-03-14T04:58:13.9214206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:13.9214740Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T04:58:13.9215068Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T04:58:13.9215339Z 2025-03-14T04:58:13.9215767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:13.9216290Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T04:58:13.9216610Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T04:58:13.9216887Z 2025-03-14T04:58:13.9217335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:13.9217967Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T04:58:13.9218282Z 2025-03-14T04:58:13.9218725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:13.9219308Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T04:58:13.9219612Z 2025-03-14T04:58:13.9220108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:13.9220749Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T04:58:13.9221058Z 2025-03-14T04:58:13.9221573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:13.9222268Z pred_anchor_deltas_i_3: "f32[16872, 4][4, 1]cpu" = l_pred_anchor_deltas_3_.reshape(-1, 4); l_pred_anchor_deltas_3_ = None 2025-03-14T04:58:13.9222613Z 2025-03-14T04:58:13.9223176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:13.9223878Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = l_anchors_3_tensor.unsqueeze(0); l_anchors_3_tensor = None 2025-03-14T04:58:13.9224439Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T04:58:13.9224840Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T04:58:13.9225134Z 2025-03-14T04:58:13.9225653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:13.9226322Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T04:58:13.9226653Z 2025-03-14T04:58:13.9227100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:13.9227677Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T04:58:13.9227982Z 2025-03-14T04:58:13.9228431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:13.9228985Z getitem_48: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T04:58:13.9229362Z getitem_49: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9229737Z widths_3: "f32[16872][1]cpu" = getitem_48 - getitem_49; getitem_48 = getitem_49 = None 2025-03-14T04:58:13.9230042Z 2025-03-14T04:58:13.9230514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:13.9231083Z getitem_50: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T04:58:13.9231455Z getitem_51: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T04:58:13.9231976Z heights_3: "f32[16872][1]cpu" = getitem_50 - getitem_51; getitem_50 = getitem_51 = None 2025-03-14T04:58:13.9232291Z 2025-03-14T04:58:13.9232883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:13.9233434Z getitem_52: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9233740Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T04:58:13.9234055Z ctr_x_3: "f32[16872][1]cpu" = getitem_52 + mul_30; getitem_52 = mul_30 = None 2025-03-14T04:58:13.9234347Z 2025-03-14T04:58:13.9234797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:13.9235378Z getitem_53: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T04:58:13.9235715Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T04:58:13.9236025Z ctr_y_3: "f32[16872][1]cpu" = getitem_53 + mul_31; getitem_53 = mul_31 = None 2025-03-14T04:58:13.9236309Z 2025-03-14T04:58:13.9236757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:13.9237327Z getitem_54: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:13.9237697Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_54 / 1.0; getitem_54 = None 2025-03-14T04:58:13.9237966Z 2025-03-14T04:58:13.9238394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:13.9238926Z getitem_55: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:13.9239294Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_55 / 1.0; getitem_55 = None 2025-03-14T04:58:13.9239542Z 2025-03-14T04:58:13.9239946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:13.9240476Z getitem_56: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:13.9240814Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_56 / 1.0; getitem_56 = None 2025-03-14T04:58:13.9241061Z 2025-03-14T04:58:13.9241474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:13.9242038Z getitem_57: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T04:58:13.9242401Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_57 / 1.0; getitem_57 = None 2025-03-14T04:58:13.9242643Z 2025-03-14T04:58:13.9243089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:13.9243651Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T04:58:13.9243959Z 2025-03-14T04:58:13.9244407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:13.9244981Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T04:58:13.9245274Z 2025-03-14T04:58:13.9245730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:13.9246294Z getitem_58: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T04:58:13.9246638Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_58; dx_3 = getitem_58 = None 2025-03-14T04:58:13.9246997Z getitem_59: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T04:58:13.9247369Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_59; mul_32 = getitem_59 = None 2025-03-14T04:58:13.9247649Z 2025-03-14T04:58:13.9248111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:13.9248682Z getitem_60: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T04:58:13.9249013Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_60; dy_3 = getitem_60 = None 2025-03-14T04:58:13.9249360Z getitem_61: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T04:58:13.9249728Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_61; mul_33 = getitem_61 = None 2025-03-14T04:58:13.9250004Z 2025-03-14T04:58:13.9250449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:13.9250979Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T04:58:13.9251328Z getitem_62: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T04:58:13.9251700Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_62; exp_6 = getitem_62 = None 2025-03-14T04:58:13.9251972Z 2025-03-14T04:58:13.9252424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:13.9252975Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T04:58:13.9253335Z getitem_63: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T04:58:13.9253710Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_63; exp_7 = getitem_63 = None 2025-03-14T04:58:13.9253985Z 2025-03-14T04:58:13.9254412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:13.9254907Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T04:58:13.9255197Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T04:58:13.9255452Z 2025-03-14T04:58:13.9255867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:13.9256358Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T04:58:13.9256640Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T04:58:13.9256893Z 2025-03-14T04:58:13.9257327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:13.9257832Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T04:58:13.9259462Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T04:58:13.9259771Z 2025-03-14T04:58:13.9260180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:13.9260673Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T04:58:13.9260988Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T04:58:13.9261244Z 2025-03-14T04:58:13.9261692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:13.9262308Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T04:58:13.9262624Z 2025-03-14T04:58:13.9263054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:13.9263623Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T04:58:13.9263919Z 2025-03-14T04:58:13.9264557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:13.9265241Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T04:58:13.9265567Z 2025-03-14T04:58:13.9266064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T04:58:13.9266738Z pred_anchor_deltas_i_4: "f32[4332, 4][4, 1]cpu" = l_pred_anchor_deltas_4_.reshape(-1, 4); l_pred_anchor_deltas_4_ = None 2025-03-14T04:58:13.9267074Z 2025-03-14T04:58:13.9267602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T04:58:13.9268313Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = l_anchors_4_tensor.unsqueeze(0); l_anchors_4_tensor = None 2025-03-14T04:58:13.9268714Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T04:58:13.9269066Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T04:58:13.9269332Z 2025-03-14T04:58:13.9269817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:13.9270427Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_4.float(); pred_anchor_deltas_i_4 = None 2025-03-14T04:58:13.9270724Z 2025-03-14T04:58:13.9271133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:13.9271657Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T04:58:13.9271925Z 2025-03-14T04:58:13.9272335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:13.9272875Z getitem_64: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T04:58:13.9273194Z getitem_65: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9273552Z widths_4: "f32[4332][1]cpu" = getitem_64 - getitem_65; getitem_64 = getitem_65 = None 2025-03-14T04:58:13.9274016Z 2025-03-14T04:58:13.9274440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:13.9274960Z getitem_66: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T04:58:13.9275278Z getitem_67: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T04:58:13.9275619Z heights_4: "f32[4332][1]cpu" = getitem_66 - getitem_67; getitem_66 = getitem_67 = None 2025-03-14T04:58:13.9275899Z 2025-03-14T04:58:13.9276314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:13.9276824Z getitem_68: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T04:58:13.9277102Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T04:58:13.9277385Z ctr_x_4: "f32[4332][1]cpu" = getitem_68 + mul_40; getitem_68 = mul_40 = None 2025-03-14T04:58:13.9277647Z 2025-03-14T04:58:13.9278060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:13.9278588Z getitem_69: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T04:58:13.9278892Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T04:58:13.9279173Z ctr_y_4: "f32[4332][1]cpu" = getitem_69 + mul_41; getitem_69 = mul_41 = None 2025-03-14T04:58:13.9279429Z 2025-03-14T04:58:13.9279838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:13.9280360Z getitem_70: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:13.9280697Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_70 / 1.0; getitem_70 = None 2025-03-14T04:58:13.9280941Z 2025-03-14T04:58:13.9281338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:13.9282180Z getitem_71: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:13.9282587Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_71 / 1.0; getitem_71 = None 2025-03-14T04:58:13.9282832Z 2025-03-14T04:58:13.9283232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:13.9283748Z getitem_72: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:13.9284077Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_72 / 1.0; getitem_72 = None 2025-03-14T04:58:13.9284312Z 2025-03-14T04:58:13.9284717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:13.9285265Z getitem_73: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T04:58:13.9285626Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_73 / 1.0; getitem_73 = None 2025-03-14T04:58:13.9285864Z 2025-03-14T04:58:13.9286304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:13.9286869Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T04:58:13.9287131Z 2025-03-14T04:58:13.9287569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:13.9288123Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T04:58:13.9288383Z 2025-03-14T04:58:13.9288815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:13.9289355Z getitem_74: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T04:58:13.9289678Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_74; dx_4 = getitem_74 = None 2025-03-14T04:58:13.9290017Z getitem_75: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T04:58:13.9290367Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_75; mul_42 = getitem_75 = None 2025-03-14T04:58:13.9290627Z 2025-03-14T04:58:13.9291069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:13.9291614Z getitem_76: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T04:58:13.9291933Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_76; dy_4 = getitem_76 = None 2025-03-14T04:58:13.9292265Z getitem_77: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T04:58:13.9292609Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_77; mul_43 = getitem_77 = None 2025-03-14T04:58:13.9292870Z 2025-03-14T04:58:13.9293295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:13.9293800Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T04:58:13.9294127Z getitem_78: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T04:58:13.9294498Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_78; exp_8 = getitem_78 = None 2025-03-14T04:58:13.9294760Z 2025-03-14T04:58:13.9295197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:13.9295748Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T04:58:13.9296086Z getitem_79: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T04:58:13.9296445Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_79; exp_9 = getitem_79 = None 2025-03-14T04:58:13.9296716Z 2025-03-14T04:58:13.9297121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:13.9297595Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T04:58:13.9297861Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T04:58:13.9298100Z 2025-03-14T04:58:13.9298494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:13.9298954Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T04:58:13.9299212Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T04:58:13.9299446Z 2025-03-14T04:58:13.9299899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:13.9300382Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T04:58:13.9300704Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T04:58:13.9300983Z 2025-03-14T04:58:13.9301380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:13.9301875Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T04:58:13.9302176Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T04:58:13.9302435Z 2025-03-14T04:58:13.9302882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:13.9303488Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T04:58:13.9303798Z 2025-03-14T04:58:13.9304309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:13.9304890Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T04:58:13.9305211Z 2025-03-14T04:58:13.9305746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T04:58:13.9306425Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T04:58:13.9306738Z 2025-03-14T04:58:13.9307356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T04:58:13.9308103Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T04:58:13.9308371Z 2025-03-14T04:58:13.9308774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:13.9309286Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T04:58:13.9309571Z 2025-03-14T04:58:13.9310112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:13.9310792Z topk = l_pred_objectness_logits_0_.topk(1000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T04:58:13.9311139Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T04:58:13.9311421Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T04:58:13.9311657Z 2025-03-14T04:58:13.9312223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:13.9312886Z getitem_82: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:13.9313317Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_82, topk_idx)]; proposals_i_5 = getitem_82 = topk_idx = None 2025-03-14T04:58:13.9313672Z 2025-03-14T04:58:13.9314261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:13.9314969Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:13.9315284Z 2025-03-14T04:58:13.9315679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:13.9316166Z to_6: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T04:58:13.9316416Z 2025-03-14T04:58:13.9316954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:13.9317630Z topk_1 = l_pred_objectness_logits_1_.topk(1000, dim = 1); l_pred_objectness_logits_1_ = None 2025-03-14T04:58:13.9317968Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T04:58:13.9318250Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T04:58:13.9318494Z 2025-03-14T04:58:13.9319037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:13.9319672Z getitem_86: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:13.9320098Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_86, topk_idx_1)]; proposals_i_6 = getitem_86 = topk_idx_1 = None 2025-03-14T04:58:13.9320447Z 2025-03-14T04:58:13.9320985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:13.9321650Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:13.9321937Z 2025-03-14T04:58:13.9322320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:13.9322798Z to_7: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T04:58:13.9323043Z 2025-03-14T04:58:13.9323557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:13.9324228Z topk_2 = l_pred_objectness_logits_2_.topk(1000, dim = 1); l_pred_objectness_logits_2_ = None 2025-03-14T04:58:13.9324568Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T04:58:13.9324849Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T04:58:13.9325091Z 2025-03-14T04:58:13.9325634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:13.9326275Z getitem_90: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:13.9326698Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_90, topk_idx_2)]; proposals_i_7 = getitem_90 = topk_idx_2 = None 2025-03-14T04:58:13.9327051Z 2025-03-14T04:58:13.9327612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:13.9328299Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:13.9328592Z 2025-03-14T04:58:13.9329004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:13.9329514Z to_8: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T04:58:13.9329772Z 2025-03-14T04:58:13.9330305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:13.9330963Z topk_3 = l_pred_objectness_logits_3_.topk(1000, dim = 1); l_pred_objectness_logits_3_ = None 2025-03-14T04:58:13.9331301Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T04:58:13.9331579Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T04:58:13.9331819Z 2025-03-14T04:58:13.9332365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:13.9333009Z getitem_94: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T04:58:13.9333431Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_94, topk_idx_3)]; proposals_i_8 = getitem_94 = topk_idx_3 = None 2025-03-14T04:58:13.9333782Z 2025-03-14T04:58:13.9334323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:13.9334998Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:13.9335288Z 2025-03-14T04:58:13.9335677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:13.9336161Z to_9: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T04:58:13.9336400Z 2025-03-14T04:58:13.9336918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T04:58:13.9337595Z topk_4 = l_pred_objectness_logits_4_.topk(1000, dim = 1); l_pred_objectness_logits_4_ = None 2025-03-14T04:58:13.9337934Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T04:58:13.9338214Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T04:58:13.9338453Z 2025-03-14T04:58:13.9339000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T04:58:13.9339670Z getitem_98: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T04:58:13.9340114Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_98, topk_idx_4)]; proposals_i_9 = getitem_98 = topk_idx_4 = None 2025-03-14T04:58:13.9340468Z 2025-03-14T04:58:13.9341003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T04:58:13.9341687Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T04:58:13.9341975Z 2025-03-14T04:58:13.9342378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T04:58:13.9342894Z to_10: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T04:58:13.9343145Z 2025-03-14T04:58:13.9343514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:13.9344317Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T04:58:13.9344815Z 2025-03-14T04:58:13.9345205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:13.9346045Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T04:58:13.9346640Z 2025-03-14T04:58:13.9347022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:13.9347582Z level_ids: "i64[5000][1]cpu" = torch.cat([to_6, to_7, to_8, to_9, to_10], 0); to_6 = to_7 = to_8 = to_9 = to_10 = level_ids = None 2025-03-14T04:58:13.9347904Z 2025-03-14T04:58:13.9348425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T04:58:13.9349065Z getitem_100: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T04:58:13.9349352Z 2025-03-14T04:58:13.9349773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T04:58:13.9350313Z tensor: "f32[5000, 4][4, 1]cpu" = getitem_100.to(torch.float32); getitem_100 = None 2025-03-14T04:58:13.9350601Z 2025-03-14T04:58:13.9351101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T04:58:13.9351742Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T04:58:13.9352017Z 2025-03-14T04:58:13.9352642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T04:58:13.9353369Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T04:58:13.9353708Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:13.9354075Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T04:58:13.9354436Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T04:58:13.9354696Z 2025-03-14T04:58:13.9355153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T04:58:13.9355697Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T04:58:13.9355935Z 2025-03-14T04:58:41.2278865Z 2025-03-14T04:58:41.2285160Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:41.2348420Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:41.2350856Z l_stack0_ = L_stack0_ 2025-03-14T04:58:41.2352968Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:58:41.2353604Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:58:41.2354201Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:58:41.2354828Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:58:41.2356315Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:58:41.2359099Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:58:41.2359784Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:58:41.2362896Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:58:41.2363493Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2363915Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2364587Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2365001Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2365313Z 2025-03-14T04:58:41.2365763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:58:41.2366282Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:58:41.2366997Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:58:41.2368058Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:58:41.2368855Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:58:41.2369599Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:58:41.2369888Z 2025-03-14T04:58:41.2370354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:58:41.2371388Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:58:41.2372125Z 2025-03-14T04:58:41.2372553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:58:41.2373585Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:58:41.2374346Z 2025-03-14T04:58:41.2374740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2375220Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2375485Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:41.2375730Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:41.2376018Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2376272Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:41.2376525Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:41.2376811Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2377072Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:41.2377321Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:41.2377599Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2377855Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:41.2378092Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:41.2378319Z 2025-03-14T04:58:41.2378737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:41.2379525Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:41.2380087Z 2025-03-14T04:58:41.2380559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:41.2381159Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:58:41.2381690Z 2025-03-14T04:58:41.2382128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:41.2382686Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:41.2382989Z 2025-03-14T04:58:41.2383417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:41.2384016Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:41.2384488Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2384880Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:41.2385238Z 2025-03-14T04:58:41.2385675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:41.2386241Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:41.2386597Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:41.2386978Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:41.2387271Z 2025-03-14T04:58:41.2387693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:41.2388223Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2388541Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:41.2388849Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:41.2389125Z 2025-03-14T04:58:41.2389567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:41.2390142Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:41.2390482Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:41.2390802Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:41.2391084Z 2025-03-14T04:58:41.2391552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:41.2392125Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:41.2392488Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:41.2392748Z 2025-03-14T04:58:41.2393186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:41.2393791Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:41.2394142Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:41.2394406Z 2025-03-14T04:58:41.2394842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:41.2395407Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:41.2395769Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:41.2396044Z 2025-03-14T04:58:41.2396452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:41.2397021Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:41.2397391Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:41.2397638Z 2025-03-14T04:58:41.2398108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:41.2398672Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:41.2398962Z 2025-03-14T04:58:41.2399419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:41.2400001Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:41.2400272Z 2025-03-14T04:58:41.2400731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:41.2401309Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:41.2401648Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:41.2402005Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:41.2402373Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:41.2402649Z 2025-03-14T04:58:41.2403116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:41.2403694Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:41.2404036Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:41.2404388Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:41.2404754Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:41.2405028Z 2025-03-14T04:58:41.2405480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:41.2406020Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:41.2406369Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:41.2406732Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:41.2407069Z 2025-03-14T04:58:41.2407521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:41.2408057Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:41.2408419Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:41.2408799Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:41.2409071Z 2025-03-14T04:58:41.2409503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:41.2410003Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:41.2410287Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:41.2410542Z 2025-03-14T04:58:41.2410963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:41.2411460Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:41.2411764Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:41.2412017Z 2025-03-14T04:58:41.2412448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:41.2412980Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:41.2413280Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:41.2413549Z 2025-03-14T04:58:41.2413966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:41.2414483Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:41.2414809Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:41.2415086Z 2025-03-14T04:58:41.2415562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:41.2416183Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:41.2416504Z 2025-03-14T04:58:41.2416972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:41.2417598Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:41.2417922Z 2025-03-14T04:58:41.2418417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:41.2419187Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:41.2419871Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:41.2420208Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:41.2420671Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:41.2421028Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:41.2421315Z 2025-03-14T04:58:41.2421791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2422422Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2422817Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:41.2423095Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:41.2423513Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2423899Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:41.2424167Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:41.2424693Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2425139Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:41.2425523Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:41.2425950Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2426478Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:41.2426743Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:41.2427083Z 2025-03-14T04:58:41.2427637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:41.2428439Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:58:41.2428921Z 2025-03-14T04:58:41.2429501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:41.2430342Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:41.2430820Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:41.2431224Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:41.2431558Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:41.2431967Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:41.2432281Z 2025-03-14T04:58:41.2432996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:41.2433876Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:41.2434330Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:41.2434712Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:41.2435169Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:41.2435494Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:41.2435819Z 2025-03-14T04:58:41.2436319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:41.2436999Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:41.2437295Z 2025-03-14T04:58:41.2471717Z 2025-03-14T04:58:41.2472076Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:41.2474309Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:41.2476750Z l_stack0_ = L_stack0_ 2025-03-14T04:58:41.2477134Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:58:41.2477660Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:58:41.2478214Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:58:41.2478734Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:58:41.2479327Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:58:41.2479986Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:58:41.2480612Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:58:41.2481250Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:58:41.2481974Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2482435Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2482882Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2483335Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2483745Z 2025-03-14T04:58:41.2484165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:58:41.2484692Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:58:41.2485470Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:58:41.2486266Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:58:41.2487067Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:58:41.2487856Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:58:41.2488270Z 2025-03-14T04:58:41.2488711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:58:41.2489746Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:58:41.2490539Z 2025-03-14T04:58:41.2490999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:58:41.2492063Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:58:41.2492835Z 2025-03-14T04:58:41.2493226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2493748Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2494019Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:41.2494277Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:41.2494605Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2495085Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:41.2495342Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:41.2495638Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2495904Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:41.2496160Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:41.2496445Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2496709Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:41.2497032Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:41.2497264Z 2025-03-14T04:58:41.2497660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:41.2498479Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:41.2499069Z 2025-03-14T04:58:41.2499577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:41.2500224Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:58:41.2500525Z 2025-03-14T04:58:41.2500968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:41.2501558Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:41.2501870Z 2025-03-14T04:58:41.2502309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:41.2502840Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:41.2503180Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2503562Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:41.2503848Z 2025-03-14T04:58:41.2504412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:41.2505018Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:41.2505386Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:41.2505779Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:41.2506103Z 2025-03-14T04:58:41.2506565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:41.2507145Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2507472Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:41.2507792Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:41.2508080Z 2025-03-14T04:58:41.2508569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:41.2509242Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:41.2509671Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:41.2509998Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:41.2510291Z 2025-03-14T04:58:41.2510776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:41.2511368Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:41.2511743Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:41.2512009Z 2025-03-14T04:58:41.2512458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:41.2513040Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:41.2513404Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:41.2513653Z 2025-03-14T04:58:41.2514063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:41.2514599Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:41.2514940Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:41.2515189Z 2025-03-14T04:58:41.2515604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:41.2516165Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:41.2516531Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:41.2516781Z 2025-03-14T04:58:41.2517234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:41.2517799Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:41.2518106Z 2025-03-14T04:58:41.2518560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:41.2519155Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:41.2519439Z 2025-03-14T04:58:41.2519929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:41.2520543Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:41.2520905Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:41.2521286Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:41.2521660Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:41.2522017Z 2025-03-14T04:58:41.2522528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:41.2523242Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:41.2523702Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:41.2524082Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:41.2524468Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:41.2524745Z 2025-03-14T04:58:41.2525191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:41.2525731Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:41.2526077Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:41.2526444Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:41.2526708Z 2025-03-14T04:58:41.2527157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:41.2527683Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:41.2528034Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:41.2528405Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:41.2528671Z 2025-03-14T04:58:41.2529101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:41.2529584Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:41.2529865Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:41.2530119Z 2025-03-14T04:58:41.2530543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:41.2531029Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:41.2531309Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:41.2531559Z 2025-03-14T04:58:41.2531973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:41.2532501Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:41.2532812Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:41.2533080Z 2025-03-14T04:58:41.2533496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:41.2533996Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:41.2534305Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:41.2534563Z 2025-03-14T04:58:41.2535018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:41.2535627Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:41.2535934Z 2025-03-14T04:58:41.2536383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:41.2537013Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:41.2537324Z 2025-03-14T04:58:41.2537817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:41.2538663Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:41.2539132Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:41.2539441Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:41.2539765Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:41.2540102Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:41.2540401Z 2025-03-14T04:58:41.2540844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2541486Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2541883Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:41.2542160Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:41.2542587Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2542986Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:41.2543257Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:41.2543665Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2544056Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:41.2544425Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:41.2544865Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2545255Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:41.2545536Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:41.2545786Z 2025-03-14T04:58:41.2546259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:41.2546931Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:58:41.2547260Z 2025-03-14T04:58:41.2547788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:41.2548547Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:41.2549015Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:41.2549341Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:41.2549678Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:41.2550028Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:41.2550317Z 2025-03-14T04:58:41.2550956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:41.2551835Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:41.2552335Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:41.2552709Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:41.2553144Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:41.2553488Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:41.2553765Z 2025-03-14T04:58:41.2554271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:41.2554867Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:41.2555135Z 2025-03-14T04:58:41.2555241Z 2025-03-14T04:58:41.2555344Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:41.2557450Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:41.2559716Z l_stack0_ = L_stack0_ 2025-03-14T04:58:41.2560096Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:58:41.2560632Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:58:41.2561153Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:58:41.2561671Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:58:41.2562275Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:58:41.2562901Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:58:41.2563533Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:58:41.2564156Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:58:41.2564690Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2565141Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2565561Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2566003Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2566329Z 2025-03-14T04:58:41.2566742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:58:41.2567297Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:58:41.2568099Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:58:41.2568898Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:58:41.2569661Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:58:41.2570416Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:58:41.2570729Z 2025-03-14T04:58:41.2571183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:58:41.2572260Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:58:41.2573055Z 2025-03-14T04:58:41.2573502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:58:41.2574585Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:58:41.2575596Z 2025-03-14T04:58:41.2576140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2576638Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2576914Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:41.2577212Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:41.2577533Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2577807Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:41.2578063Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:41.2578353Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2578621Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:41.2578883Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:41.2579183Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2579455Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:41.2579714Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:41.2579957Z 2025-03-14T04:58:41.2580374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:41.2581235Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:41.2582053Z 2025-03-14T04:58:41.2582838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:41.2583556Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:58:41.2583915Z 2025-03-14T04:58:41.2584456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:41.2585080Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:41.2585416Z 2025-03-14T04:58:41.2585870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:41.2586440Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:41.2586801Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2587174Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:41.2587468Z 2025-03-14T04:58:41.2587927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:41.2588496Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:41.2588846Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:41.2589225Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:41.2589533Z 2025-03-14T04:58:41.2589987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:41.2590545Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2590860Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:41.2591174Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:41.2591454Z 2025-03-14T04:58:41.2591900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:41.2592512Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:41.2592855Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:41.2593256Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:41.2593565Z 2025-03-14T04:58:41.2594031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:41.2594613Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:41.2594985Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:41.2595252Z 2025-03-14T04:58:41.2595688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:41.2596257Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:41.2596619Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:41.2596870Z 2025-03-14T04:58:41.2597324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:41.2597884Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:41.2598243Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:41.2598512Z 2025-03-14T04:58:41.2598931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:41.2599477Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:41.2599836Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:41.2600077Z 2025-03-14T04:58:41.2600510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:41.2601055Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:41.2601319Z 2025-03-14T04:58:41.2601748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:41.2602282Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:41.2602545Z 2025-03-14T04:58:41.2602990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:41.2603551Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:41.2603884Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:41.2604230Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:41.2604588Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:41.2604857Z 2025-03-14T04:58:41.2605310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:41.2605907Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:41.2606238Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:41.2606613Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:41.2606972Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:41.2607239Z 2025-03-14T04:58:41.2607679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:41.2608203Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:41.2608546Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:41.2608908Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:41.2609164Z 2025-03-14T04:58:41.2609602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:41.2610119Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:41.2610474Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:41.2610886Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:41.2611152Z 2025-03-14T04:58:41.2611587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:41.2612094Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:41.2612372Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:41.2612618Z 2025-03-14T04:58:41.2613032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:41.2613511Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:41.2613781Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:41.2614025Z 2025-03-14T04:58:41.2614436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:41.2614931Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:41.2615235Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:41.2615488Z 2025-03-14T04:58:41.2615892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:41.2616381Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:41.2616682Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:41.2616933Z 2025-03-14T04:58:41.2617384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:41.2618005Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:41.2618310Z 2025-03-14T04:58:41.2618748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:41.2619321Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:41.2619653Z 2025-03-14T04:58:41.2620112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:41.2620804Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:41.2621251Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:41.2621544Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:41.2621852Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:41.2622164Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:41.2622424Z 2025-03-14T04:58:41.2622816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2623388Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2623745Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:41.2623995Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:41.2624519Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2624913Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:41.2625175Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:41.2625613Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2625987Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:41.2626229Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:41.2626599Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2626955Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:41.2627192Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:41.2627412Z 2025-03-14T04:58:41.2627839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:41.2628394Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:58:41.2628691Z 2025-03-14T04:58:41.2629145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:41.2629828Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:41.2630258Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:41.2630553Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:41.2630855Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:41.2631170Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:41.2631430Z 2025-03-14T04:58:41.2631996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:41.2632793Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:41.2633136Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:41.2633473Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:41.2633855Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:41.2634150Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:41.2634398Z 2025-03-14T04:58:41.2634860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:41.2635399Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:41.2635645Z 2025-03-14T04:58:41.2635833Z 2025-03-14T04:58:41.2635932Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:41.2637969Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:41.2640053Z l_stack0_ = L_stack0_ 2025-03-14T04:58:41.2640412Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T04:58:41.2640914Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T04:58:41.2641407Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T04:58:41.2641900Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T04:58:41.2642439Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T04:58:41.2643029Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T04:58:41.2643617Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T04:58:41.2644200Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T04:58:41.2644705Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2645125Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2645540Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2645955Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:41.2646265Z 2025-03-14T04:58:41.2646664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T04:58:41.2647154Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T04:58:41.2647890Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T04:58:41.2648682Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T04:58:41.2649436Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T04:58:41.2650185Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T04:58:41.2650483Z 2025-03-14T04:58:41.2650903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T04:58:41.2651942Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T04:58:41.2652689Z 2025-03-14T04:58:41.2653146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T04:58:41.2654220Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T04:58:41.2655002Z 2025-03-14T04:58:41.2655418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2655936Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2656207Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:41.2656454Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:41.2656747Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2657017Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:41.2657273Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:41.2657572Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2657850Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:41.2658113Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:41.2658413Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:41.2658684Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:41.2658942Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:41.2659182Z 2025-03-14T04:58:41.2659599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:41.2660459Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:41.2661075Z 2025-03-14T04:58:41.2661588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:41.2662290Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T04:58:41.2662599Z 2025-03-14T04:58:41.2663043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:41.2663635Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:41.2663954Z 2025-03-14T04:58:41.2664478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:41.2665067Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:41.2665423Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2665806Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:41.2666115Z 2025-03-14T04:58:41.2666584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:41.2667148Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:41.2667578Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:41.2667954Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:41.2668278Z 2025-03-14T04:58:41.2668743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:41.2669289Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:41.2669607Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:41.2669913Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:41.2670189Z 2025-03-14T04:58:41.2670637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:41.2671199Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:41.2671518Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:41.2671821Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:41.2672085Z 2025-03-14T04:58:41.2672523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:41.2673090Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:41.2673449Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:41.2673698Z 2025-03-14T04:58:41.2674110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:41.2674636Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:41.2674974Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:41.2675221Z 2025-03-14T04:58:41.2675631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:41.2676155Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:41.2676523Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:41.2676770Z 2025-03-14T04:58:41.2677185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:41.2677749Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:41.2678111Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:41.2678354Z 2025-03-14T04:58:41.2678806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:41.2679370Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:41.2679641Z 2025-03-14T04:58:41.2680079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:41.2680643Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:41.2680920Z 2025-03-14T04:58:41.2681647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:41.2682330Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:41.2682694Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:41.2683047Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:41.2683415Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:41.2683691Z 2025-03-14T04:58:41.2684150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:41.2684725Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:41.2685066Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:41.2685418Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:41.2685778Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:41.2686051Z 2025-03-14T04:58:41.2686494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:41.2687030Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:41.2687373Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:41.2687738Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:41.2688007Z 2025-03-14T04:58:41.2688452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:41.2688982Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:41.2689343Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:41.2689712Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:41.2689982Z 2025-03-14T04:58:41.2690449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:41.2690940Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:41.2691225Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:41.2691476Z 2025-03-14T04:58:41.2691897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:41.2692383Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:41.2692658Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:41.2692904Z 2025-03-14T04:58:41.2693340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:41.2693843Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:41.2694151Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:41.2694413Z 2025-03-14T04:58:41.2694863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:41.2695362Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:41.2695686Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:41.2695946Z 2025-03-14T04:58:41.2696424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:41.2697036Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:41.2697352Z 2025-03-14T04:58:41.2697796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:41.2698373Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:41.2698675Z 2025-03-14T04:58:41.2699150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:41.2699862Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:41.2700308Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:41.2700611Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:41.2700924Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:41.2701246Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:41.2701510Z 2025-03-14T04:58:41.2701910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:41.2702495Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2702861Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:41.2703115Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:41.2703492Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2703854Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:41.2704106Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:41.2704592Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2704976Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:41.2705242Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:41.2705648Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:41.2706028Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:41.2706275Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:41.2706510Z 2025-03-14T04:58:41.2706971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:41.2707558Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T04:58:41.2707877Z 2025-03-14T04:58:41.2708369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:41.2709134Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:41.2709598Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:41.2709921Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:41.2710266Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:41.2710641Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:41.2710919Z 2025-03-14T04:58:41.2711552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:41.2712344Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:41.2712730Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:41.2713101Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:41.2713473Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:41.2713797Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:41.2714066Z 2025-03-14T04:58:41.2714533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:41.2715066Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:41.2715312Z 2025-03-14T04:58:43.0742857Z 2025-03-14T04:58:43.0748001Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:43.0751780Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:43.0752937Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:58:43.0753216Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:58:43.0753578Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0754038Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0754830Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0755272Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0755609Z 2025-03-14T04:58:43.0756088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:43.0756618Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0756891Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:43.0757154Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:43.0757469Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0757747Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:43.0758016Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:43.0758325Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0758604Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:43.0758865Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:43.0759164Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0759438Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:43.0759759Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:43.0760016Z 2025-03-14T04:58:43.0760493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:43.0761425Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:43.0762034Z 2025-03-14T04:58:43.0762560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:43.0763203Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:58:43.0763512Z 2025-03-14T04:58:43.0763966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:43.0764577Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:43.0764868Z 2025-03-14T04:58:43.0765285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:43.0765805Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:43.0766130Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:43.0766475Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:43.0766757Z 2025-03-14T04:58:43.0767195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:43.0767729Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:43.0768062Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:43.0768421Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:43.0768712Z 2025-03-14T04:58:43.0769136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:43.0769686Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:43.0769988Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:43.0770286Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:43.0770551Z 2025-03-14T04:58:43.0770972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:43.0771518Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:43.0771852Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:43.0772154Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:43.0772422Z 2025-03-14T04:58:43.0772861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:43.0773399Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:43.0773771Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:43.0774025Z 2025-03-14T04:58:43.0774473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:43.0775009Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:43.0775364Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:43.0775598Z 2025-03-14T04:58:43.0775996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:43.0776519Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:43.0776856Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:43.0777108Z 2025-03-14T04:58:43.0777532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:43.0778108Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:43.0778491Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:43.0778740Z 2025-03-14T04:58:43.0779191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:43.0779759Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:43.0780040Z 2025-03-14T04:58:43.0780486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:43.0781045Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:43.0781326Z 2025-03-14T04:58:43.0782130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:43.0782705Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:43.0783047Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:43.0783445Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:43.0783817Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:43.0784093Z 2025-03-14T04:58:43.0784683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:43.0785295Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:43.0785654Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:43.0786023Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:43.0786405Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:43.0786684Z 2025-03-14T04:58:43.0787131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:43.0787669Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:43.0788053Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:43.0788421Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:43.0788691Z 2025-03-14T04:58:43.0789185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:43.0789787Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:43.0790166Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:43.0790540Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:43.0790811Z 2025-03-14T04:58:43.0791237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:43.0791724Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:43.0792004Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:43.0792285Z 2025-03-14T04:58:43.0792709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:43.0793195Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:43.0793471Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:43.0793716Z 2025-03-14T04:58:43.0794132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:43.0794631Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:43.0794941Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:43.0795208Z 2025-03-14T04:58:43.0795619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:43.0796119Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:43.0796425Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:43.0796682Z 2025-03-14T04:58:43.0797145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:43.0797777Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:43.0798084Z 2025-03-14T04:58:43.0798512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:43.0799080Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:43.0799377Z 2025-03-14T04:58:43.0799832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:43.0800517Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:43.0800948Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:43.0801244Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:43.0801545Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:43.0801874Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:43.0802143Z 2025-03-14T04:58:43.0802563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:43.0803155Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0803503Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:43.0803747Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:43.0804113Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0804459Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:43.0804699Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:43.0805071Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0805423Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:43.0805670Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:43.0806039Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0806388Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:43.0806627Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:43.0806863Z 2025-03-14T04:58:43.0807285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:43.0807884Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:58:43.0808219Z 2025-03-14T04:58:43.0808675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:43.0809362Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:43.0809789Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:43.0810084Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:43.0810396Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:43.0811853Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:43.0812119Z 2025-03-14T04:58:43.0812674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:43.0813380Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:43.0813721Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:43.0814053Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:43.0814381Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:43.0814677Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:43.0814923Z 2025-03-14T04:58:43.0815389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:43.0815927Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:43.0816172Z 2025-03-14T04:58:43.0826202Z 2025-03-14T04:58:43.0831939Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:43.0837699Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:43.0839239Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:58:43.0839504Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:58:43.0839854Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0840287Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0840709Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0841127Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0841444Z 2025-03-14T04:58:43.0841898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:43.0842408Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0842682Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:43.0842926Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:43.0843227Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0843501Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:43.0843757Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:43.0844045Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0844307Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:43.0844558Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:43.0844843Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0845104Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:43.0845348Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:43.0845582Z 2025-03-14T04:58:43.0846017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:43.0846849Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:43.0847481Z 2025-03-14T04:58:43.0847973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:43.0848581Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:58:43.0848874Z 2025-03-14T04:58:43.0849302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:43.0849874Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:43.0850171Z 2025-03-14T04:58:43.0850588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:43.0851104Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:43.0851434Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:43.0851807Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:43.0852088Z 2025-03-14T04:58:43.0852533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:43.0853078Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:43.0853403Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:43.0853753Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:43.0854035Z 2025-03-14T04:58:43.0854442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:43.0854950Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:43.0855244Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:43.0855531Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:43.0855791Z 2025-03-14T04:58:43.0856202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:43.0856733Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:43.0857052Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:43.0857343Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:43.0857602Z 2025-03-14T04:58:43.0858036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:43.0858555Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:43.0858897Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:43.0859144Z 2025-03-14T04:58:43.0859544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:43.0860059Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:43.0860416Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:43.0860662Z 2025-03-14T04:58:43.0861063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:43.0861580Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:43.0861911Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:43.0862152Z 2025-03-14T04:58:43.0862560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:43.0863119Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:43.0863486Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:43.0863733Z 2025-03-14T04:58:43.0864187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:43.0864939Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:43.0865224Z 2025-03-14T04:58:43.0865719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:43.0866303Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:43.0866603Z 2025-03-14T04:58:43.0867044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:43.0867613Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:43.0867971Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:43.0868345Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:43.0868733Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:43.0869021Z 2025-03-14T04:58:43.0869507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:43.0870111Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:43.0870465Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:43.0870831Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:43.0871214Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:43.0871497Z 2025-03-14T04:58:43.0871964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:43.0872519Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:43.0872888Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:43.0873266Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:43.0873547Z 2025-03-14T04:58:43.0874009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:43.0874606Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:43.0874949Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:43.0875306Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:43.0875567Z 2025-03-14T04:58:43.0875983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:43.0876459Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:43.0876731Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:43.0876978Z 2025-03-14T04:58:43.0877383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:43.0877858Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:43.0878127Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:43.0878366Z 2025-03-14T04:58:43.0878793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:43.0879279Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:43.0879596Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:43.0879899Z 2025-03-14T04:58:43.0880300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:43.0880819Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:43.0881114Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:43.0881370Z 2025-03-14T04:58:43.0882067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:43.0882681Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:43.0882980Z 2025-03-14T04:58:43.0883417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:43.0883991Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:43.0884292Z 2025-03-14T04:58:43.0884752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:43.0885456Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:43.0885899Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:43.0886205Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:43.0886507Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:43.0886819Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:43.0887078Z 2025-03-14T04:58:43.0887476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:43.0888028Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0888512Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:43.0888766Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:43.0889147Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0889501Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:43.0889748Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:43.0890122Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0890477Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:43.0890720Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:43.0891087Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0891448Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:43.0891687Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:43.0891910Z 2025-03-14T04:58:43.0892335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:43.0892983Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:58:43.0893324Z 2025-03-14T04:58:43.0893812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:43.0894532Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:43.0894961Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:43.0895259Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:43.0895565Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:43.0895874Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:43.0896141Z 2025-03-14T04:58:43.0896703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:43.0897397Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:43.0897745Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:43.0898080Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:43.0898424Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:43.0898720Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:43.0898964Z 2025-03-14T04:58:43.0899404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:43.0899945Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:43.0900179Z 2025-03-14T04:58:43.0906876Z 2025-03-14T04:58:43.0912798Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:43.0913796Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T04:58:43.0914812Z l_predictions_0_ = L_predictions_0_ 2025-03-14T04:58:43.0915062Z l_predictions_1_ = L_predictions_1_ 2025-03-14T04:58:43.0915405Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0915842Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0916269Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0916698Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T04:58:43.0917021Z 2025-03-14T04:58:43.0917496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:43.0918062Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0918331Z getitem: "Sym(s0)" = size[0] 2025-03-14T04:58:43.0918582Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T04:58:43.0918889Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0919155Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T04:58:43.0919458Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T04:58:43.0919753Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0920021Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T04:58:43.0920294Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T04:58:43.0920621Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T04:58:43.0920897Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T04:58:43.0921142Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T04:58:43.0921382Z 2025-03-14T04:58:43.0921801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T04:58:43.0922708Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T04:58:43.0923280Z 2025-03-14T04:58:43.0923762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T04:58:43.0924366Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T04:58:43.0924653Z 2025-03-14T04:58:43.0925068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T04:58:43.0925625Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T04:58:43.0925922Z 2025-03-14T04:58:43.0926345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T04:58:43.0926868Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T04:58:43.0927198Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:43.0927544Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T04:58:43.0927814Z 2025-03-14T04:58:43.0928232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T04:58:43.0928775Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T04:58:43.0929098Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T04:58:43.0929449Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T04:58:43.0929734Z 2025-03-14T04:58:43.0930148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T04:58:43.0930657Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T04:58:43.0930954Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T04:58:43.0931240Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T04:58:43.0931499Z 2025-03-14T04:58:43.0931909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T04:58:43.0932448Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T04:58:43.0932767Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T04:58:43.0933083Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T04:58:43.0933342Z 2025-03-14T04:58:43.0933786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T04:58:43.0934338Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T04:58:43.0934678Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T04:58:43.0934924Z 2025-03-14T04:58:43.0935327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T04:58:43.0935850Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T04:58:43.0936179Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T04:58:43.0936424Z 2025-03-14T04:58:43.0936824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T04:58:43.0937344Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T04:58:43.0937676Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T04:58:43.0937924Z 2025-03-14T04:58:43.0938331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T04:58:43.0938889Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T04:58:43.0939252Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T04:58:43.0939495Z 2025-03-14T04:58:43.0939937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T04:58:43.0940489Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T04:58:43.0940763Z 2025-03-14T04:58:43.0941195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T04:58:43.0941737Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T04:58:43.0942018Z 2025-03-14T04:58:43.0942463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T04:58:43.0943019Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T04:58:43.0943350Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T04:58:43.0943691Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T04:58:43.0944057Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T04:58:43.0944481Z 2025-03-14T04:58:43.0944965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T04:58:43.0945630Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T04:58:43.0945976Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T04:58:43.0946333Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T04:58:43.0946727Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T04:58:43.0947005Z 2025-03-14T04:58:43.0947518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T04:58:43.0948073Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T04:58:43.0948425Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T04:58:43.0948802Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T04:58:43.0949070Z 2025-03-14T04:58:43.0949516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T04:58:43.0950052Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T04:58:43.0950410Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T04:58:43.0950786Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T04:58:43.0951055Z 2025-03-14T04:58:43.0951478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T04:58:43.0951963Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T04:58:43.0952244Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T04:58:43.0952497Z 2025-03-14T04:58:43.0952903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T04:58:43.0953383Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T04:58:43.0953658Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T04:58:43.0953907Z 2025-03-14T04:58:43.0954326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T04:58:43.0954829Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T04:58:43.0955140Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T04:58:43.0955403Z 2025-03-14T04:58:43.0955852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T04:58:43.0956343Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T04:58:43.0956645Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T04:58:43.0956903Z 2025-03-14T04:58:43.0957359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T04:58:43.0957968Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T04:58:43.0958278Z 2025-03-14T04:58:43.0958714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T04:58:43.0959291Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T04:58:43.0959595Z 2025-03-14T04:58:43.0960064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T04:58:43.0960817Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T04:58:43.0961267Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T04:58:43.0961563Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T04:58:43.0961889Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T04:58:43.0962203Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T04:58:43.0962465Z 2025-03-14T04:58:43.0962857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T04:58:43.0963428Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0963787Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T04:58:43.0964043Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T04:58:43.0964423Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0964779Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T04:58:43.0965027Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T04:58:43.0965397Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0965746Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T04:58:43.0965991Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T04:58:43.0966361Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T04:58:43.0966714Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T04:58:43.0966956Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T04:58:43.0967184Z 2025-03-14T04:58:43.0967630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T04:58:43.0968269Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T04:58:43.0968618Z 2025-03-14T04:58:43.0969089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T04:58:43.0970350Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T04:58:43.0970798Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T04:58:43.0971097Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T04:58:43.0971406Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T04:58:43.0971724Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T04:58:43.0971987Z 2025-03-14T04:58:43.0972559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:43.0973271Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T04:58:43.0973624Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:43.0973969Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T04:58:43.0974311Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:43.0974631Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:43.0974884Z 2025-03-14T04:58:43.0975362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:43.0975908Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:43.0976155Z 2025-03-14T04:58:45.8533798Z 2025-03-14T04:58:45.8537787Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:45.8539573Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T04:58:45.8540032Z l_scores_0_ = L_scores_0_ 2025-03-14T04:58:45.8540280Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:58:45.8540509Z 2025-03-14T04:58:45.8541188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:45.8541938Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:58:45.8542305Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:45.8542691Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:58:45.8543056Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:45.8543393Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:45.8543671Z 2025-03-14T04:58:45.8544185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:45.8544902Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:45.8545180Z 2025-03-14T04:58:45.8545293Z 2025-03-14T04:58:45.8545396Z class GraphModule(torch.nn.Module): 2025-03-14T04:58:45.8545788Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T04:58:45.8546150Z l_scores_0_ = L_scores_0_ 2025-03-14T04:58:45.8546381Z l_boxes_0_ = L_boxes_0_ 2025-03-14T04:58:45.8546594Z 2025-03-14T04:58:45.8547231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T04:58:45.8548352Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T04:58:45.8548716Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T04:58:45.8549094Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T04:58:45.8549455Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T04:58:45.8549781Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T04:58:45.8550045Z 2025-03-14T04:58:45.8550550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T04:58:45.8551137Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T04:58:45.8551403Z 2025-03-14T04:59:06.8983707Z Compilation time (from dynamo_timed): 85.925049743 2025-03-14T04:59:06.8984031Z pass 2025-03-14T04:59:06.8984409Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:59:06.8985465Z TIMING: entire_frame_compile:85.92505 gc:0.0548 _recursive_pre_grad_passes:0.04136 async_compile.wait:34.07125 backend_compile:65.06954 _recursive_joint_graph_passes:0.32713 _recursive_post_grad_passes:0.25971 code_gen:43.18766 inductor_compile:48.93965 total_wall_time:85.92505 2025-03-14T04:59:06.8986777Z STATS: call_* op count: 1160 | FakeTensorMode.__torch_dispatch__:42549 | FakeTensor.__torch_dispatch__:4401 | ProxyTorchDispatchMode.__torch_dispatch__:13994 | attempt fast:202 | slow no contiguity match:72 | fast is_contiguous:130 2025-03-14T04:59:06.8987491Z Dynamo produced 61 graphs covering 1160 ops with 46 graph breaks (6 unique) 2025-03-14T04:59:13.3725466Z 2025-03-14T04:59:26.2852526Z loading model: 0it [00:00, ?it/s] 2025-03-14T04:59:26.2852919Z loading model: 0it [00:12, ?it/s] 2025-03-14T04:59:26.2867811Z cpu eval detectron2_fasterrcnn_r_50_c4 2025-03-14T04:59:34.0749172Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_50_c4. Setting accuracy check to cosine 2025-03-14T04:59:34.0811748Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T04:59:53.7889661Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:00:15.0515752Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:00:24.7913870Z 2025-03-14T05:00:24.7918459Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:24.7977011Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:00:24.8022534Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:00:24.8023163Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8024055Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8024989Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8025844Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8026665Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8027516Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8028365Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8029414Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8030350Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8031272Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8032131Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8033014Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8033903Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8034715Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8035494Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8036238Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8036969Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8037755Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8038531Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8039287Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8039998Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.8040766Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8041590Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8042390Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8043171Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8043895Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8044643Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8045427Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8046211Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8046990Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8062252Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8063248Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8064327Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8065245Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8067343Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8068092Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8068870Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8069704Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8070492Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8071272Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8072011Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8072780Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8073578Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8074358Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8075094Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8075798Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8076557Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8077345Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8078099Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8078831Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8079523Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8080250Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8081054Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8082104Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8082868Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8083570Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8084297Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8085082Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8085842Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8086573Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8087267Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8087997Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8088779Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8089531Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8090263Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8091001Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8091740Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8092530Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8093298Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8094038Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8094764Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.8095563Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8096398Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8097211Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8097987Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8098699Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8099425Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8100222Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8101025Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8101798Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8102531Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8103300Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8104192Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8105023Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8105824Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8106547Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8107269Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8108056Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8108815Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8109544Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8110265Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8110992Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8111787Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8112586Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8113319Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8114017Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8114749Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8115543Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8116302Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8117033Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8117737Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8118460Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8119241Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8119998Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8120753Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8121451Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8122175Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8122955Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8123713Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8124437Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8125147Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8125903Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8126699Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8127446Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8128159Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8128841Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8129559Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8130324Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8131072Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8131795Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8132498Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8133230Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8134018Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8134817Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8135567Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8136261Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8136969Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8137731Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8138480Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8139229Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8139919Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8140626Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8141406Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8142156Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8142889Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8143605Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.8144426Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8145238Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8146034Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8146796Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8147502Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8148236Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8149011Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8149798Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8150521Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8151219Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8151953Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8152734Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8153501Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8154258Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8154985Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8155732Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8156507Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8157265Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8157994Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8158677Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8159394Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8160174Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8160913Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8161624Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8162304Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8163003Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8163811Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8164569Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8165308Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8165990Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8166707Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8167482Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8168281Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8169061Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8169789Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8170525Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8171316Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8172078Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8172816Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8173513Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8174242Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8175033Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8175796Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8176523Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8177220Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8177943Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8178743Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8179500Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8180265Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8181010Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8181911Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8182816Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8183634Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8184515Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8185309Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8186124Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8186931Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8187698Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8188474Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8189214Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8189985Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8190836Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8191634Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8192366Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8193100Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8193905Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8194703Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8195502Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8196278Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8197015Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8197773Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8198623Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8199450Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8200231Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8200966Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8201729Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8202557Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8203357Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8204123Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8204940Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:24.8205749Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:24.8206503Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:24.8207288Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:24.8208150Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:24.8209012Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:24.8209820Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:24.8210327Z 2025-03-14T05:00:24.8210780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8211645Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8212312Z 2025-03-14T05:00:24.8212705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8214630Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8216364Z 2025-03-14T05:00:24.8216798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:00:24.8217334Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:00:24.8217633Z 2025-03-14T05:00:24.8218137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:00:24.8218869Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:00:24.8219272Z 2025-03-14T05:00:24.8219660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8220498Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8221121Z 2025-03-14T05:00:24.8221537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8223684Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8225710Z 2025-03-14T05:00:24.8226153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8226720Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:00:24.8227023Z 2025-03-14T05:00:24.8227422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8228291Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8228930Z 2025-03-14T05:00:24.8229343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8231529Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8233449Z 2025-03-14T05:00:24.8233882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8234446Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:00:24.8234751Z 2025-03-14T05:00:24.8235148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8236013Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8236661Z 2025-03-14T05:00:24.8237054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8239123Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8240993Z 2025-03-14T05:00:24.8241390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8242239Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.8242867Z 2025-03-14T05:00:24.8243267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8245467Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8247344Z 2025-03-14T05:00:24.8247756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8248297Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:00:24.8248596Z 2025-03-14T05:00:24.8249017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8249572Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:00:24.8249875Z 2025-03-14T05:00:24.8250251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8251075Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8251678Z 2025-03-14T05:00:24.8252076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8254126Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8255970Z 2025-03-14T05:00:24.8256393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8256945Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:00:24.8257245Z 2025-03-14T05:00:24.8257643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8258491Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8259133Z 2025-03-14T05:00:24.8259540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8261696Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8263572Z 2025-03-14T05:00:24.8264005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8264634Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:00:24.8264944Z 2025-03-14T05:00:24.8265338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8266197Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8266837Z 2025-03-14T05:00:24.8267242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8269396Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8271292Z 2025-03-14T05:00:24.8271724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8272327Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:00:24.8272639Z 2025-03-14T05:00:24.8273068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8273638Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:00:24.8273950Z 2025-03-14T05:00:24.8274339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8275187Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8275814Z 2025-03-14T05:00:24.8276223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8278416Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8280314Z 2025-03-14T05:00:24.8280743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8281303Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:00:24.8281792Z 2025-03-14T05:00:24.8282186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8283010Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8283632Z 2025-03-14T05:00:24.8284029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8286122Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8288084Z 2025-03-14T05:00:24.8288518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8289074Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:00:24.8289373Z 2025-03-14T05:00:24.8289764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8290617Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8291260Z 2025-03-14T05:00:24.8291672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8293873Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8295817Z 2025-03-14T05:00:24.8296250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8296826Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:00:24.8297147Z 2025-03-14T05:00:24.8297575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8298156Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:00:24.8298466Z 2025-03-14T05:00:24.8298847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8299670Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8300280Z 2025-03-14T05:00:24.8300673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8302754Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8304708Z 2025-03-14T05:00:24.8305150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8305722Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:00:24.8306028Z 2025-03-14T05:00:24.8306428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8307283Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8307904Z 2025-03-14T05:00:24.8308299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8310442Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8312334Z 2025-03-14T05:00:24.8312772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8313331Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:00:24.8313652Z 2025-03-14T05:00:24.8314039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8314872Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8315494Z 2025-03-14T05:00:24.8315889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8317968Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8319757Z 2025-03-14T05:00:24.8320122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8320924Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.8321524Z 2025-03-14T05:00:24.8321898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8323995Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8325892Z 2025-03-14T05:00:24.8326297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8326837Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:00:24.8327139Z 2025-03-14T05:00:24.8327555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8328107Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:00:24.8328415Z 2025-03-14T05:00:24.8328792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8329616Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8330187Z 2025-03-14T05:00:24.8330558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8332622Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8334470Z 2025-03-14T05:00:24.8334863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8335393Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:00:24.8335689Z 2025-03-14T05:00:24.8336064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8336881Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8337497Z 2025-03-14T05:00:24.8337890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8339981Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8341824Z 2025-03-14T05:00:24.8342246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8342800Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:00:24.8343102Z 2025-03-14T05:00:24.8343485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8344382Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8345036Z 2025-03-14T05:00:24.8345461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8347554Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8349402Z 2025-03-14T05:00:24.8349816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8350409Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:00:24.8350719Z 2025-03-14T05:00:24.8351136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8351687Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:00:24.8351994Z 2025-03-14T05:00:24.8352374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8353153Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8353725Z 2025-03-14T05:00:24.8354104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8356091Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8357832Z 2025-03-14T05:00:24.8358227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8358746Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:00:24.8359031Z 2025-03-14T05:00:24.8359391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8360173Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8360757Z 2025-03-14T05:00:24.8361132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8363081Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8364824Z 2025-03-14T05:00:24.8365217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8365724Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:00:24.8366008Z 2025-03-14T05:00:24.8366366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8367146Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8367725Z 2025-03-14T05:00:24.8368100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8370082Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8371796Z 2025-03-14T05:00:24.8372191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8372711Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:00:24.8373006Z 2025-03-14T05:00:24.8373399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8373925Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:00:24.8374219Z 2025-03-14T05:00:24.8374581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8375359Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8375934Z 2025-03-14T05:00:24.8376310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8378259Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8380003Z 2025-03-14T05:00:24.8380391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8380908Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:00:24.8381189Z 2025-03-14T05:00:24.8381761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8382578Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8383204Z 2025-03-14T05:00:24.8383595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8385813Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8387675Z 2025-03-14T05:00:24.8388100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8388645Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:00:24.8388943Z 2025-03-14T05:00:24.8389325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8390157Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8390770Z 2025-03-14T05:00:24.8391166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8393265Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8395107Z 2025-03-14T05:00:24.8395519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8396066Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:00:24.8396373Z 2025-03-14T05:00:24.8396789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8397319Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:00:24.8397610Z 2025-03-14T05:00:24.8397969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8398734Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8399292Z 2025-03-14T05:00:24.8399680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8401721Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8403436Z 2025-03-14T05:00:24.8403830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8404338Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:00:24.8404612Z 2025-03-14T05:00:24.8404970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8405751Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8406329Z 2025-03-14T05:00:24.8406723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8408767Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8410540Z 2025-03-14T05:00:24.8410968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8411509Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:00:24.8411799Z 2025-03-14T05:00:24.8412177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8412980Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8413590Z 2025-03-14T05:00:24.8413982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8416127Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8417998Z 2025-03-14T05:00:24.8418378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8419209Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.8419833Z 2025-03-14T05:00:24.8420225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8422339Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8424306Z 2025-03-14T05:00:24.8424757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8425341Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:00:24.8425653Z 2025-03-14T05:00:24.8426073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8426618Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:00:24.8426913Z 2025-03-14T05:00:24.8427294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8428101Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8428699Z 2025-03-14T05:00:24.8429096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8431201Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8433028Z 2025-03-14T05:00:24.8433447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8433987Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:00:24.8434276Z 2025-03-14T05:00:24.8434661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8435488Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8436098Z 2025-03-14T05:00:24.8436497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8438558Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8440372Z 2025-03-14T05:00:24.8440818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8441358Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:00:24.8441650Z 2025-03-14T05:00:24.8442032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8442866Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8443455Z 2025-03-14T05:00:24.8443856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8445981Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8447746Z 2025-03-14T05:00:24.8448159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8448701Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:00:24.8448998Z 2025-03-14T05:00:24.8449406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8449948Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:00:24.8450246Z 2025-03-14T05:00:24.8450607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8451429Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8451996Z 2025-03-14T05:00:24.8452392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8454401Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8456188Z 2025-03-14T05:00:24.8456609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8457149Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:00:24.8457444Z 2025-03-14T05:00:24.8457837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8458676Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8459309Z 2025-03-14T05:00:24.8459704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8461823Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8463690Z 2025-03-14T05:00:24.8464175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8464756Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:00:24.8465057Z 2025-03-14T05:00:24.8465451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8466302Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8466944Z 2025-03-14T05:00:24.8467342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8469493Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8471384Z 2025-03-14T05:00:24.8471833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8472394Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:00:24.8472703Z 2025-03-14T05:00:24.8473149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8473722Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:00:24.8474029Z 2025-03-14T05:00:24.8474423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8475269Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8475889Z 2025-03-14T05:00:24.8476303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8478477Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8480355Z 2025-03-14T05:00:24.8480787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8481346Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:00:24.8481777Z 2025-03-14T05:00:24.8482181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8483052Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8483688Z 2025-03-14T05:00:24.8484099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8486215Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8488128Z 2025-03-14T05:00:24.8488557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8489104Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:00:24.8489400Z 2025-03-14T05:00:24.8489789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8490638Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8491264Z 2025-03-14T05:00:24.8491675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8493819Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8495677Z 2025-03-14T05:00:24.8496095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8496636Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:00:24.8496935Z 2025-03-14T05:00:24.8497353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8497895Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:00:24.8498193Z 2025-03-14T05:00:24.8498571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8499384Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8499988Z 2025-03-14T05:00:24.8500384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8502466Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8504369Z 2025-03-14T05:00:24.8504792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8505330Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:00:24.8505619Z 2025-03-14T05:00:24.8506000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8506853Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8507481Z 2025-03-14T05:00:24.8507885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8510147Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8512034Z 2025-03-14T05:00:24.8512463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8513012Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:00:24.8513306Z 2025-03-14T05:00:24.8513699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8514552Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8515178Z 2025-03-14T05:00:24.8515579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8517692Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8519524Z 2025-03-14T05:00:24.8519914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8520426Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:00:24.8520712Z 2025-03-14T05:00:24.8521110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8521623Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:00:24.8521902Z 2025-03-14T05:00:24.8522263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8523038Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8523608Z 2025-03-14T05:00:24.8524000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8525959Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8527691Z 2025-03-14T05:00:24.8528088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8528598Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:00:24.8528874Z 2025-03-14T05:00:24.8529240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8530062Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8530676Z 2025-03-14T05:00:24.8531076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8533150Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8534979Z 2025-03-14T05:00:24.8535400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8535932Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:00:24.8536226Z 2025-03-14T05:00:24.8536602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8537419Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8538028Z 2025-03-14T05:00:24.8538421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8540505Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8542323Z 2025-03-14T05:00:24.8542735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8543271Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:00:24.8543573Z 2025-03-14T05:00:24.8543992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8544621Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:00:24.8544923Z 2025-03-14T05:00:24.8545530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:24.8546269Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:00:24.8546585Z 2025-03-14T05:00:24.8547012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.8547556Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:24.8547844Z 2025-03-14T05:00:24.8548420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:24.8549125Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:00:24.8549457Z 2025-03-14T05:00:24.8549873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.8550417Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:24.8550705Z 2025-03-14T05:00:24.8551223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:24.8551899Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:24.8552275Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:24.8552585Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:24.8552855Z 2025-03-14T05:00:24.8553325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:24.8553903Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:24.8554174Z 2025-03-14T05:00:24.8554663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:24.8555230Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:24.8555501Z 2025-03-14T05:00:24.8556055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:24.8556795Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:24.8557165Z 2025-03-14T05:00:24.8557728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:24.8558388Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:24.8559065Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:24.8559724Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:24.8560048Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:24.8560315Z 2025-03-14T05:00:24.8560749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:24.8561285Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T05:00:24.8561561Z 2025-03-14T05:00:24.8561937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8563077Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:24.8563999Z 2025-03-14T05:00:24.8564406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:24.8565012Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T05:00:24.8565340Z 2025-03-14T05:00:24.8565867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:24.8567276Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:24.8568311Z 2025-03-14T05:00:24.8568783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:24.8570101Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:24.8571092Z 2025-03-14T05:00:24.8571539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:24.8572131Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:24.8572518Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:24.8572807Z 2025-03-14T05:00:24.8573373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:24.8574067Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T05:00:24.8574500Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:00:24.8574946Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:00:24.8575278Z 2025-03-14T05:00:24.8575820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:24.8576564Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:24.8576923Z 2025-03-14T05:00:24.8577498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:24.8578217Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:24.8578604Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:24.8578982Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:24.8579306Z 2025-03-14T05:00:24.8579829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:24.8580494Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:24.8580823Z 2025-03-14T05:00:24.8581273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:24.8582064Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:24.8582381Z 2025-03-14T05:00:24.8582855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:24.8583439Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:24.8583803Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:24.8584225Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:24.8584538Z 2025-03-14T05:00:24.8585061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:24.8585624Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:24.8585996Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:24.8586386Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:24.8586692Z 2025-03-14T05:00:24.8587146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:24.8587705Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:24.8588011Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:00:24.8588312Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:00:24.8588589Z 2025-03-14T05:00:24.8589044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:24.8589623Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:24.8589958Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:00:24.8590274Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:00:24.8590557Z 2025-03-14T05:00:24.8591015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:24.8591555Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:24.8591902Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:24.8592152Z 2025-03-14T05:00:24.8592572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:24.8593117Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:24.8593464Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:24.8593718Z 2025-03-14T05:00:24.8594135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:24.8594699Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:24.8595040Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:00:24.8595291Z 2025-03-14T05:00:24.8595704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:24.8596267Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:24.8596639Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:00:24.8596890Z 2025-03-14T05:00:24.8597333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:24.8597903Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:24.8598171Z 2025-03-14T05:00:24.8598615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:24.8599173Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:24.8599469Z 2025-03-14T05:00:24.8599953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:24.8600523Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:24.8600891Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:00:24.8601252Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:24.8601634Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:00:24.8601917Z 2025-03-14T05:00:24.8602382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:24.8602955Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:24.8603296Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:00:24.8603649Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:24.8604023Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:00:24.8604304Z 2025-03-14T05:00:24.8604753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:24.8605294Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:24.8605648Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:24.8606020Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:00:24.8606292Z 2025-03-14T05:00:24.8606739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:24.8607272Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:24.8607631Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:24.8608011Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:00:24.8608313Z 2025-03-14T05:00:24.8608755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:24.8609262Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:24.8609547Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:24.8609798Z 2025-03-14T05:00:24.8610218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:24.8610710Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:24.8610991Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:24.8611240Z 2025-03-14T05:00:24.8611651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:24.8612197Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:24.8612536Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:24.8612805Z 2025-03-14T05:00:24.8613267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:24.8613819Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:24.8614158Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:24.8614450Z 2025-03-14T05:00:24.8614954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:24.8615615Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:24.8615947Z 2025-03-14T05:00:24.8616415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:24.8617022Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:00:24.8617338Z 2025-03-14T05:00:24.8617858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:24.8618530Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:24.8618853Z 2025-03-14T05:00:24.8619484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:24.8620235Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:24.8620519Z 2025-03-14T05:00:24.8620955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.8621504Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:24.8621793Z 2025-03-14T05:00:24.8622375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:24.8623039Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:00:24.8623347Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:00:24.8623678Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:24.8623940Z 2025-03-14T05:00:24.8624644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:24.8625428Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:24.8625956Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:00:24.8626347Z 2025-03-14T05:00:24.8626956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:24.8627725Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:24.8628059Z 2025-03-14T05:00:24.8628466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.8629021Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:00:24.8629309Z 2025-03-14T05:00:24.8629830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:24.8630463Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:00:24.8630749Z 2025-03-14T05:00:24.8631158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:24.8631675Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:00:24.8631952Z 2025-03-14T05:00:24.8632440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:24.8633038Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:00:24.8633317Z 2025-03-14T05:00:24.8633921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:24.8634624Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:00:24.8634964Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:24.8635314Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:24.8635678Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:24.8635967Z 2025-03-14T05:00:24.8636450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:24.8637021Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:24.8637273Z 2025-03-14T05:00:24.8637716Z 2025-03-14T05:00:24.8637832Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:24.8685110Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:00:24.8728364Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:00:24.8728892Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8729719Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8730632Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8731405Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8732146Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8732886Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8733624Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8734374Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8735109Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8735820Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8736497Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8737227Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8738064Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8738882Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8739666Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8740369Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8741086Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8741874Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8742632Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8743374Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8744073Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.8744940Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8745852Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8746721Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8747558Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8748354Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8749155Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8750020Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8750845Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8751658Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8752423Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8753609Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8754482Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8755293Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8756100Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8756830Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8757602Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8758424Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8759218Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8759993Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8760725Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8761522Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8762336Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8763134Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8763902Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8764630Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8765400Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8766190Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8766960Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8767710Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8768406Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8769139Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8769926Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8770689Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8771426Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8772122Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8772855Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8773643Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8774403Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8775137Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8775844Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8776561Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8777332Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8778085Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8778796Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8779445Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8780142Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8780896Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8781779Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8782503Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8783205Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.8783950Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8784784Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8785639Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8786460Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8787200Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8787985Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8788848Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8789648Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8790475Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8791209Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8791974Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8792806Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8793614Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8794393Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8795155Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8795969Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8796783Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8797622Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8798416Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8799159Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8799929Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8800760Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8801548Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8802310Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8803040Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8803797Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8804617Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8805323Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8806031Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8806684Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8807369Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8808104Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8808827Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8809555Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8810262Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8810994Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8811786Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8812550Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8813278Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8813994Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8814737Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8815528Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8816290Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8817026Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8817736Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8818474Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8819251Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8820021Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8820738Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8821439Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8822155Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8822956Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8823760Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8824612Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8825404Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8826225Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8827067Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8827879Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8828664Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8829408Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8830176Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8830969Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8831778Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8832554Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8833320Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.8834098Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8834936Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8835818Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8836626Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8837338Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8838132Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8838928Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8839747Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8840522Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8841281Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8842072Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8842890Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8843688Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8844470Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8845202Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8845962Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8846784Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8847618Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8848386Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8849116Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8849863Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8850675Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8851447Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8852181Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8852876Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8853603Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8854383Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8855204Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8856022Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8856781Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8857555Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8858387Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8859198Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8859974Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8860706Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8861480Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8862306Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8863110Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8863930Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8864756Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8865597Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8866419Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8867232Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8867600Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8867937Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8868332Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8868746Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8869117Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8869498Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8869847Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8870248Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8870637Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8871013Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8871375Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8871703Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8872103Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8872493Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8872869Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8873226Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8873561Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8873969Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8874368Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8874748Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8875111Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8875448Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.8875842Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8876255Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8876636Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8877072Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8877400Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.8877800Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8878200Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8878560Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8878921Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8879243Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.8879635Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.8880012Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.8880380Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.8880727Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.8881142Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:24.8881780Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:24.8882139Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:24.8882569Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:24.8882975Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:24.8883377Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:24.8883806Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:24.8883899Z 2025-03-14T05:00:24.8884271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8884849Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8884930Z 2025-03-14T05:00:24.8885255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8886856Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8886937Z 2025-03-14T05:00:24.8887274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:00:24.8887431Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:00:24.8887515Z 2025-03-14T05:00:24.8887923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:00:24.8888201Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:00:24.8888282Z 2025-03-14T05:00:24.8888584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8889091Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8889165Z 2025-03-14T05:00:24.8889485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8891153Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8891238Z 2025-03-14T05:00:24.8891587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8891778Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:00:24.8891868Z 2025-03-14T05:00:24.8892159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8892657Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8892731Z 2025-03-14T05:00:24.8893033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8894686Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8894767Z 2025-03-14T05:00:24.8895099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8895271Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:00:24.8895340Z 2025-03-14T05:00:24.8895613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8896088Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8896171Z 2025-03-14T05:00:24.8896462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8898102Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8898181Z 2025-03-14T05:00:24.8898456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8898946Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.8899040Z 2025-03-14T05:00:24.8899319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8900999Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8901084Z 2025-03-14T05:00:24.8901395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8901565Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:00:24.8901641Z 2025-03-14T05:00:24.8901966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8902134Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:00:24.8902215Z 2025-03-14T05:00:24.8902494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8902970Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8903063Z 2025-03-14T05:00:24.8903367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8905102Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8905193Z 2025-03-14T05:00:24.8905528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8905692Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:00:24.8905798Z 2025-03-14T05:00:24.8906091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8906608Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8906700Z 2025-03-14T05:00:24.8907014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8908706Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8908792Z 2025-03-14T05:00:24.8909118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8909279Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:00:24.8909358Z 2025-03-14T05:00:24.8909638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8910114Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8910184Z 2025-03-14T05:00:24.8910471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8912088Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8912168Z 2025-03-14T05:00:24.8912469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8912632Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:00:24.8912709Z 2025-03-14T05:00:24.8913023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8913195Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:00:24.8913270Z 2025-03-14T05:00:24.8913560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8914020Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8914102Z 2025-03-14T05:00:24.8914385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8916025Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8916110Z 2025-03-14T05:00:24.8916430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8916596Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:00:24.8916669Z 2025-03-14T05:00:24.8916961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8917431Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8917543Z 2025-03-14T05:00:24.8917828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8919495Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8919579Z 2025-03-14T05:00:24.8919898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8920082Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:00:24.8920157Z 2025-03-14T05:00:24.8920442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8920943Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8921046Z 2025-03-14T05:00:24.8921344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8923064Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8923152Z 2025-03-14T05:00:24.8923467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8923650Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:00:24.8923727Z 2025-03-14T05:00:24.8924054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8924229Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:00:24.8924317Z 2025-03-14T05:00:24.8924599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8925083Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8925172Z 2025-03-14T05:00:24.8925479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8927168Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8927245Z 2025-03-14T05:00:24.8927599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8927763Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:00:24.8927864Z 2025-03-14T05:00:24.8928144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8928651Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8928725Z 2025-03-14T05:00:24.8929027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8930706Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8930784Z 2025-03-14T05:00:24.8931111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8931283Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:00:24.8931361Z 2025-03-14T05:00:24.8931622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8932084Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8932170Z 2025-03-14T05:00:24.8932467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8934143Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8934220Z 2025-03-14T05:00:24.8934516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8935033Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.8935118Z 2025-03-14T05:00:24.8935439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8937162Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8937248Z 2025-03-14T05:00:24.8937562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8937739Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:00:24.8937814Z 2025-03-14T05:00:24.8938138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8938310Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:00:24.8938394Z 2025-03-14T05:00:24.8938671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8939151Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8939234Z 2025-03-14T05:00:24.8939546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8941222Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8941296Z 2025-03-14T05:00:24.8941618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8941775Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:00:24.8941853Z 2025-03-14T05:00:24.8942144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8942645Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8942751Z 2025-03-14T05:00:24.8943047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8944815Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8944897Z 2025-03-14T05:00:24.8945231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8945398Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:00:24.8945473Z 2025-03-14T05:00:24.8945766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8946257Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8946342Z 2025-03-14T05:00:24.8946647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8948433Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8948518Z 2025-03-14T05:00:24.8948852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8949039Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:00:24.8949117Z 2025-03-14T05:00:24.8949477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8949651Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:00:24.8949734Z 2025-03-14T05:00:24.8950050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8950562Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8950640Z 2025-03-14T05:00:24.8950953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8952756Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8952842Z 2025-03-14T05:00:24.8953188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8953352Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:00:24.8953435Z 2025-03-14T05:00:24.8953723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8954222Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8954310Z 2025-03-14T05:00:24.8954607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8956216Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8956296Z 2025-03-14T05:00:24.8956618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8956767Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:00:24.8956868Z 2025-03-14T05:00:24.8957132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8957607Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8957695Z 2025-03-14T05:00:24.8957983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8959606Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8959687Z 2025-03-14T05:00:24.8959993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8960154Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:00:24.8960228Z 2025-03-14T05:00:24.8960530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8960694Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:00:24.8960763Z 2025-03-14T05:00:24.8961034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8961484Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8961584Z 2025-03-14T05:00:24.8961860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8963478Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8963559Z 2025-03-14T05:00:24.8963871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8964031Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:00:24.8964115Z 2025-03-14T05:00:24.8964388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8964853Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8964932Z 2025-03-14T05:00:24.8965206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8966830Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8966911Z 2025-03-14T05:00:24.8967212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8967367Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:00:24.8967435Z 2025-03-14T05:00:24.8967707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8968156Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8968252Z 2025-03-14T05:00:24.8968527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8970167Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8970248Z 2025-03-14T05:00:24.8970543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8970726Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:00:24.8970796Z 2025-03-14T05:00:24.8971146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8971328Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:00:24.8971433Z 2025-03-14T05:00:24.8971710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8972188Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8972260Z 2025-03-14T05:00:24.8972562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8974240Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8974318Z 2025-03-14T05:00:24.8974641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8974793Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:00:24.8974878Z 2025-03-14T05:00:24.8975157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8975629Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8975721Z 2025-03-14T05:00:24.8976024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8977690Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8977766Z 2025-03-14T05:00:24.8978113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8978265Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:00:24.8978367Z 2025-03-14T05:00:24.8978662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8979143Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8979217Z 2025-03-14T05:00:24.8979520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8981194Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8981270Z 2025-03-14T05:00:24.8981696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8982184Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.8982267Z 2025-03-14T05:00:24.8982568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8984338Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8984481Z 2025-03-14T05:00:24.8984805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8984976Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:00:24.8985051Z 2025-03-14T05:00:24.8985387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8985572Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:00:24.8985652Z 2025-03-14T05:00:24.8985957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8986453Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8986534Z 2025-03-14T05:00:24.8986826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8988509Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8988584Z 2025-03-14T05:00:24.8988912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8989061Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:00:24.8989143Z 2025-03-14T05:00:24.8989420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8989892Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.8989974Z 2025-03-14T05:00:24.8990268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8991940Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8992013Z 2025-03-14T05:00:24.8992321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8992471Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:00:24.8992541Z 2025-03-14T05:00:24.8992827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8993330Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.8993425Z 2025-03-14T05:00:24.8993704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8995299Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8995379Z 2025-03-14T05:00:24.8995676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.8995843Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:00:24.8995912Z 2025-03-14T05:00:24.8996218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8996367Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:00:24.8996445Z 2025-03-14T05:00:24.8996706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.8997150Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.8997238Z 2025-03-14T05:00:24.8997523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.8999098Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.8999179Z 2025-03-14T05:00:24.8999487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.8999654Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:00:24.8999736Z 2025-03-14T05:00:24.9000016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9000481Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9000550Z 2025-03-14T05:00:24.9000839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9002420Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9002501Z 2025-03-14T05:00:24.9002819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9002967Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:00:24.9003048Z 2025-03-14T05:00:24.9003338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9003788Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9003857Z 2025-03-14T05:00:24.9004143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9005745Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9005825Z 2025-03-14T05:00:24.9006127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9006280Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:00:24.9006355Z 2025-03-14T05:00:24.9006667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9006847Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:00:24.9006931Z 2025-03-14T05:00:24.9007207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9007636Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9007716Z 2025-03-14T05:00:24.9007994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9009582Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9009661Z 2025-03-14T05:00:24.9009961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9010108Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:00:24.9010178Z 2025-03-14T05:00:24.9010454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9010889Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9010985Z 2025-03-14T05:00:24.9011262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9012843Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9012922Z 2025-03-14T05:00:24.9013220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9013383Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:00:24.9013452Z 2025-03-14T05:00:24.9013740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9014202Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9014282Z 2025-03-14T05:00:24.9014562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9016206Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9016288Z 2025-03-14T05:00:24.9016603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9016775Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:00:24.9016848Z 2025-03-14T05:00:24.9017168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9017328Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:00:24.9017409Z 2025-03-14T05:00:24.9017686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9018154Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9018242Z 2025-03-14T05:00:24.9018548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9020217Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9020293Z 2025-03-14T05:00:24.9020629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9020793Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:00:24.9020891Z 2025-03-14T05:00:24.9021171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9021645Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9021721Z 2025-03-14T05:00:24.9022026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9023699Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9023775Z 2025-03-14T05:00:24.9024109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9024329Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:00:24.9024418Z 2025-03-14T05:00:24.9024712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9025205Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9025317Z 2025-03-14T05:00:24.9025630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9027317Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9027396Z 2025-03-14T05:00:24.9027719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9027897Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:00:24.9027980Z 2025-03-14T05:00:24.9028313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9028497Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:00:24.9028570Z 2025-03-14T05:00:24.9028856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9029310Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9029390Z 2025-03-14T05:00:24.9029692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9031381Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9031467Z 2025-03-14T05:00:24.9031784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9031941Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:00:24.9032015Z 2025-03-14T05:00:24.9032297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9032761Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9032858Z 2025-03-14T05:00:24.9033168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9034795Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9034875Z 2025-03-14T05:00:24.9035193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9035355Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:00:24.9035438Z 2025-03-14T05:00:24.9035712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9036166Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9036236Z 2025-03-14T05:00:24.9036520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9038098Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9038180Z 2025-03-14T05:00:24.9038476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9038636Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:00:24.9038706Z 2025-03-14T05:00:24.9039014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9039172Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:00:24.9039242Z 2025-03-14T05:00:24.9039712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:24.9039893Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:00:24.9039971Z 2025-03-14T05:00:24.9040284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9040439Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:24.9040509Z 2025-03-14T05:00:24.9040974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:24.9041134Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:00:24.9041210Z 2025-03-14T05:00:24.9041517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9041670Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:24.9041754Z 2025-03-14T05:00:24.9042173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:24.9042363Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:24.9042495Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:24.9042626Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:24.9042701Z 2025-03-14T05:00:24.9043054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:24.9043193Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:24.9043262Z 2025-03-14T05:00:24.9043619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:24.9043750Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:24.9043828Z 2025-03-14T05:00:24.9044234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:24.9044469Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:24.9044541Z 2025-03-14T05:00:24.9045003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:24.9045146Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:24.9045626Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:24.9045765Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:24.9045900Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:24.9045973Z 2025-03-14T05:00:24.9046318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:24.9046486Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T05:00:24.9046559Z 2025-03-14T05:00:24.9046844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9047706Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:24.9047790Z 2025-03-14T05:00:24.9048090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:24.9048308Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T05:00:24.9048382Z 2025-03-14T05:00:24.9048845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:24.9049814Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:24.9049928Z 2025-03-14T05:00:24.9050341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:24.9051253Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:24.9051339Z 2025-03-14T05:00:24.9051732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:24.9051912Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:24.9052070Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:24.9052153Z 2025-03-14T05:00:24.9052626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:24.9052814Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T05:00:24.9053011Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:00:24.9053220Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:00:24.9053311Z 2025-03-14T05:00:24.9053782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:24.9054008Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:24.9054092Z 2025-03-14T05:00:24.9054579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:24.9054755Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:24.9054916Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:24.9055078Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:24.9055152Z 2025-03-14T05:00:24.9055574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:24.9055785Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:24.9055860Z 2025-03-14T05:00:24.9056256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:24.9056416Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:24.9056518Z 2025-03-14T05:00:24.9056889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:24.9057047Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:24.9057193Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:24.9057366Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:24.9057441Z 2025-03-14T05:00:24.9057828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:24.9057972Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:24.9058117Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:24.9058286Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:24.9058378Z 2025-03-14T05:00:24.9058728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:24.9058872Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:24.9058980Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:00:24.9059125Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:00:24.9059199Z 2025-03-14T05:00:24.9059557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:24.9059724Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:24.9059836Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:00:24.9059984Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:00:24.9060068Z 2025-03-14T05:00:24.9060471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:24.9060669Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:24.9060797Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:24.9060878Z 2025-03-14T05:00:24.9061215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:24.9061393Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:24.9061522Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:24.9061607Z 2025-03-14T05:00:24.9061942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:24.9062124Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:24.9062249Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:00:24.9062330Z 2025-03-14T05:00:24.9062687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:24.9062907Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:24.9063054Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:00:24.9063147Z 2025-03-14T05:00:24.9063530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:24.9063690Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:24.9063771Z 2025-03-14T05:00:24.9064202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:24.9064379Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:24.9064451Z 2025-03-14T05:00:24.9064849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:24.9065008Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:24.9065163Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:00:24.9065331Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:24.9065495Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:00:24.9065565Z 2025-03-14T05:00:24.9065957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:24.9066107Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:24.9066252Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:00:24.9066416Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:24.9066575Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:00:24.9066647Z 2025-03-14T05:00:24.9067017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:24.9067168Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:24.9067352Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:24.9067495Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:00:24.9067575Z 2025-03-14T05:00:24.9067934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:24.9068073Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:24.9068252Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:24.9068404Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:00:24.9068476Z 2025-03-14T05:00:24.9068823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:24.9068930Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:24.9069084Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:24.9069158Z 2025-03-14T05:00:24.9069535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:24.9069658Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:24.9069790Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:24.9069861Z 2025-03-14T05:00:24.9070206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:24.9070330Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:24.9070470Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:24.9070559Z 2025-03-14T05:00:24.9070885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:24.9071004Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:24.9071144Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:24.9071213Z 2025-03-14T05:00:24.9071588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:24.9071781Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:24.9071858Z 2025-03-14T05:00:24.9072207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:24.9072387Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:00:24.9072456Z 2025-03-14T05:00:24.9072868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:24.9073060Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:24.9073131Z 2025-03-14T05:00:24.9073641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:24.9073802Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:24.9073881Z 2025-03-14T05:00:24.9074191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9074346Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:24.9074418Z 2025-03-14T05:00:24.9074883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:24.9075003Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:00:24.9075122Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:00:24.9075243Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:24.9075319Z 2025-03-14T05:00:24.9075816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:24.9075999Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:24.9076270Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:00:24.9076361Z 2025-03-14T05:00:24.9076839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:24.9077022Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:24.9077091Z 2025-03-14T05:00:24.9077409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9077567Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:00:24.9077645Z 2025-03-14T05:00:24.9078045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:24.9078214Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:00:24.9078288Z 2025-03-14T05:00:24.9078612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:24.9078769Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:00:24.9078847Z 2025-03-14T05:00:24.9079248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:24.9079403Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:00:24.9079475Z 2025-03-14T05:00:24.9079985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:24.9080151Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:00:24.9080294Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:24.9080464Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:24.9080602Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:24.9080681Z 2025-03-14T05:00:24.9081061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:24.9081190Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:24.9081262Z 2025-03-14T05:00:24.9081271Z 2025-03-14T05:00:24.9081377Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:24.9126180Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:00:24.9126727Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:00:24.9127090Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9127526Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9127959Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9128381Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9128782Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9129175Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9129625Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9130086Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9130500Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9130924Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9131290Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9131736Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9132180Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9132577Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9132971Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9133322Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9133806Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9134227Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9134635Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9135039Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9135419Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.9135870Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9136316Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9136747Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9137171Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9137543Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9137969Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9138397Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9138810Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9139207Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9139572Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9139994Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9140414Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9140816Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9141219Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9141596Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9142022Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9142445Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9142842Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9143234Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9143593Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9144049Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9144540Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9144989Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9145405Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9145732Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9146128Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9146504Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9146873Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9147223Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9147557Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9147946Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9148337Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9148704Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9149055Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9149400Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9149788Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9150182Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9150536Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9150901Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9151220Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9151633Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9152044Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9152416Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9152780Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9153099Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9153498Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9153877Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9154259Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9154598Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9154947Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.9155329Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9155721Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9156096Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9156470Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9156790Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9157165Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9157541Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9157892Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9158245Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9158585Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9158974Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9159377Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9159728Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9160077Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9160392Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9160777Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9161147Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9161508Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9161860Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9162175Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9162560Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9162925Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9163285Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9163656Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9163983Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9164362Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9164744Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9165111Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9165457Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9165799Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9166202Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9166611Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9166976Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9167339Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9167661Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9168059Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9168447Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9168804Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9169165Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9169489Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9169881Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9170264Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9170650Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9170998Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9171326Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9171710Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9172086Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9172464Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9172881Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9173266Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9173714Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9174131Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9174488Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9174825Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9175138Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9175496Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9175860Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9176197Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9176529Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9176826Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9177193Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9177546Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9177910Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9178247Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9178579Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:00:24.9178980Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9179363Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9179736Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9180082Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9180426Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9180823Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9181210Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9181738Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9182094Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9182423Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9182803Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9183189Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9183549Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9183909Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9184270Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9184669Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9185120Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9185488Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9185856Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9186185Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9186593Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9186982Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9187384Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9187779Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9188156Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9188562Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9188946Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9189330Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9189687Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9190027Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9190430Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9190827Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9191203Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9191571Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9191908Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9192314Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9192709Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9193076Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9193454Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9193783Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9194183Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9194592Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9194986Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9195348Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9195692Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9196089Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9196489Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9196865Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9197226Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9197564Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9197958Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9198354Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9198731Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9199100Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9199425Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9199824Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9200207Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9200564Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9200921Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9201237Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9201624Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9202019Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9202392Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9202761Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9203080Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:00:24.9203466Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9203840Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9204203Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9204549Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9204871Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:00:24.9205256Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9205627Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9205991Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9206338Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9206679Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:00:24.9207060Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:00:24.9207444Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:00:24.9207800Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:00:24.9208159Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:00:24.9208555Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:24.9208929Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:24.9209299Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:24.9209728Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:24.9210131Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:24.9210508Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:24.9210903Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:24.9210985Z 2025-03-14T05:00:24.9211319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9211851Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9211937Z 2025-03-14T05:00:24.9212254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9213792Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9213894Z 2025-03-14T05:00:24.9214200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:00:24.9214359Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:00:24.9214428Z 2025-03-14T05:00:24.9214821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:00:24.9215083Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:00:24.9215164Z 2025-03-14T05:00:24.9215455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9215922Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9215997Z 2025-03-14T05:00:24.9216310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9217973Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9218065Z 2025-03-14T05:00:24.9218394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9218557Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:00:24.9218629Z 2025-03-14T05:00:24.9218916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9219385Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9219468Z 2025-03-14T05:00:24.9219764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9221457Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9221610Z 2025-03-14T05:00:24.9221938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9222106Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:00:24.9222179Z 2025-03-14T05:00:24.9222473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9222964Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9223048Z 2025-03-14T05:00:24.9223347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9225232Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9225341Z 2025-03-14T05:00:24.9225627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9226143Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.9226221Z 2025-03-14T05:00:24.9226537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9228385Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9228475Z 2025-03-14T05:00:24.9228800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9229019Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:00:24.9229100Z 2025-03-14T05:00:24.9229430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9229617Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:00:24.9229691Z 2025-03-14T05:00:24.9229990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9230479Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9230566Z 2025-03-14T05:00:24.9230866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9232642Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9232751Z 2025-03-14T05:00:24.9233082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9233257Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:00:24.9233333Z 2025-03-14T05:00:24.9233635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9234131Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9234218Z 2025-03-14T05:00:24.9234524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9236274Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9236379Z 2025-03-14T05:00:24.9236701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9236859Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:00:24.9236928Z 2025-03-14T05:00:24.9237201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9237683Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9237766Z 2025-03-14T05:00:24.9238058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9239785Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9239882Z 2025-03-14T05:00:24.9240194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9240372Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:00:24.9240445Z 2025-03-14T05:00:24.9240769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9240935Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:00:24.9241014Z 2025-03-14T05:00:24.9241291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9241766Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9241837Z 2025-03-14T05:00:24.9242121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9243712Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9243818Z 2025-03-14T05:00:24.9244129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9244278Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:00:24.9244355Z 2025-03-14T05:00:24.9244629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9245095Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9245171Z 2025-03-14T05:00:24.9245463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9247109Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9247199Z 2025-03-14T05:00:24.9247507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9247654Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:00:24.9247733Z 2025-03-14T05:00:24.9248001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9248470Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9248545Z 2025-03-14T05:00:24.9248836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9250471Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9250560Z 2025-03-14T05:00:24.9250863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9251026Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:00:24.9251106Z 2025-03-14T05:00:24.9251419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9251600Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:00:24.9251675Z 2025-03-14T05:00:24.9251962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9252434Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9252519Z 2025-03-14T05:00:24.9252828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9254527Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9254624Z 2025-03-14T05:00:24.9254941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9255115Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:00:24.9255189Z 2025-03-14T05:00:24.9255475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9255955Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9256040Z 2025-03-14T05:00:24.9256333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9258036Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9258136Z 2025-03-14T05:00:24.9258456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9258627Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:00:24.9258700Z 2025-03-14T05:00:24.9258989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9259469Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9259552Z 2025-03-14T05:00:24.9259846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9261590Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9261688Z 2025-03-14T05:00:24.9261970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9262473Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.9262548Z 2025-03-14T05:00:24.9262850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9264723Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9264804Z 2025-03-14T05:00:24.9265130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9265321Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:00:24.9265405Z 2025-03-14T05:00:24.9265724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9265907Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:00:24.9265982Z 2025-03-14T05:00:24.9266274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9266744Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9266832Z 2025-03-14T05:00:24.9267138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9268897Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9269013Z 2025-03-14T05:00:24.9269337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9269506Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:00:24.9269580Z 2025-03-14T05:00:24.9269869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9270355Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9270430Z 2025-03-14T05:00:24.9270733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9272416Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9272515Z 2025-03-14T05:00:24.9272833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9273002Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:00:24.9273073Z 2025-03-14T05:00:24.9273361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9273848Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9273925Z 2025-03-14T05:00:24.9274230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9275922Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9276036Z 2025-03-14T05:00:24.9276333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9276517Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:00:24.9276595Z 2025-03-14T05:00:24.9276897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9277065Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:00:24.9277138Z 2025-03-14T05:00:24.9277410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9277861Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9277941Z 2025-03-14T05:00:24.9278220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9279866Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9279961Z 2025-03-14T05:00:24.9280265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9280426Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:00:24.9280496Z 2025-03-14T05:00:24.9280770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9281222Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9281303Z 2025-03-14T05:00:24.9281777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9283543Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9283651Z 2025-03-14T05:00:24.9283975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9284136Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:00:24.9284206Z 2025-03-14T05:00:24.9284481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9284935Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9285017Z 2025-03-14T05:00:24.9285300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9286910Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9287017Z 2025-03-14T05:00:24.9287315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9287488Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:00:24.9287559Z 2025-03-14T05:00:24.9287863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9288023Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:00:24.9288099Z 2025-03-14T05:00:24.9288359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9288802Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9288872Z 2025-03-14T05:00:24.9289171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9290784Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9290874Z 2025-03-14T05:00:24.9291179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9291331Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:00:24.9291407Z 2025-03-14T05:00:24.9291669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9292124Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9292194Z 2025-03-14T05:00:24.9292482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9294078Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9294167Z 2025-03-14T05:00:24.9294477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9294626Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:00:24.9294701Z 2025-03-14T05:00:24.9294963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9295425Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9295496Z 2025-03-14T05:00:24.9295781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9297429Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9297516Z 2025-03-14T05:00:24.9297820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9297987Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:00:24.9298064Z 2025-03-14T05:00:24.9298359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9298525Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:00:24.9298596Z 2025-03-14T05:00:24.9298865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9299303Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9299382Z 2025-03-14T05:00:24.9299657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9301274Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9301369Z 2025-03-14T05:00:24.9301668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9301819Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:00:24.9301890Z 2025-03-14T05:00:24.9302157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9302604Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9302683Z 2025-03-14T05:00:24.9302972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9304750Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9304866Z 2025-03-14T05:00:24.9305192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9305363Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:00:24.9305440Z 2025-03-14T05:00:24.9305736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9306210Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9306295Z 2025-03-14T05:00:24.9306588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9308260Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9308365Z 2025-03-14T05:00:24.9308650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9309142Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:00:24.9309217Z 2025-03-14T05:00:24.9309520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9311275Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9311364Z 2025-03-14T05:00:24.9311689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9311847Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:00:24.9311926Z 2025-03-14T05:00:24.9312245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9312416Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:00:24.9312488Z 2025-03-14T05:00:24.9312778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9313240Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9313323Z 2025-03-14T05:00:24.9313627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9315294Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9315453Z 2025-03-14T05:00:24.9315774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9315932Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:00:24.9316005Z 2025-03-14T05:00:24.9316291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9316766Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9316840Z 2025-03-14T05:00:24.9317143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9318849Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9318953Z 2025-03-14T05:00:24.9319270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9319428Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:00:24.9319500Z 2025-03-14T05:00:24.9319785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9320259Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9320332Z 2025-03-14T05:00:24.9320635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9322247Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9322328Z 2025-03-14T05:00:24.9322644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9322808Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:00:24.9322884Z 2025-03-14T05:00:24.9323184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9323342Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:00:24.9323413Z 2025-03-14T05:00:24.9323687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9324126Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9324204Z 2025-03-14T05:00:24.9324479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9326117Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9326214Z 2025-03-14T05:00:24.9326518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9326668Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:00:24.9326739Z 2025-03-14T05:00:24.9327014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9327455Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9327535Z 2025-03-14T05:00:24.9327814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9329415Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9329831Z 2025-03-14T05:00:24.9330132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9330280Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:00:24.9330351Z 2025-03-14T05:00:24.9330621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9331064Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9331142Z 2025-03-14T05:00:24.9331422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9333047Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9333188Z 2025-03-14T05:00:24.9333481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9333642Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:00:24.9333713Z 2025-03-14T05:00:24.9334013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9334165Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:00:24.9334243Z 2025-03-14T05:00:24.9334503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9334939Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9335008Z 2025-03-14T05:00:24.9335295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9336889Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9336985Z 2025-03-14T05:00:24.9337295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9337438Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:00:24.9337516Z 2025-03-14T05:00:24.9337778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9338224Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9338294Z 2025-03-14T05:00:24.9338577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9340186Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9340282Z 2025-03-14T05:00:24.9340591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9340732Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:00:24.9340811Z 2025-03-14T05:00:24.9341072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9341517Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9341588Z 2025-03-14T05:00:24.9341872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9343479Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9343570Z 2025-03-14T05:00:24.9343880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9344039Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:00:24.9344176Z 2025-03-14T05:00:24.9344491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9344653Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:00:24.9344721Z 2025-03-14T05:00:24.9345017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9345496Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9345582Z 2025-03-14T05:00:24.9345904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9347567Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9347670Z 2025-03-14T05:00:24.9347997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9348155Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:00:24.9348230Z 2025-03-14T05:00:24.9348524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9349010Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9349111Z 2025-03-14T05:00:24.9349397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9351014Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9351116Z 2025-03-14T05:00:24.9351431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9351587Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:00:24.9351659Z 2025-03-14T05:00:24.9351942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9352409Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9352491Z 2025-03-14T05:00:24.9352782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9354485Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9354588Z 2025-03-14T05:00:24.9354901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9355068Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:00:24.9355136Z 2025-03-14T05:00:24.9355448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9355598Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:00:24.9355677Z 2025-03-14T05:00:24.9355940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9356380Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:00:24.9356451Z 2025-03-14T05:00:24.9356740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9358354Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9358440Z 2025-03-14T05:00:24.9358749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9358891Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:00:24.9358971Z 2025-03-14T05:00:24.9359233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9359701Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:00:24.9359771Z 2025-03-14T05:00:24.9360075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9361691Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9361781Z 2025-03-14T05:00:24.9362091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9362231Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:00:24.9362310Z 2025-03-14T05:00:24.9362570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9363021Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:00:24.9363100Z 2025-03-14T05:00:24.9363383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:00:24.9365021Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:00:24.9365109Z 2025-03-14T05:00:24.9365417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:00:24.9365569Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:00:24.9365646Z 2025-03-14T05:00:24.9365947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:00:24.9366104Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:00:24.9366176Z 2025-03-14T05:00:24.9366643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:24.9366808Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:00:24.9366891Z 2025-03-14T05:00:24.9367215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9367376Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:24.9367469Z 2025-03-14T05:00:24.9367920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:24.9368085Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:00:24.9368153Z 2025-03-14T05:00:24.9368465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9368609Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:24.9368685Z 2025-03-14T05:00:24.9369075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:24.9369273Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:24.9369378Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:24.9369514Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:24.9369585Z 2025-03-14T05:00:24.9369938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:24.9370072Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:24.9370150Z 2025-03-14T05:00:24.9370487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:24.9370618Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:24.9370688Z 2025-03-14T05:00:24.9371092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:24.9371314Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:24.9371411Z 2025-03-14T05:00:24.9371851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:24.9371991Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:24.9372441Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:24.9372583Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:24.9372702Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:24.9372782Z 2025-03-14T05:00:24.9373094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:24.9373236Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T05:00:24.9373306Z 2025-03-14T05:00:24.9373596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:24.9374417Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:24.9374515Z 2025-03-14T05:00:24.9374814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:24.9375007Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T05:00:24.9375083Z 2025-03-14T05:00:24.9375488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:24.9376392Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:24.9376466Z 2025-03-14T05:00:24.9376853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:24.9377712Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:24.9377783Z 2025-03-14T05:00:24.9378145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:24.9378325Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:24.9378480Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:24.9378549Z 2025-03-14T05:00:24.9378993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:24.9379158Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T05:00:24.9379351Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:00:24.9379536Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:00:24.9379616Z 2025-03-14T05:00:24.9380041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:24.9380273Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:24.9380342Z 2025-03-14T05:00:24.9380804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:24.9380974Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:24.9381133Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:24.9381282Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:24.9381358Z 2025-03-14T05:00:24.9381941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:24.9382136Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:24.9382217Z 2025-03-14T05:00:24.9382546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:24.9382705Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:24.9382773Z 2025-03-14T05:00:24.9383108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:24.9383249Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:24.9383391Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:24.9383543Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:24.9383622Z 2025-03-14T05:00:24.9383958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:24.9384096Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:24.9384280Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:24.9384454Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:24.9384526Z 2025-03-14T05:00:24.9384875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:24.9385060Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:24.9385169Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:00:24.9385308Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:00:24.9385388Z 2025-03-14T05:00:24.9385731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:24.9385892Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:24.9385990Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:00:24.9386131Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:00:24.9386202Z 2025-03-14T05:00:24.9386564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:24.9386727Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:24.9386878Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:24.9386950Z 2025-03-14T05:00:24.9387277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:24.9387457Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:24.9387614Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:24.9387684Z 2025-03-14T05:00:24.9388019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:24.9388186Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:24.9388313Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:00:24.9388385Z 2025-03-14T05:00:24.9388721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:24.9388917Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:24.9389046Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:00:24.9389117Z 2025-03-14T05:00:24.9389486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:24.9389645Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:24.9389715Z 2025-03-14T05:00:24.9390083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:24.9390228Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:24.9390305Z 2025-03-14T05:00:24.9390677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:24.9390834Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:24.9390967Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:00:24.9391135Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:24.9391300Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:00:24.9391375Z 2025-03-14T05:00:24.9391740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:24.9391892Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:24.9392023Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:00:24.9392189Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:24.9392331Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:00:24.9392406Z 2025-03-14T05:00:24.9392750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:24.9392878Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:24.9393044Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:24.9393208Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:00:24.9393277Z 2025-03-14T05:00:24.9393650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:24.9393788Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:24.9393969Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:24.9394111Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:00:24.9394187Z 2025-03-14T05:00:24.9394515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:24.9394626Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:24.9394752Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:24.9394833Z 2025-03-14T05:00:24.9395159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:24.9395267Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:24.9395389Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:24.9395469Z 2025-03-14T05:00:24.9395790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:24.9395923Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:24.9396056Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:24.9396134Z 2025-03-14T05:00:24.9396452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:24.9396580Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:24.9396710Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:24.9396789Z 2025-03-14T05:00:24.9397154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:24.9397368Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:24.9397438Z 2025-03-14T05:00:24.9397793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:24.9397959Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:00:24.9398036Z 2025-03-14T05:00:24.9398482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:24.9398672Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:24.9398739Z 2025-03-14T05:00:24.9399252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:24.9399404Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:24.9399472Z 2025-03-14T05:00:24.9399803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9399974Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:24.9400071Z 2025-03-14T05:00:24.9400521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:24.9400652Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:00:24.9400764Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:00:24.9400891Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:24.9400958Z 2025-03-14T05:00:24.9401444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:24.9401617Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:24.9401870Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:00:24.9401941Z 2025-03-14T05:00:24.9402422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:24.9402598Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:24.9402674Z 2025-03-14T05:00:24.9402981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:24.9403147Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:00:24.9403217Z 2025-03-14T05:00:24.9403622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:24.9403780Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:00:24.9403860Z 2025-03-14T05:00:24.9404188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:24.9404350Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:00:24.9404420Z 2025-03-14T05:00:24.9404821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:24.9404970Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:00:24.9405049Z 2025-03-14T05:00:24.9405547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:24.9405700Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:00:24.9405836Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:24.9406000Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:24.9406164Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:24.9406234Z 2025-03-14T05:00:24.9406647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:24.9406788Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:24.9406866Z 2025-03-14T05:00:33.4480416Z 2025-03-14T05:00:33.4484542Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:33.4486203Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:00:33.4487805Z l_features_res4_ = L_features_res4_ 2025-03-14T05:00:33.4488221Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:33.4488762Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:33.4489256Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:33.4489794Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:33.4490389Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:33.4490964Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:33.4491510Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:33.4491877Z 2025-03-14T05:00:33.4492511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:33.4493499Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:00:33.4493774Z 2025-03-14T05:00:33.4494172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4494670Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:33.4494928Z 2025-03-14T05:00:33.4495457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:33.4496097Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:00:33.4496368Z 2025-03-14T05:00:33.4496761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4497265Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:33.4497533Z 2025-03-14T05:00:33.4498109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:33.4498772Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:33.4499178Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:33.4499462Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:33.4499706Z 2025-03-14T05:00:33.4500129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:33.4500661Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:33.4500916Z 2025-03-14T05:00:33.4501343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:33.4501855Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:33.4502101Z 2025-03-14T05:00:33.4502580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:33.4503237Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:33.4503571Z 2025-03-14T05:00:33.4504205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:33.4504837Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:33.4505387Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:33.4505939Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:33.4506268Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:33.4506528Z 2025-03-14T05:00:33.4506931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:33.4507440Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:00:33.4507690Z 2025-03-14T05:00:33.4508046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:33.4508990Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:33.4509719Z 2025-03-14T05:00:33.4510095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:33.4510625Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:00:33.4510933Z 2025-03-14T05:00:33.4511411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:33.4512536Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:33.4513314Z 2025-03-14T05:00:33.4513773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:33.4514803Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:33.4515524Z 2025-03-14T05:00:33.4515967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:33.4516531Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:33.4516889Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:33.4517156Z 2025-03-14T05:00:33.4517675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:33.4518311Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:00:33.4518700Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:00:33.4519112Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:00:33.4519415Z 2025-03-14T05:00:33.4519915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:33.4520588Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:33.4520917Z 2025-03-14T05:00:33.4522941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:33.4523606Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:33.4523965Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:33.4524311Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:33.4524573Z 2025-03-14T05:00:33.4525041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:33.4525645Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:33.4525943Z 2025-03-14T05:00:33.4526356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:33.4526923Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:33.4527310Z 2025-03-14T05:00:33.4527868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:33.4528642Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:33.4529116Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:33.4530254Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:33.4530701Z 2025-03-14T05:00:33.4531155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:33.4531701Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:33.4532025Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:33.4532355Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:33.4533374Z 2025-03-14T05:00:33.4533819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:33.4534344Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:33.4534636Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:00:33.4534914Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:00:33.4535169Z 2025-03-14T05:00:33.4535604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:33.4536128Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:33.4536436Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:00:33.4536714Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:00:33.4536957Z 2025-03-14T05:00:33.4537383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:33.4537894Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:33.4538221Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:33.4538457Z 2025-03-14T05:00:33.4538844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:33.4539384Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:33.4539705Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:33.4539937Z 2025-03-14T05:00:33.4540325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:33.4540831Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:33.4541150Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:00:33.4541392Z 2025-03-14T05:00:33.4541792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:33.4542343Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:33.4542701Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:00:33.4542944Z 2025-03-14T05:00:33.4543408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:33.4543981Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:33.4544332Z 2025-03-14T05:00:33.4544794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:33.4545348Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:33.4545622Z 2025-03-14T05:00:33.4546079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:33.4546651Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:33.4546997Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:00:33.4547359Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:33.4547717Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:00:33.4547984Z 2025-03-14T05:00:33.4548431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:33.4548979Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:33.4549309Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:00:33.4549643Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:33.4549995Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:00:33.4550257Z 2025-03-14T05:00:33.4550674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:33.4551188Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:33.4551526Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:33.4551882Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:00:33.4552182Z 2025-03-14T05:00:33.4552620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:33.4553147Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:33.4553496Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:33.4553860Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:00:33.4554127Z 2025-03-14T05:00:33.4554546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:33.4555040Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:33.4555313Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:33.4555558Z 2025-03-14T05:00:33.4555966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:33.4556448Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:33.4556736Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:33.4556982Z 2025-03-14T05:00:33.4557398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:33.4557891Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:33.4558212Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:33.4558470Z 2025-03-14T05:00:33.4558869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:33.4559395Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:33.4559701Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:33.4559949Z 2025-03-14T05:00:33.4560379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:33.4560962Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:33.4561261Z 2025-03-14T05:00:33.4561688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:33.4562240Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:00:33.4562527Z 2025-03-14T05:00:33.4562989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:33.4563602Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:33.4563887Z 2025-03-14T05:00:33.4564457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:33.4565161Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:33.4565409Z 2025-03-14T05:00:33.4565795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4566308Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:33.4566574Z 2025-03-14T05:00:33.4567100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:33.4567701Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:00:33.4567977Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:00:33.4568252Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:33.4568489Z 2025-03-14T05:00:33.4569037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:33.4569714Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:33.4570169Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:00:33.4570521Z 2025-03-14T05:00:33.4571084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:33.4571771Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:33.4572076Z 2025-03-14T05:00:33.4572471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4572983Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:00:33.4573261Z 2025-03-14T05:00:33.4573731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:33.4574314Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:00:33.4574580Z 2025-03-14T05:00:33.4574975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:33.4575489Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:00:33.4575760Z 2025-03-14T05:00:33.4576240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:33.4576812Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:00:33.4577072Z 2025-03-14T05:00:33.4577657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:33.4578346Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:00:33.4578674Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:33.4579013Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:33.4579365Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:33.4579627Z 2025-03-14T05:00:33.4580096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:33.4580673Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:33.4580920Z 2025-03-14T05:00:33.4581104Z 2025-03-14T05:00:33.4581203Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:33.4582968Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:00:33.4584404Z l_features_res4_ = L_features_res4_ 2025-03-14T05:00:33.4584846Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:00:33.4585538Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:00:33.4586089Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:00:33.4586679Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:00:33.4587290Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:00:33.4587874Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:00:33.4588446Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:00:33.4588824Z 2025-03-14T05:00:33.4589389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:33.4590056Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:00:33.4590336Z 2025-03-14T05:00:33.4590738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4591245Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:33.4591515Z 2025-03-14T05:00:33.4592062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:00:33.4592728Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:00:33.4593011Z 2025-03-14T05:00:33.4593413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4593922Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:00:33.4594192Z 2025-03-14T05:00:33.4594679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:00:33.4595367Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:00:33.4595725Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:00:33.4596011Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:00:33.4596274Z 2025-03-14T05:00:33.4596730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:00:33.4597330Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:00:33.4597588Z 2025-03-14T05:00:33.4598009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:00:33.4598521Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:00:33.4598770Z 2025-03-14T05:00:33.4599250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:00:33.4599926Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:00:33.4600256Z 2025-03-14T05:00:33.4600780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:00:33.4601405Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:00:33.4601905Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:00:33.4602401Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:00:33.4602694Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:00:33.4602928Z 2025-03-14T05:00:33.4603319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:33.4603796Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:00:33.4604041Z 2025-03-14T05:00:33.4604390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:00:33.4605297Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:00:33.4606002Z 2025-03-14T05:00:33.4606370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:00:33.4606881Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:00:33.4607184Z 2025-03-14T05:00:33.4607652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:00:33.4608717Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:00:33.4609476Z 2025-03-14T05:00:33.4609921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:00:33.4610916Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:00:33.4611625Z 2025-03-14T05:00:33.4612044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:00:33.4612587Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:00:33.4612930Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:00:33.4613197Z 2025-03-14T05:00:33.4613717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:00:33.4614351Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:00:33.4614746Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:00:33.4615140Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:00:33.4615438Z 2025-03-14T05:00:33.4615925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:33.4616582Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:00:33.4616902Z 2025-03-14T05:00:33.4617420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:33.4618057Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:00:33.4618420Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:33.4618783Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:33.4619057Z 2025-03-14T05:00:33.4619550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:33.4620193Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:00:33.4620513Z 2025-03-14T05:00:33.4620962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:33.4621531Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:33.4621807Z 2025-03-14T05:00:33.4622235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:33.4622790Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:33.4623118Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:33.4623469Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:33.4623765Z 2025-03-14T05:00:33.4624298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:33.4624866Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:33.4625204Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:33.4625563Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:33.4625847Z 2025-03-14T05:00:33.4626273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:33.4626787Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:33.4627072Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:00:33.4627378Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:00:33.4627640Z 2025-03-14T05:00:33.4628087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:33.4628627Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:33.4628924Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:00:33.4629204Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:00:33.4629458Z 2025-03-14T05:00:33.4629878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:33.4630396Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:33.4630731Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:33.4630976Z 2025-03-14T05:00:33.4631377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:33.4631893Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:33.4632228Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:33.4632470Z 2025-03-14T05:00:33.4632867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:33.4633392Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:33.4633724Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:00:33.4633960Z 2025-03-14T05:00:33.4634374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:33.4634913Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:33.4635262Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:00:33.4635500Z 2025-03-14T05:00:33.4635928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:33.4636489Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:33.4636773Z 2025-03-14T05:00:33.4637194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:33.4637720Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:33.4637977Z 2025-03-14T05:00:33.4638411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:33.4638947Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:33.4639266Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:00:33.4639602Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:33.4639948Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:00:33.4640206Z 2025-03-14T05:00:33.4640668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:33.4641211Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:33.4641551Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:00:33.4641907Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:33.4642248Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:00:33.4642508Z 2025-03-14T05:00:33.4642933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:33.4643439Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:33.4643768Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:33.4644114Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:00:33.4644368Z 2025-03-14T05:00:33.4644791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:33.4645297Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:33.4656531Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:33.4656962Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:00:33.4657248Z 2025-03-14T05:00:33.4657724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:33.4658235Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:33.4658521Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:33.4658774Z 2025-03-14T05:00:33.4659203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:33.4659686Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:33.4659963Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:33.4660213Z 2025-03-14T05:00:33.4660629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:33.4661243Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:33.4661555Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:33.4661824Z 2025-03-14T05:00:33.4662226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:33.4662733Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:33.4663038Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:33.4663303Z 2025-03-14T05:00:33.4663756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:33.4664456Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:33.4664785Z 2025-03-14T05:00:33.4665292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:33.4665869Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:00:33.4666165Z 2025-03-14T05:00:33.4666826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:33.4667495Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:33.4667798Z 2025-03-14T05:00:33.4668391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:33.4669109Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:33.4669389Z 2025-03-14T05:00:33.4669788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4670303Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:00:33.4670578Z 2025-03-14T05:00:33.4671114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:33.4671741Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:00:33.4672015Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:00:33.4672286Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:33.4672521Z 2025-03-14T05:00:33.4673077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:33.4673772Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:33.4674243Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:00:33.4674611Z 2025-03-14T05:00:33.4675153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:33.4675858Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:33.4676153Z 2025-03-14T05:00:33.4676548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:33.4677069Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:00:33.4677350Z 2025-03-14T05:00:33.4677827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:33.4678422Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:00:33.4678696Z 2025-03-14T05:00:33.4679105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:33.4679600Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:00:33.4679873Z 2025-03-14T05:00:33.4680365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:33.4680971Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:00:33.4681261Z 2025-03-14T05:00:33.4682138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:33.4682829Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:00:33.4683151Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:33.4683492Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:33.4683851Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:33.4684116Z 2025-03-14T05:00:33.4684589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:33.4685132Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:33.4685377Z 2025-03-14T05:00:34.1157421Z 2025-03-14T05:00:34.1160934Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:34.1163894Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T05:00:34.1167277Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:00:34.1168448Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:00:34.1169489Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:00:34.1170483Z 2025-03-14T05:00:34.1171793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:00:34.1173237Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:00:34.1174278Z 2025-03-14T05:00:34.1175731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:00:34.1177616Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:00:34.1178831Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:00:34.1179984Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:00:34.1180957Z 2025-03-14T05:00:34.1183790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:34.1186882Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:00:34.1188105Z 2025-03-14T05:00:34.1189371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:34.1190713Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:00:34.1191734Z 2025-03-14T05:00:34.1192951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:34.1194757Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:34.1198506Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:34.1199995Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:00:34.1201153Z 2025-03-14T05:00:34.1202418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:34.1203681Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:34.1213306Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:34.1215893Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:00:34.1217128Z 2025-03-14T05:00:34.1218417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:34.1221947Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:34.1224976Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:00:34.1226296Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:00:34.1227336Z 2025-03-14T05:00:34.1228612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:34.1229968Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:34.1231024Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:00:34.1234400Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:00:34.1236590Z 2025-03-14T05:00:34.1238034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:34.1239413Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:34.1240586Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:00:34.1241598Z 2025-03-14T05:00:34.1242771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:34.1245410Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:34.1245874Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:00:34.1246286Z 2025-03-14T05:00:34.1247632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:34.1248190Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:34.1248533Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:00:34.1248824Z 2025-03-14T05:00:34.1249244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:34.1249791Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:34.1250146Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:00:34.1250389Z 2025-03-14T05:00:34.1250828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:34.1251481Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:34.1251745Z 2025-03-14T05:00:34.1252221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:34.1252790Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:34.1253052Z 2025-03-14T05:00:34.1253493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:34.1254039Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:34.1254364Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:00:34.1254706Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:34.1255062Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:00:34.1255324Z 2025-03-14T05:00:34.1255761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:34.1256312Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:34.1256641Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:00:34.1256982Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:34.1257336Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:00:34.1257610Z 2025-03-14T05:00:34.1258033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:34.1258539Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:34.1258879Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:34.1259236Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:00:34.1259498Z 2025-03-14T05:00:34.1259932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:34.1260488Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:34.1260834Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:34.1261197Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:00:34.1261463Z 2025-03-14T05:00:34.1261886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:34.1262374Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:34.1262673Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:34.1262921Z 2025-03-14T05:00:34.1263344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:34.1263838Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:34.1264218Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:34.1264486Z 2025-03-14T05:00:34.1264928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:34.1265432Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:34.1265767Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:34.1266049Z 2025-03-14T05:00:34.1266448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:34.1266930Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:34.1267229Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:34.1267484Z 2025-03-14T05:00:34.1267929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:34.1268567Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:34.1268871Z 2025-03-14T05:00:34.1269308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:34.1269868Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:00:34.1270150Z 2025-03-14T05:00:34.1270635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:00:34.1271255Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:00:34.1271552Z 2025-03-14T05:00:34.1272137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:00:34.1272975Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:00:34.1273235Z 2025-03-14T05:00:34.1273628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:34.1274130Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:00:34.1274417Z 2025-03-14T05:00:34.1274954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:00:34.1275631Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:00:34.1275981Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:00:34.1276267Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:00:34.1276504Z 2025-03-14T05:00:34.1277051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:00:34.1277727Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:00:34.1278185Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T05:00:34.1278538Z 2025-03-14T05:00:34.1279103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:00:34.1279798Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:00:34.1280087Z 2025-03-14T05:00:34.1280489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:00:34.1280993Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:00:34.1281270Z 2025-03-14T05:00:34.1281982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:00:34.1282572Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:00:34.1282842Z 2025-03-14T05:00:34.1283232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:00:34.1283731Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T05:00:34.1283997Z 2025-03-14T05:00:34.1284459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:00:34.1285024Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:00:34.1285284Z 2025-03-14T05:00:34.1285845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:00:34.1286513Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:00:34.1286822Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:34.1287155Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:00:34.1287495Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:00:34.1287749Z 2025-03-14T05:00:34.1288200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:00:34.1288818Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:00:34.1289053Z 2025-03-14T05:00:49.8922363Z 2025-03-14T05:00:49.8922979Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:49.8924766Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:49.8933342Z l_stack0_ = L_stack0_ 2025-03-14T05:00:49.8933998Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:49.8934929Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:49.8935527Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:49.8936167Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:49.8936738Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:49.8937160Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:49.8937572Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:49.8937980Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:49.8938291Z 2025-03-14T05:00:49.8938883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:00:49.8939564Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:00:49.8939838Z 2025-03-14T05:00:49.8940256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:49.8941253Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:49.8942004Z 2025-03-14T05:00:49.8942436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:49.8943477Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:49.8944475Z 2025-03-14T05:00:49.8944913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.8945515Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.8945786Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:49.8946037Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:49.8946332Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.8946622Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:49.8946890Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:49.8947122Z 2025-03-14T05:00:49.8947513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:49.8948476Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.8949216Z 2025-03-14T05:00:49.8949681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:49.8950357Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:49.8950638Z 2025-03-14T05:00:49.8951068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:49.8951633Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:49.8951928Z 2025-03-14T05:00:49.8952340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:49.8952843Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:49.8953150Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.8953472Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:49.8953740Z 2025-03-14T05:00:49.8954149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:49.8954648Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:49.8954946Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:49.8955261Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:49.8955525Z 2025-03-14T05:00:49.8955925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:49.8956412Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.8956674Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:49.8956936Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:49.8957177Z 2025-03-14T05:00:49.8957582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:49.8958095Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:49.8958384Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:49.8958650Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:49.8958919Z 2025-03-14T05:00:49.8959335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:49.8959851Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:49.8960186Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:49.8960428Z 2025-03-14T05:00:49.8960832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:49.8961355Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:49.8961689Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:49.8961939Z 2025-03-14T05:00:49.8962328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:49.8962826Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:49.8963144Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:49.8963379Z 2025-03-14T05:00:49.8963792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:49.8964346Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:49.8964711Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:49.8964949Z 2025-03-14T05:00:49.8965395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:49.8965950Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:49.8966223Z 2025-03-14T05:00:49.8966638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:49.8967192Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:49.8967462Z 2025-03-14T05:00:49.8967906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:49.8968470Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:49.8968805Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:49.8969159Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:49.8969523Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:49.8969799Z 2025-03-14T05:00:49.8970263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:49.8970833Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:49.8971169Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:49.8971517Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:49.8971884Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:49.8972161Z 2025-03-14T05:00:49.8972626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:49.8973156Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:49.8973502Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:49.8973866Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:49.8974131Z 2025-03-14T05:00:49.8974607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:49.8975140Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:49.8975488Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:49.8975854Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:49.8976121Z 2025-03-14T05:00:49.8976542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:49.8977044Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:49.8977324Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:49.8977574Z 2025-03-14T05:00:49.8978018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:49.8978527Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:49.8978802Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:49.8979048Z 2025-03-14T05:00:49.8979463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:49.8979966Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:49.8980272Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:49.8980536Z 2025-03-14T05:00:49.8980948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:49.8981686Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:49.8982007Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:49.8982271Z 2025-03-14T05:00:49.8982731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:49.8983350Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:49.8983661Z 2025-03-14T05:00:49.8984104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:49.8984746Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:49.8985066Z 2025-03-14T05:00:49.8985574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:49.8986220Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:49.8986605Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:49.8986959Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:49.8987286Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:49.8987629Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:49.8987918Z 2025-03-14T05:00:49.8988314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.8988897Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.8989254Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:49.8989509Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:49.8989885Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.8990248Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:49.8990506Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:49.8990733Z 2025-03-14T05:00:49.8991187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:49.8991746Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:49.8992036Z 2025-03-14T05:00:49.8992555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:49.8993240Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:49.8993636Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:49.8993940Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:49.8994263Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:49.8994601Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:49.8994872Z 2025-03-14T05:00:49.8995465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:49.8996213Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:49.8996568Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:49.8996918Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:49.8997272Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:49.8997574Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:49.8997820Z 2025-03-14T05:00:49.8998276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:49.8998817Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:49.8999059Z 2025-03-14T05:00:49.8999195Z 2025-03-14T05:00:49.8999293Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:49.9000730Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:49.9002129Z l_stack0_ = L_stack0_ 2025-03-14T05:00:49.9002527Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:49.9003117Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:49.9003693Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:49.9004258Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:49.9004747Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9005177Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9005586Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9006010Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9006321Z 2025-03-14T05:00:49.9006861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:00:49.9007503Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:00:49.9007779Z 2025-03-14T05:00:49.9008187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:49.9009172Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:49.9009914Z 2025-03-14T05:00:49.9010334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:49.9011364Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:49.9012131Z 2025-03-14T05:00:49.9012518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.9012991Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.9013253Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:49.9013494Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:49.9013774Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.9014040Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:49.9014292Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:49.9014544Z 2025-03-14T05:00:49.9014932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:49.9015898Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9016619Z 2025-03-14T05:00:49.9017095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:49.9017687Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:49.9017970Z 2025-03-14T05:00:49.9018381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:49.9018920Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:49.9019215Z 2025-03-14T05:00:49.9019661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:49.9020194Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:49.9020537Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.9020895Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:49.9021172Z 2025-03-14T05:00:49.9021601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:49.9022126Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:49.9022438Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:49.9022769Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:49.9023047Z 2025-03-14T05:00:49.9023479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:49.9024024Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.9024394Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:49.9024685Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:49.9024956Z 2025-03-14T05:00:49.9025405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:49.9025974Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:49.9026296Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:49.9026603Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:49.9026866Z 2025-03-14T05:00:49.9027295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:49.9027837Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:49.9028181Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:49.9028434Z 2025-03-14T05:00:49.9028844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:49.9029404Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:49.9029746Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:49.9029994Z 2025-03-14T05:00:49.9030400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:49.9030930Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:49.9031266Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:49.9031513Z 2025-03-14T05:00:49.9031924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:49.9032490Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:49.9032852Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:49.9033098Z 2025-03-14T05:00:49.9033558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:49.9034136Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:49.9034403Z 2025-03-14T05:00:49.9034871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:49.9035451Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:49.9035718Z 2025-03-14T05:00:49.9036173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:49.9036730Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:49.9037056Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:49.9037401Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:49.9037758Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:49.9038026Z 2025-03-14T05:00:49.9038472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:49.9039019Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:49.9039344Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:49.9039683Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:49.9040033Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:49.9040300Z 2025-03-14T05:00:49.9040735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:49.9041255Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:49.9041592Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:49.9041944Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:49.9042204Z 2025-03-14T05:00:49.9042661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:49.9043179Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:49.9043520Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:49.9043882Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:49.9044145Z 2025-03-14T05:00:49.9044557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:49.9045032Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:49.9045303Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:49.9045550Z 2025-03-14T05:00:49.9045978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:49.9046450Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:49.9046718Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:49.9046961Z 2025-03-14T05:00:49.9047384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:49.9047887Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:49.9048221Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:49.9048486Z 2025-03-14T05:00:49.9048896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:49.9049392Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:49.9049693Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:49.9049943Z 2025-03-14T05:00:49.9050397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:49.9050999Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:49.9051312Z 2025-03-14T05:00:49.9051737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:49.9052300Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:49.9052596Z 2025-03-14T05:00:49.9053045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:49.9053660Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:49.9054034Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:49.9054330Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:49.9054635Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:49.9054956Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:49.9055226Z 2025-03-14T05:00:49.9055620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.9056211Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9056562Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:49.9056808Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:49.9057176Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9057529Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:49.9057780Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:49.9058003Z 2025-03-14T05:00:49.9058434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:49.9059005Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:49.9059308Z 2025-03-14T05:00:49.9059771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:49.9060399Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:49.9060805Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:49.9061109Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:49.9061440Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:49.9061796Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:49.9062068Z 2025-03-14T05:00:49.9062655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:49.9063382Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:49.9063743Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:49.9064104Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:49.9064544Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:49.9064862Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:49.9065120Z 2025-03-14T05:00:49.9065593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:49.9066122Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:49.9066372Z 2025-03-14T05:00:49.9066518Z 2025-03-14T05:00:49.9066616Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:49.9068056Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:49.9069497Z l_stack0_ = L_stack0_ 2025-03-14T05:00:49.9069917Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:49.9070564Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:49.9071169Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:49.9071772Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:49.9072294Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9072734Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9073156Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9073585Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9073906Z 2025-03-14T05:00:49.9074482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:00:49.9075185Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:00:49.9075480Z 2025-03-14T05:00:49.9075933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:49.9076990Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:49.9077777Z 2025-03-14T05:00:49.9078211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:49.9079321Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:49.9080088Z 2025-03-14T05:00:49.9080463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.9080925Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.9081186Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:49.9081576Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:49.9081860Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.9082132Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:49.9082387Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:49.9082628Z 2025-03-14T05:00:49.9083030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:49.9084022Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9084733Z 2025-03-14T05:00:49.9085252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:49.9085826Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:49.9086101Z 2025-03-14T05:00:49.9086500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:49.9087025Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:49.9087308Z 2025-03-14T05:00:49.9087707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:49.9088208Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:49.9088516Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.9088833Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:49.9089098Z 2025-03-14T05:00:49.9089524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:49.9090024Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:49.9090342Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:49.9090689Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:49.9090954Z 2025-03-14T05:00:49.9091351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:49.9091834Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.9092094Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:49.9092352Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:49.9092592Z 2025-03-14T05:00:49.9092986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:49.9093492Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:49.9093780Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:49.9094045Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:49.9094288Z 2025-03-14T05:00:49.9094757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:49.9095284Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:49.9095618Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:49.9095859Z 2025-03-14T05:00:49.9096255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:49.9096774Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:49.9097104Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:49.9097344Z 2025-03-14T05:00:49.9097736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:49.9098246Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:49.9098597Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:49.9098839Z 2025-03-14T05:00:49.9099239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:49.9099794Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:49.9100146Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:49.9100384Z 2025-03-14T05:00:49.9100824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:49.9101367Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:49.9101634Z 2025-03-14T05:00:49.9102066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:49.9102597Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:49.9102859Z 2025-03-14T05:00:49.9103339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:49.9103935Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:49.9104354Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:49.9104742Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:49.9105139Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:49.9105443Z 2025-03-14T05:00:49.9105948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:49.9106541Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:49.9106891Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:49.9107267Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:49.9107665Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:49.9107958Z 2025-03-14T05:00:49.9108441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:49.9109022Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:49.9109393Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:49.9109781Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:49.9110068Z 2025-03-14T05:00:49.9110549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:49.9111129Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:49.9111510Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:49.9111911Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:49.9112203Z 2025-03-14T05:00:49.9112702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:49.9113239Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:49.9113525Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:49.9113765Z 2025-03-14T05:00:49.9114169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:49.9114631Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:49.9114893Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:49.9115129Z 2025-03-14T05:00:49.9115524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:49.9116007Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:49.9116299Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:49.9116547Z 2025-03-14T05:00:49.9116977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:49.9117463Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:49.9117774Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:49.9118023Z 2025-03-14T05:00:49.9118491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:49.9119089Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:49.9119387Z 2025-03-14T05:00:49.9119806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:49.9120353Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:49.9120647Z 2025-03-14T05:00:49.9121092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:49.9121695Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:49.9122061Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:49.9122348Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:49.9122651Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:49.9122969Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:49.9123233Z 2025-03-14T05:00:49.9123615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.9124165Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9124513Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:49.9124756Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:49.9125123Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9125479Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:49.9125724Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:49.9125974Z 2025-03-14T05:00:49.9126397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:49.9126953Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:49.9127247Z 2025-03-14T05:00:49.9127694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:49.9128296Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:49.9128663Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:49.9128957Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:49.9129261Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:49.9129581Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:49.9129846Z 2025-03-14T05:00:49.9130426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:49.9131111Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:49.9131468Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:49.9131824Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:49.9132165Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:49.9132461Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:49.9132705Z 2025-03-14T05:00:49.9133144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:49.9133664Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:49.9133898Z 2025-03-14T05:00:49.9134046Z 2025-03-14T05:00:49.9134135Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:49.9135495Z def forward(self, L_stack0_: "f32[3231, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:49.9136806Z l_stack0_ = L_stack0_ 2025-03-14T05:00:49.9137196Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:00:49.9137760Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:00:49.9138314Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:00:49.9138878Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:00:49.9139372Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9139764Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9140156Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9140549Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:49.9140843Z 2025-03-14T05:00:49.9141371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:00:49.9141996Z mean: "f32[3231, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:00:49.9142263Z 2025-03-14T05:00:49.9142660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:00:49.9143644Z scores: "f32[3231, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:00:49.9144510Z 2025-03-14T05:00:49.9145003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:00:49.9146136Z proposal_deltas: "f32[3231, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:00:49.9146983Z 2025-03-14T05:00:49.9147399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.9147919Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.9148205Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:49.9148460Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:49.9148771Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:49.9149068Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:49.9149343Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:49.9149592Z 2025-03-14T05:00:49.9150007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:49.9151070Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9151827Z 2025-03-14T05:00:49.9152294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:49.9152868Z deltas: "f32[3231, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:00:49.9153143Z 2025-03-14T05:00:49.9153539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:49.9154086Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:49.9154368Z 2025-03-14T05:00:49.9154772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:49.9155272Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:49.9155578Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.9155901Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:49.9156166Z 2025-03-14T05:00:49.9156572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:49.9157071Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:49.9157367Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:49.9157684Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:49.9157951Z 2025-03-14T05:00:49.9158387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:49.9158874Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:49.9159134Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:49.9159410Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:49.9159668Z 2025-03-14T05:00:49.9160069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:49.9160580Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:49.9160867Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:49.9161129Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:49.9161370Z 2025-03-14T05:00:49.9161768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:49.9162282Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:49.9162618Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:49.9162860Z 2025-03-14T05:00:49.9163251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:49.9163757Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:49.9164077Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:49.9164307Z 2025-03-14T05:00:49.9164685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:49.9165182Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:49.9165497Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:49.9165729Z 2025-03-14T05:00:49.9166114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:49.9166645Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:49.9166988Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:49.9167372Z 2025-03-14T05:00:49.9167796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:49.9168329Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:49.9168589Z 2025-03-14T05:00:49.9169011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:49.9169531Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:49.9169789Z 2025-03-14T05:00:49.9170221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:49.9170759Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:49.9171074Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:49.9171406Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:49.9171768Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:49.9172030Z 2025-03-14T05:00:49.9172484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:49.9173034Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:49.9173346Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:49.9173665Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:49.9174004Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:49.9174259Z 2025-03-14T05:00:49.9174682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:49.9175187Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:49.9175515Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:49.9175856Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:49.9176107Z 2025-03-14T05:00:49.9176523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:49.9177021Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:49.9177350Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:49.9177697Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:49.9177951Z 2025-03-14T05:00:49.9178353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:49.9178816Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:49.9179077Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:49.9179312Z 2025-03-14T05:00:49.9179704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:49.9180198Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:49.9180460Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:49.9180696Z 2025-03-14T05:00:49.9181092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:49.9181762Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:49.9182060Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:49.9182317Z 2025-03-14T05:00:49.9182706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:49.9183183Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:49.9183474Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:49.9183724Z 2025-03-14T05:00:49.9184233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:49.9184913Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:49.9185226Z 2025-03-14T05:00:49.9185709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:49.9186305Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:49.9186593Z 2025-03-14T05:00:49.9187044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:49.9187658Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:49.9188034Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:49.9188329Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:49.9188633Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:49.9188952Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:49.9189214Z 2025-03-14T05:00:49.9189595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:49.9190152Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9190500Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:49.9190745Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:49.9191110Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:49.9191465Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:49.9191713Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:49.9191937Z 2025-03-14T05:00:49.9192363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:49.9192925Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:00:49.9193217Z 2025-03-14T05:00:49.9193660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:49.9194295Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:49.9194652Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:49.9194942Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:49.9195239Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:49.9195550Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:49.9195809Z 2025-03-14T05:00:49.9196366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:49.9197043Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:49.9197385Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:49.9197719Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:49.9198063Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:49.9198381Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:49.9198626Z 2025-03-14T05:00:49.9199080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:49.9199617Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:49.9199855Z 2025-03-14T05:00:51.5588539Z 2025-03-14T05:00:51.5589485Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.5591315Z def forward(self, L_predictions_0_: "f32[3231, 81][81, 1]cpu", L_predictions_1_: "f32[3231, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:51.5592811Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:00:51.5593176Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:00:51.5593680Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5594385Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5595092Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5595805Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5596316Z 2025-03-14T05:00:51.5597004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.5597812Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.5598243Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.5598623Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.5599081Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.5599536Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:51.5599939Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.5600290Z 2025-03-14T05:00:51.5600947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.5602756Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5604575Z 2025-03-14T05:00:51.5605423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.5606509Z deltas: "f32[3231, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:00:51.5606985Z 2025-03-14T05:00:51.5607730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.5608716Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.5609209Z 2025-03-14T05:00:51.5609966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.5610904Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.5611579Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.5612138Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:51.5612591Z 2025-03-14T05:00:51.5613385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.5614370Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.5614895Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.5615465Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:51.5615919Z 2025-03-14T05:00:51.5616645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.5617557Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.5617991Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.5618435Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:51.5618841Z 2025-03-14T05:00:51.5619567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.5620732Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.5621350Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.5621912Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:51.5622436Z 2025-03-14T05:00:51.5623399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.5624665Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.5625259Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:51.5625668Z 2025-03-14T05:00:51.5626337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.5627215Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.5627885Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:51.5628275Z 2025-03-14T05:00:51.5628978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.5630035Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.5630555Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:51.5630923Z 2025-03-14T05:00:51.5631576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.5632541Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.5633161Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:51.5633573Z 2025-03-14T05:00:51.5634312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.5635297Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.5635734Z 2025-03-14T05:00:51.5636613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.5637646Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.5638130Z 2025-03-14T05:00:51.5638888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.5639874Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.5640375Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:51.5640932Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.5641531Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:51.5641955Z 2025-03-14T05:00:51.5642706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.5643532Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.5644052Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:51.5644563Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.5645120Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:51.5645540Z 2025-03-14T05:00:51.5646298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.5647204Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.5647752Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.5648315Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:51.5648741Z 2025-03-14T05:00:51.5649517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.5650449Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.5651133Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.5651755Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:51.5652194Z 2025-03-14T05:00:51.5652945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.5653811Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.5654283Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.5654702Z 2025-03-14T05:00:51.5655464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.5656333Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.5656800Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.5657222Z 2025-03-14T05:00:51.5657976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.5658945Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.5659473Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.5659911Z 2025-03-14T05:00:51.5660678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.5661610Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.5662124Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.5662522Z 2025-03-14T05:00:51.5663276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.5664482Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.5665039Z 2025-03-14T05:00:51.5665821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.5666893Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:51.5667396Z 2025-03-14T05:00:51.5668226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.5669420Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:51.5670111Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.5670639Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:51.5671167Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:51.5671702Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:51.5672128Z 2025-03-14T05:00:51.5672793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.5673749Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5674320Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:51.5674815Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:51.5675463Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5676081Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:51.5676483Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:51.5676853Z 2025-03-14T05:00:51.5677594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.5678662Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:00:51.5679216Z 2025-03-14T05:00:51.5680005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.5681113Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:51.5682048Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.5682558Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:51.5683300Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:51.5683884Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:51.5684319Z 2025-03-14T05:00:51.5685435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.5686814Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.5687417Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.5688033Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.5688640Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.5689168Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.5689590Z 2025-03-14T05:00:51.5690382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.5691330Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.5691733Z 2025-03-14T05:00:51.5691982Z 2025-03-14T05:00:51.5692119Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.5693592Z def forward(self, L_predictions_0_: "f32[3231, 81][81, 1]cpu", L_predictions_1_: "f32[3231, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:51.5695056Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:00:51.5695443Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:00:51.5696004Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5696762Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5697486Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5698210Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5698791Z 2025-03-14T05:00:51.5699500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.5700351Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.5700768Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.5701157Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.5701627Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.5702096Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:51.5702518Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.5702899Z 2025-03-14T05:00:51.5703563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.5705558Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5706965Z 2025-03-14T05:00:51.5707876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.5708962Z deltas: "f32[3231, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:00:51.5709438Z 2025-03-14T05:00:51.5710197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.5711110Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.5711538Z 2025-03-14T05:00:51.5712191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.5713038Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.5713544Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.5714045Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:51.5714445Z 2025-03-14T05:00:51.5715144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.5716016Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.5716552Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.5717093Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:51.5717518Z 2025-03-14T05:00:51.5718181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.5719026Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.5719478Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.5719907Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:51.5720281Z 2025-03-14T05:00:51.5720909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.5721691Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.5722120Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.5722611Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:51.5722991Z 2025-03-14T05:00:51.5723625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.5724504Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.5725008Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:51.5725352Z 2025-03-14T05:00:51.5725979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.5726853Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.5727373Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:51.5727741Z 2025-03-14T05:00:51.5728384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.5729250Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.5729847Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:51.5730216Z 2025-03-14T05:00:51.5730955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.5731885Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.5732420Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:51.5732786Z 2025-03-14T05:00:51.5733476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.5734405Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.5734847Z 2025-03-14T05:00:51.5735577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.5736447Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.5736842Z 2025-03-14T05:00:51.5737550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.5738481Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.5738983Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:51.5739518Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.5740080Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:51.5740497Z 2025-03-14T05:00:51.5741226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.5742127Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.5742624Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:51.5743161Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.5743796Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:51.5744365Z 2025-03-14T05:00:51.5745123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.5746011Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.5746527Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.5747091Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:51.5747507Z 2025-03-14T05:00:51.5748244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.5749139Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.5749712Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.5750329Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:51.5750753Z 2025-03-14T05:00:51.5751469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.5752245Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.5752691Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.5753103Z 2025-03-14T05:00:51.5753787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.5754580Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.5754979Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.5755354Z 2025-03-14T05:00:51.5756021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.5756806Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.5757292Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.5757688Z 2025-03-14T05:00:51.5758392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.5759251Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.5759728Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.5760137Z 2025-03-14T05:00:51.5760877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.5761868Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.5762372Z 2025-03-14T05:00:51.5763079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.5764045Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:51.5764511Z 2025-03-14T05:00:51.5765247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.5766175Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:51.5766864Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.5767306Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:51.5767825Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:51.5768352Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:51.5768794Z 2025-03-14T05:00:51.5769444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.5770423Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5771017Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:51.5771421Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:51.5772047Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5772655Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:51.5773060Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:51.5773419Z 2025-03-14T05:00:51.5774281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.5775398Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:00:51.5776017Z 2025-03-14T05:00:51.5776771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.5777877Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:51.5778518Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.5779017Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:51.5779529Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:51.5780068Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:51.5780547Z 2025-03-14T05:00:51.5781791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.5783098Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.5783686Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.5784385Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.5785010Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.5785528Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.5785939Z 2025-03-14T05:00:51.5786761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.5787723Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.5788130Z 2025-03-14T05:00:51.5788366Z 2025-03-14T05:00:51.5788502Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:51.5789719Z def forward(self, L_predictions_0_: "f32[3231, 81][81, 1]cpu", L_predictions_1_: "f32[3231, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1231 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1231 - s0, 4][4, 1]cpu"): 2025-03-14T05:00:51.5791326Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:00:51.5791684Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:00:51.5792207Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5792901Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5793577Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5794253Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:00:51.5794785Z 2025-03-14T05:00:51.5795425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.5796213Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.5796615Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:00:51.5796980Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:00:51.5797533Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:00:51.5797943Z getitem_2: "Sym(1231 - s0)" = size_1[0] 2025-03-14T05:00:51.5798374Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:00:51.5798732Z 2025-03-14T05:00:51.5799416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:00:51.5801052Z proposal_boxes: "f32[3231, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5802359Z 2025-03-14T05:00:51.5803188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:00:51.5804179Z deltas: "f32[3231, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:00:51.5804610Z 2025-03-14T05:00:51.5805278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:00:51.5806166Z boxes: "f32[3231, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:00:51.5806632Z 2025-03-14T05:00:51.5807286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:00:51.5808134Z getitem_4: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:00:51.5808635Z getitem_5: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.5809184Z widths: "f32[3231][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:00:51.5809620Z 2025-03-14T05:00:51.5810324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:00:51.5811190Z getitem_6: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:00:51.5811687Z getitem_7: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:00:51.5812226Z heights: "f32[3231][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:00:51.5812743Z 2025-03-14T05:00:51.5813443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:00:51.5814320Z getitem_8: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:00:51.5814757Z mul: "f32[3231][1]cpu" = 0.5 * widths 2025-03-14T05:00:51.5815180Z ctr_x: "f32[3231][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:00:51.5815569Z 2025-03-14T05:00:51.5816268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:00:51.5817190Z getitem_9: "f32[3231][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:00:51.5817663Z mul_1: "f32[3231][1]cpu" = 0.5 * heights 2025-03-14T05:00:51.5818098Z ctr_y: "f32[3231][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:00:51.5818505Z 2025-03-14T05:00:51.5819235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:00:51.5820210Z getitem_10: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:00:51.5820771Z dx: "f32[3231, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:00:51.5821158Z 2025-03-14T05:00:51.5821880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:00:51.5822835Z getitem_11: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:00:51.5823401Z dy: "f32[3231, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:00:51.5823790Z 2025-03-14T05:00:51.5824584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:00:51.5825503Z getitem_12: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:00:51.5826070Z dw: "f32[3231, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:00:51.5826466Z 2025-03-14T05:00:51.5827174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:00:51.5828178Z getitem_13: "f32[3231, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:00:51.5828673Z dh: "f32[3231, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:00:51.5828981Z 2025-03-14T05:00:51.5829682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:00:51.5830629Z dw_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:00:51.5831053Z 2025-03-14T05:00:51.5831812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:00:51.5832752Z dh_1: "f32[3231, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:00:51.5833186Z 2025-03-14T05:00:51.5833957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:00:51.5834922Z getitem_14: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:00:51.5835555Z mul_2: "f32[3231, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:00:51.5836096Z getitem_15: "f32[3231, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:00:51.5836673Z pred_ctr_x: "f32[3231, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:00:51.5837080Z 2025-03-14T05:00:51.5837834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:00:51.5838758Z getitem_16: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:00:51.5839278Z mul_3: "f32[3231, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:00:51.5839819Z getitem_17: "f32[3231, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:00:51.5840377Z pred_ctr_y: "f32[3231, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:00:51.5840784Z 2025-03-14T05:00:51.5841483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:00:51.5842323Z exp: "f32[3231, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:00:51.5842893Z getitem_18: "f32[3231, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:00:51.5843458Z pred_w: "f32[3231, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:00:51.5843902Z 2025-03-14T05:00:51.5844648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:00:51.5845550Z exp_1: "f32[3231, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:00:51.5846093Z getitem_19: "f32[3231, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:00:51.5846669Z pred_h: "f32[3231, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:00:51.5847069Z 2025-03-14T05:00:51.5847752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:00:51.5848558Z mul_6: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:00:51.5848980Z x1: "f32[3231, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:00:51.5849368Z 2025-03-14T05:00:51.5850038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:00:51.5850836Z mul_7: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:00:51.5851259Z y1: "f32[3231, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:00:51.5851627Z 2025-03-14T05:00:51.5852305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:00:51.5853121Z mul_8: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:00:51.5853615Z x2: "f32[3231, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:00:51.5854025Z 2025-03-14T05:00:51.5854720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:00:51.5855539Z mul_9: "f32[3231, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:00:51.5856008Z y2: "f32[3231, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:00:51.5856406Z 2025-03-14T05:00:51.5857175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:00:51.5858328Z pred_boxes: "f32[3231, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:00:51.5858784Z 2025-03-14T05:00:51.5859697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:00:51.5860716Z predict_boxes: "f32[3231, 320][320, 1]cpu" = pred_boxes.reshape((3231, 320)); pred_boxes = None 2025-03-14T05:00:51.5861186Z 2025-03-14T05:00:51.5861963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:00:51.5863019Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:00:51.5863607Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:00:51.5864069Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:00:51.5864735Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:00:51.5865357Z getitem_23: "f32[1231 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:00:51.5865777Z 2025-03-14T05:00:51.5866474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:00:51.5867526Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5868127Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:00:51.5868544Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:00:51.5869215Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:00:51.5869846Z getitem_26: "Sym(1231 - s0)" = size_3[0] 2025-03-14T05:00:51.5870261Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:00:51.5870604Z 2025-03-14T05:00:51.5871352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:00:51.5872448Z probs: "f32[3231, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:00:51.5873011Z 2025-03-14T05:00:51.5873847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:00:51.5874842Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:00:51.5875454Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:00:51.5875948Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:00:51.5876459Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:00:51.5876991Z getitem_31: "f32[1231 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:00:51.5877422Z 2025-03-14T05:00:51.5878400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:51.5879647Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:00:51.5880237Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:51.5880908Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:00:51.5881744Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:51.5882260Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:51.5882647Z 2025-03-14T05:00:51.5883452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:51.5884384Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:51.5884774Z 2025-03-14T05:00:53.9731368Z 2025-03-14T05:00:53.9737615Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:53.9739936Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:00:53.9740363Z l_scores_0_ = L_scores_0_ 2025-03-14T05:00:53.9740659Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:00:53.9740891Z 2025-03-14T05:00:53.9741594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:53.9742819Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:00:53.9743225Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:53.9743708Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:00:53.9744303Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:53.9744653Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:53.9744930Z 2025-03-14T05:00:53.9745457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:53.9746086Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:53.9746347Z 2025-03-14T05:00:53.9746457Z 2025-03-14T05:00:53.9746566Z class GraphModule(torch.nn.Module): 2025-03-14T05:00:53.9746894Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:00:53.9747211Z l_scores_0_ = L_scores_0_ 2025-03-14T05:00:53.9747433Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:00:53.9747637Z 2025-03-14T05:00:53.9748225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:00:53.9748929Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:00:53.9749270Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:00:53.9749607Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:00:53.9749944Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:00:53.9750257Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:00:53.9750515Z 2025-03-14T05:00:53.9751646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:00:53.9752218Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:00:53.9752476Z 2025-03-14T05:01:11.8857204Z Compilation time (from dynamo_timed): 35.796977801 2025-03-14T05:01:11.8857766Z pass 2025-03-14T05:01:11.8862370Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:01:11.8867592Z TIMING: entire_frame_compile:35.79698 gc:0.0383 _recursive_pre_grad_passes:0.02988 async_compile.wait:9.42249 backend_compile:24.36149 _recursive_joint_graph_passes:0.17904 _recursive_post_grad_passes:0.08963 code_gen:12.55033 inductor_compile:14.40697 total_wall_time:35.79698 2025-03-14T05:01:11.8873024Z STATS: call_* op count: 607 | FakeTensorMode.__torch_dispatch__:17714 | FakeTensor.__torch_dispatch__:1777 | ProxyTorchDispatchMode.__torch_dispatch__:5620 | attempt fast:51 | slow no contiguity match:20 | fast is_contiguous:31 2025-03-14T05:01:11.8874458Z Dynamo produced 53 graphs covering 607 ops with 42 graph breaks (6 unique) 2025-03-14T05:01:17.4355639Z 2025-03-14T05:01:27.3815323Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:01:27.3820811Z loading model: 0it [00:09, ?it/s] 2025-03-14T05:01:27.3823455Z cpu eval detectron2_fasterrcnn_r_50_dc5 2025-03-14T05:01:41.0803767Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_50_dc5. Setting accuracy check to cosine 2025-03-14T05:01:41.1167700Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:01:57.3088198Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:02:11.3082218Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:02:21.5006124Z 2025-03-14T05:02:21.5010019Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:21.5072790Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:02:21.5125596Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:02:21.5126134Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5126919Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5127721Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5128500Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5129245Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5129965Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5130815Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5131682Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5132503Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5133260Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5133968Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5134744Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5135612Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5136476Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5137281Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5137985Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5138719Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5139511Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5140271Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5141007Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5141722Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5142470Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5143304Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5144092Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5144938Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5145673Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5146402Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5147193Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5147943Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5148676Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5149362Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5150118Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5150927Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5151703Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5152442Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5153142Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5153853Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5154594Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5155317Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5156015Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5156682Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5157377Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5158124Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5158852Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5159554Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5160236Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5160928Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5161682Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5162412Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5163109Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5163778Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5164489Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5165239Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5165983Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5166676Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5167333Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5168020Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5168762Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5169486Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5170184Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5170893Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5171573Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5172313Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5173033Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5173740Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5174400Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5175088Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5175829Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5176542Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5177237Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5177926Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5178653Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5179438Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5180189Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5180911Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5181697Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5182404Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5183192Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5183959Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5184699Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5185382Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5186124Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5186891Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5187696Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5188423Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5189112Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5189836Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5190609Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5191363Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5192115Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5192811Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5193573Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5194366Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5195119Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5195831Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5196490Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5197177Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5197905Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5198621Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5199312Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5199967Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5200648Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5201374Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5202111Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5202801Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5203458Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5204142Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5204872Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5205597Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5206301Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5206983Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5207710Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5208444Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5209165Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5209854Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5210507Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5211183Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5211920Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5212632Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5213313Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5213966Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5214646Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5215406Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5216121Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5216813Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5217470Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5218163Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5218933Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5219705Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5220475Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5221191Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5221921Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5222703Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5223473Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5224308Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5225040Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5225847Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5226658Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5227455Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5228239Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5228947Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5229685Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5230526Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5231288Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5232027Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5232725Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5233467Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5234253Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5235050Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5235796Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5236511Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5237261Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5238041Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5238796Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5239526Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5240220Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5240953Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5241738Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5242491Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5243188Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5243848Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5245484Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5246263Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5246997Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5247697Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5248371Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5249103Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5249880Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5250630Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5251374Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5252063Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5252786Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5253541Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5254259Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5254964Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5255661Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5256340Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5257110Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5257869Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5258596Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5259318Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5260052Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5260835Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5261599Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5262339Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5263035Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5263821Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5264720Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5265551Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5266300Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5266991Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5267717Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5268511Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5269315Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5270084Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5270816Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5271590Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5272368Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5273141Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5273936Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5274724Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5275524Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5276373Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5277192Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5277991Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5278757Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5279576Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5280466Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5281314Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5282247Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5283007Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5283804Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5284651Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5285493Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5286281Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5287034Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5287825Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5288685Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5289508Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5290378Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5291098Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5291822Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5292599Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5293355Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5294081Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5294804Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5295550Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5296336Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5297133Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5297865Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5298577Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5299334Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5300137Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5300925Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5301686Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5302393Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5303152Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5303982Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5304869Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5305718Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5306441Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5307244Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5308107Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5308957Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5309760Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5310557Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5311382Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5312262Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5313103Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5313835Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5314486Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5315168Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5315940Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5316652Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5317338Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5317991Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5318669Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5319446Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5320189Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5320873Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5321521Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5322200Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5322927Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5323634Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5324341Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5325087Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:02:21.5325829Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:02:21.5326521Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:02:21.5327252Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:02:21.5328043Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:02:21.5328847Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:02:21.5329600Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:02:21.5330075Z 2025-03-14T05:02:21.5330481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5331289Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5331886Z 2025-03-14T05:02:21.5332263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5334024Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5335598Z 2025-03-14T05:02:21.5335983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:02:21.5336466Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:02:21.5336730Z 2025-03-14T05:02:21.5337187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:02:21.5337835Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:02:21.5338195Z 2025-03-14T05:02:21.5338557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5339305Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5339864Z 2025-03-14T05:02:21.5340225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5342083Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5343715Z 2025-03-14T05:02:21.5344197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5344777Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:02:21.5345080Z 2025-03-14T05:02:21.5345471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5346261Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5346839Z 2025-03-14T05:02:21.5347200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5349188Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5350953Z 2025-03-14T05:02:21.5351349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5351876Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:02:21.5352168Z 2025-03-14T05:02:21.5352536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5353356Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5353956Z 2025-03-14T05:02:21.5354344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5356344Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5357985Z 2025-03-14T05:02:21.5358320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5359064Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.5359617Z 2025-03-14T05:02:21.5359964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5361852Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5363559Z 2025-03-14T05:02:21.5363931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5364415Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:02:21.5364687Z 2025-03-14T05:02:21.5365064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5365563Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:02:21.5365840Z 2025-03-14T05:02:21.5366180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5366937Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5367476Z 2025-03-14T05:02:21.5367843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5369710Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5371335Z 2025-03-14T05:02:21.5371718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5372211Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:02:21.5372482Z 2025-03-14T05:02:21.5372829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5373574Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5374125Z 2025-03-14T05:02:21.5374486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5376331Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5377965Z 2025-03-14T05:02:21.5378344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5378832Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:02:21.5379097Z 2025-03-14T05:02:21.5379438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5380186Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5380744Z 2025-03-14T05:02:21.5381115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5383310Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5385220Z 2025-03-14T05:02:21.5385637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5386189Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:02:21.5386498Z 2025-03-14T05:02:21.5386919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5387466Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:02:21.5387772Z 2025-03-14T05:02:21.5388153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5388978Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5389582Z 2025-03-14T05:02:21.5389974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5392054Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5393837Z 2025-03-14T05:02:21.5394234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5394743Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:02:21.5395022Z 2025-03-14T05:02:21.5395375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5396186Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5396756Z 2025-03-14T05:02:21.5397155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5399162Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5400899Z 2025-03-14T05:02:21.5401303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5401819Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:02:21.5402102Z 2025-03-14T05:02:21.5402461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5403262Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5403821Z 2025-03-14T05:02:21.5404182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5406038Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5407701Z 2025-03-14T05:02:21.5408073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5408570Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:02:21.5408846Z 2025-03-14T05:02:21.5409220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5409714Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:02:21.5409989Z 2025-03-14T05:02:21.5410328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5411085Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5411643Z 2025-03-14T05:02:21.5411998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5413821Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5415447Z 2025-03-14T05:02:21.5415820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5416309Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:02:21.5416577Z 2025-03-14T05:02:21.5416917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5417657Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5418204Z 2025-03-14T05:02:21.5418552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5420441Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5422072Z 2025-03-14T05:02:21.5422446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5422935Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:02:21.5423206Z 2025-03-14T05:02:21.5423545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5424431Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5425050Z 2025-03-14T05:02:21.5425460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5427506Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5429310Z 2025-03-14T05:02:21.5429714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5430580Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.5431228Z 2025-03-14T05:02:21.5431623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5433729Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5435501Z 2025-03-14T05:02:21.5435874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5436361Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:02:21.5436631Z 2025-03-14T05:02:21.5437011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5437512Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:02:21.5437787Z 2025-03-14T05:02:21.5438128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5438880Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5439426Z 2025-03-14T05:02:21.5439777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5441636Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5443283Z 2025-03-14T05:02:21.5443662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5444150Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:02:21.5444415Z 2025-03-14T05:02:21.5444757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5445496Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5446041Z 2025-03-14T05:02:21.5446397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5448254Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5449919Z 2025-03-14T05:02:21.5450292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5450785Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:02:21.5451056Z 2025-03-14T05:02:21.5451397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5452141Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5452696Z 2025-03-14T05:02:21.5453072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5454942Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5456568Z 2025-03-14T05:02:21.5456939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5457429Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:02:21.5457706Z 2025-03-14T05:02:21.5458067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5458558Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:02:21.5458830Z 2025-03-14T05:02:21.5459168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5459901Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5460438Z 2025-03-14T05:02:21.5460789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5462635Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5464394Z 2025-03-14T05:02:21.5464823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5465372Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:02:21.5465656Z 2025-03-14T05:02:21.5466021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5466781Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5467379Z 2025-03-14T05:02:21.5467796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5469865Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5471666Z 2025-03-14T05:02:21.5472085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5472625Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:02:21.5472916Z 2025-03-14T05:02:21.5473252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5473993Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5474577Z 2025-03-14T05:02:21.5474952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5476820Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5478461Z 2025-03-14T05:02:21.5478832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5479327Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:02:21.5479604Z 2025-03-14T05:02:21.5479973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5480464Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:02:21.5480737Z 2025-03-14T05:02:21.5481073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5482004Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5482632Z 2025-03-14T05:02:21.5483031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5484936Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5486574Z 2025-03-14T05:02:21.5486984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5487474Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:02:21.5487745Z 2025-03-14T05:02:21.5488090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5488828Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5489376Z 2025-03-14T05:02:21.5489732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5491577Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5493255Z 2025-03-14T05:02:21.5493619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5494092Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:02:21.5494353Z 2025-03-14T05:02:21.5494686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5495419Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5495956Z 2025-03-14T05:02:21.5496312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5498136Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5499738Z 2025-03-14T05:02:21.5500098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5500585Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:02:21.5500867Z 2025-03-14T05:02:21.5501240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5501736Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:02:21.5502010Z 2025-03-14T05:02:21.5502355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5503088Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5503626Z 2025-03-14T05:02:21.5504000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5506092Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5507671Z 2025-03-14T05:02:21.5508043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5508520Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:02:21.5508788Z 2025-03-14T05:02:21.5509128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5509886Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5510452Z 2025-03-14T05:02:21.5510800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5512683Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5514336Z 2025-03-14T05:02:21.5514721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5515217Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:02:21.5515476Z 2025-03-14T05:02:21.5515812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5516574Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5517127Z 2025-03-14T05:02:21.5517485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5519330Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5520961Z 2025-03-14T05:02:21.5521299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5522037Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.5522600Z 2025-03-14T05:02:21.5522968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5524863Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5526565Z 2025-03-14T05:02:21.5526953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5527454Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:02:21.5527728Z 2025-03-14T05:02:21.5528117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5528606Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:02:21.5528891Z 2025-03-14T05:02:21.5529247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5530011Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5530564Z 2025-03-14T05:02:21.5530932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5532882Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5534651Z 2025-03-14T05:02:21.5535048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5535552Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:02:21.5535834Z 2025-03-14T05:02:21.5536209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5536998Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5537589Z 2025-03-14T05:02:21.5537983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5540040Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5541864Z 2025-03-14T05:02:21.5542294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5542834Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:02:21.5543119Z 2025-03-14T05:02:21.5543493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5544378Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5544992Z 2025-03-14T05:02:21.5545390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5547449Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5549278Z 2025-03-14T05:02:21.5549696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5550237Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:02:21.5550536Z 2025-03-14T05:02:21.5550946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5551485Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:02:21.5551780Z 2025-03-14T05:02:21.5552157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5552982Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5553577Z 2025-03-14T05:02:21.5553985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5555966Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5557589Z 2025-03-14T05:02:21.5557964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5558451Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:02:21.5558717Z 2025-03-14T05:02:21.5559055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5559786Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5560330Z 2025-03-14T05:02:21.5560688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5562503Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5564122Z 2025-03-14T05:02:21.5564501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5564977Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:02:21.5565236Z 2025-03-14T05:02:21.5565572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5566310Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5566901Z 2025-03-14T05:02:21.5567276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5569209Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5570929Z 2025-03-14T05:02:21.5571327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5571833Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:02:21.5572113Z 2025-03-14T05:02:21.5572514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5573034Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:02:21.5573302Z 2025-03-14T05:02:21.5573658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5574435Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5575016Z 2025-03-14T05:02:21.5575377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5577329Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5579081Z 2025-03-14T05:02:21.5579487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5580009Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:02:21.5580287Z 2025-03-14T05:02:21.5580647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5581540Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5582157Z 2025-03-14T05:02:21.5582598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5584641Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5586456Z 2025-03-14T05:02:21.5586859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5587379Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:02:21.5587656Z 2025-03-14T05:02:21.5588018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5588801Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5589372Z 2025-03-14T05:02:21.5589742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5591682Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5593385Z 2025-03-14T05:02:21.5593770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5594275Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:02:21.5594557Z 2025-03-14T05:02:21.5594942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5595449Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:02:21.5595726Z 2025-03-14T05:02:21.5596104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5596888Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5597472Z 2025-03-14T05:02:21.5597849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5599794Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5601429Z 2025-03-14T05:02:21.5601806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5602289Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:02:21.5602552Z 2025-03-14T05:02:21.5602902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5603672Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5604219Z 2025-03-14T05:02:21.5604576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5606394Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5608031Z 2025-03-14T05:02:21.5608407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5608911Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:02:21.5609186Z 2025-03-14T05:02:21.5609523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5610269Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5610807Z 2025-03-14T05:02:21.5611183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5613030Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5614641Z 2025-03-14T05:02:21.5615011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5615495Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:02:21.5615763Z 2025-03-14T05:02:21.5616137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5616622Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:02:21.5616885Z 2025-03-14T05:02:21.5617234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5617990Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5618552Z 2025-03-14T05:02:21.5618926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5620894Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5622617Z 2025-03-14T05:02:21.5623014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5623520Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:02:21.5623795Z 2025-03-14T05:02:21.5624239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5625086Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5625693Z 2025-03-14T05:02:21.5626074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5628014Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5629720Z 2025-03-14T05:02:21.5630123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5630636Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:02:21.5630917Z 2025-03-14T05:02:21.5631281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5632060Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5632610Z 2025-03-14T05:02:21.5632969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5634800Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5636433Z 2025-03-14T05:02:21.5636802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5637280Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:02:21.5637551Z 2025-03-14T05:02:21.5637947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5638430Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:02:21.5638713Z 2025-03-14T05:02:21.5639055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5639796Z x_88: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5640346Z 2025-03-14T05:02:21.5640697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5642525Z x_89: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5644142Z 2025-03-14T05:02:21.5644510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5644990Z out_52: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:02:21.5645251Z 2025-03-14T05:02:21.5645589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5646324Z x_90: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_52 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5646867Z 2025-03-14T05:02:21.5647218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5649047Z x_91: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5650683Z 2025-03-14T05:02:21.5651054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5651530Z out_53: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:02:21.5651788Z 2025-03-14T05:02:21.5671110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5672295Z x_92: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5672935Z 2025-03-14T05:02:21.5673334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5675253Z x_93: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5676910Z 2025-03-14T05:02:21.5677283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5678063Z x_94: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.5678635Z 2025-03-14T05:02:21.5679007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5680955Z x_95: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5682879Z 2025-03-14T05:02:21.5683295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5683823Z x_93 += x_95; out_54: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:02:21.5684117Z 2025-03-14T05:02:21.5684526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5685060Z out_55: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:02:21.5685355Z 2025-03-14T05:02:21.5685729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5686587Z x_96: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5687156Z 2025-03-14T05:02:21.5687566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5689532Z x_97: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5691240Z 2025-03-14T05:02:21.5691642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5692157Z out_56: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:02:21.5692421Z 2025-03-14T05:02:21.5692761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5693492Z x_98: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_56 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5694032Z 2025-03-14T05:02:21.5694389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5696199Z x_99: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5697855Z 2025-03-14T05:02:21.5698233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5698719Z out_57: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:02:21.5698972Z 2025-03-14T05:02:21.5699313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5700075Z x_100: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5700636Z 2025-03-14T05:02:21.5700986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5702882Z x_101: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5704632Z 2025-03-14T05:02:21.5705035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5705563Z x_101 += out_55; out_58: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:02:21.5705846Z 2025-03-14T05:02:21.5706224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5706723Z out_59: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:02:21.5706999Z 2025-03-14T05:02:21.5707345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5708085Z x_102: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.5708627Z 2025-03-14T05:02:21.5708986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5710842Z x_103: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5712472Z 2025-03-14T05:02:21.5712853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5713341Z out_60: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:02:21.5713607Z 2025-03-14T05:02:21.5713948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5714693Z x_104: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_60 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.5715256Z 2025-03-14T05:02:21.5715618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5717462Z x_105: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5719044Z 2025-03-14T05:02:21.5719411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5719887Z out_61: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:02:21.5720147Z 2025-03-14T05:02:21.5720482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5721198Z x_106: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.5721735Z 2025-03-14T05:02:21.5722082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.5723864Z x_107: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.5725450Z 2025-03-14T05:02:21.5725815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.5726303Z x_107 += out_59; out_62: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:02:21.5726572Z 2025-03-14T05:02:21.5726944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.5727425Z out_63: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:02:21.5727694Z 2025-03-14T05:02:21.5728244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:21.5728915Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:02:21.5729248Z 2025-03-14T05:02:21.5729640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.5730130Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:02:21.5730391Z 2025-03-14T05:02:21.5730922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:21.5731559Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:02:21.5731834Z 2025-03-14T05:02:21.5732218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.5732705Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:02:21.5732969Z 2025-03-14T05:02:21.5733432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:02:21.5734055Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:02:21.5734392Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:02:21.5734670Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:02:21.5734907Z 2025-03-14T05:02:21.5735326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:02:21.5735842Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:02:21.5736088Z 2025-03-14T05:02:21.5736505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:02:21.5737007Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:02:21.5737280Z 2025-03-14T05:02:21.5737743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:02:21.5738380Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:02:21.5738707Z 2025-03-14T05:02:21.5739214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:02:21.5739806Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:02:21.5740412Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:02:21.5741016Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:02:21.5741312Z x_108: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:02:21.5741549Z 2025-03-14T05:02:21.5741963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:21.5742445Z tensor: "f32[82125, 4][4, 1]cpu" = x_108.to(torch.float32); x_108 = None 2025-03-14T05:02:21.5742712Z 2025-03-14T05:02:21.5743066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.5744221Z x_109: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_63 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:02:21.5745140Z 2025-03-14T05:02:21.5745517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:02:21.5746062Z x_110: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_109, inplace = False); x_109 = None 2025-03-14T05:02:21.5746392Z 2025-03-14T05:02:21.5746873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:02:21.5748127Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:02:21.5749083Z 2025-03-14T05:02:21.5749531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:02:21.5750760Z x_111: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_110 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:02:21.5751712Z 2025-03-14T05:02:21.5752133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:02:21.5752679Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:02:21.5753027Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:02:21.5753292Z 2025-03-14T05:02:21.5753800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:02:21.5754426Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_111.view(4, -1, 4, 73, 75); x_111 = None 2025-03-14T05:02:21.5754812Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:02:21.5755207Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:02:21.5755514Z 2025-03-14T05:02:21.5756024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:02:21.5756687Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:02:21.5757025Z 2025-03-14T05:02:21.5757551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:02:21.5758192Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:02:21.5758552Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:02:21.5758901Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:02:21.5759169Z 2025-03-14T05:02:21.5759643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:21.5760244Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:02:21.5760539Z 2025-03-14T05:02:21.5760946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:21.5761459Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:02:21.5761727Z 2025-03-14T05:02:21.5762138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:21.5762647Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:21.5762964Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:21.5763296Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:02:21.5763570Z 2025-03-14T05:02:21.5763982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:21.5764479Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:21.5764805Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:21.5765131Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:21.5765400Z 2025-03-14T05:02:21.5765805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:21.5766296Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:21.5766570Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:02:21.5766830Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:02:21.5767079Z 2025-03-14T05:02:21.5767486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:21.5768003Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:21.5768296Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:02:21.5768572Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:02:21.5768820Z 2025-03-14T05:02:21.5769296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:21.5769837Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:21.5770183Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:02:21.5770421Z 2025-03-14T05:02:21.5770815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:21.5771323Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:21.5771652Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:02:21.5771891Z 2025-03-14T05:02:21.5772282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:21.5772789Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:21.5773112Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:02:21.5773349Z 2025-03-14T05:02:21.5773743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:21.5774277Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:21.5774626Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:02:21.5774866Z 2025-03-14T05:02:21.5775310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:21.5775865Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:21.5776135Z 2025-03-14T05:02:21.5776559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:21.5777100Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:21.5777360Z 2025-03-14T05:02:21.5777801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:21.5778364Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:21.5778690Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:02:21.5779032Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:21.5779386Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:02:21.5779652Z 2025-03-14T05:02:21.5780097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:21.5780655Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:21.5780988Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:02:21.5781335Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:21.5781863Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:02:21.5782139Z 2025-03-14T05:02:21.5782634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:21.5783165Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:21.5783537Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:21.5783942Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:02:21.5784259Z 2025-03-14T05:02:21.5784710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:21.5785282Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:21.5785637Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:21.5786017Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:02:21.5786278Z 2025-03-14T05:02:21.5786690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:21.5787159Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:21.5787423Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:21.5787667Z 2025-03-14T05:02:21.5788075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:21.5788545Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:21.5788820Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:21.5789067Z 2025-03-14T05:02:21.5789467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:21.5789961Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:21.5790264Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:21.5790522Z 2025-03-14T05:02:21.5790923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:21.5791406Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:21.5791739Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:21.5791992Z 2025-03-14T05:02:21.5792438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:21.5793033Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:21.5793338Z 2025-03-14T05:02:21.5793769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:21.5794328Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:02:21.5794617Z 2025-03-14T05:02:21.5795099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:02:21.5795727Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:02:21.5796024Z 2025-03-14T05:02:21.5796624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:02:21.5797343Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:02:21.5797620Z 2025-03-14T05:02:21.5798013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.5798518Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:02:21.5798788Z 2025-03-14T05:02:21.5799318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:02:21.5799943Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:02:21.5800223Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:02:21.5800499Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:02:21.5800734Z 2025-03-14T05:02:21.5801279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:02:21.5801958Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:02:21.5802408Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:02:21.5802756Z 2025-03-14T05:02:21.5803297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:02:21.5803971Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:02:21.5804259Z 2025-03-14T05:02:21.5804642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.5805146Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:02:21.5805417Z 2025-03-14T05:02:21.5805912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:02:21.5806503Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:02:21.5806769Z 2025-03-14T05:02:21.5807159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:21.5807657Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:02:21.5807926Z 2025-03-14T05:02:21.5808388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:02:21.5808971Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:02:21.5809228Z 2025-03-14T05:02:21.5809802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:02:21.5810500Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:02:21.5810806Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:21.5811155Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:02:21.5812415Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:02:21.5812675Z 2025-03-14T05:02:21.5813133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:02:21.5813671Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:02:21.5813914Z 2025-03-14T05:02:21.5814446Z 2025-03-14T05:02:21.5814540Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:21.5867239Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:02:21.5918973Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:02:21.5919515Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5920322Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5921221Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5922143Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5922983Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5923725Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5924503Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5925342Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5926076Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5926798Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5927488Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5928219Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5928966Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5929683Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5930374Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5931028Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5931747Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5932555Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5933311Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5934029Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5934705Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5935411Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5936184Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5936920Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5937646Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5938313Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5938991Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5939723Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5940460Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5941163Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5941839Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5942534Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5942883Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5943220Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5943538Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5943842Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5944259Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5944631Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5944969Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5945306Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5945603Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5945993Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5946350Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5946693Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5947025Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5947325Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5947688Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5948061Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5948411Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5948801Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5949125Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5949488Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5949838Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5950193Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5950522Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5950830Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5951189Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5951555Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5951894Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5952232Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5952544Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5952917Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5953282Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5953623Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5953960Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5954262Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5954608Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5954953Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5955289Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5955617Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5955942Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5956306Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5956653Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5956999Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5957324Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5957618Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5957955Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5958298Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5958624Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5961738Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5962042Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5962388Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5962735Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5963056Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5963416Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5963723Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5964093Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5964468Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5964814Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5965128Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5965420Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5965792Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5966159Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5966499Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5966838Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5967146Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5967545Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5967941Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5968271Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5968692Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5968986Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5969376Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5969761Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5970110Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5970423Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5970715Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5971086Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5971481Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5971827Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5972131Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5972417Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5972748Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5973086Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5973413Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5973732Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5974026Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5974373Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5974721Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5975070Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5975391Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5975675Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5976023Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5976359Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5976686Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5977004Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5977301Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5977665Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5978020Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5978349Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5978659Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5978954Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5979296Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5979642Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5979969Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5980292Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5980628Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.5981002Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5981394Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5981921Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5982293Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5982626Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5983030Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5983400Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5983738Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5984165Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5984462Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5984835Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5985225Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5985578Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5985916Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5986225Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5986597Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5986936Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5987273Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5987603Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5987912Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5988270Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5988675Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5989021Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5989348Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5989655Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5990015Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5990377Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5990712Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5991065Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5991380Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5991759Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5992121Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5992463Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5992800Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5993102Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5993471Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5993829Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5994176Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5994505Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5994817Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5995146Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5995500Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5995823Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5996130Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5996415Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.5996745Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5997084Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5997416Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5997752Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5998053Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.5998389Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.5998724Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.5999034Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.5999344Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.5999620Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.5999960Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6000285Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6000602Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6000914Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6001189Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6001543Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6001868Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6002187Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6002494Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6002778Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6003110Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6003441Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6003770Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6004085Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6004384Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6004719Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6005053Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6005367Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6005680Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6005964Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6006307Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6006644Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6006957Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6007271Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6007549Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6007903Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6008230Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6008551Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6008862Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6009160Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6009509Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6009850Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6010180Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6010493Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6010775Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6011106Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6011437Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6011748Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6012061Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6012362Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.6012707Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6013055Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6013380Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6013712Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6014013Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6014361Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6014693Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6015020Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6015338Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6015621Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6015971Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6016321Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6016662Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6016985Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6017275Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6017613Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6017957Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6018284Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6018593Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6018887Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6019257Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6019631Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6019967Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6020333Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6020633Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6021010Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6021373Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6021707Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6022053Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6022362Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6022769Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6023144Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6023513Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6023847Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6024315Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:02:21.6024695Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:02:21.6025057Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:02:21.6025480Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:02:21.6025844Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:02:21.6026205Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:02:21.6026552Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:02:21.6026634Z 2025-03-14T05:02:21.6026940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6027433Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6027531Z 2025-03-14T05:02:21.6027830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6029281Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6029354Z 2025-03-14T05:02:21.6029654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:02:21.6029813Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:02:21.6029890Z 2025-03-14T05:02:21.6030270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:02:21.6030535Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:02:21.6030606Z 2025-03-14T05:02:21.6030879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6031305Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6031383Z 2025-03-14T05:02:21.6031671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6033210Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6033294Z 2025-03-14T05:02:21.6033595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6033752Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:02:21.6033820Z 2025-03-14T05:02:21.6034096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6034531Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6034599Z 2025-03-14T05:02:21.6034874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6036400Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6036477Z 2025-03-14T05:02:21.6036767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6036933Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:02:21.6037014Z 2025-03-14T05:02:21.6037276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6037724Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6037790Z 2025-03-14T05:02:21.6038066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6039579Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6039653Z 2025-03-14T05:02:21.6039908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6040352Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6040443Z 2025-03-14T05:02:21.6040709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6042305Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6042373Z 2025-03-14T05:02:21.6042663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6042819Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:02:21.6042885Z 2025-03-14T05:02:21.6043201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6043356Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:02:21.6043445Z 2025-03-14T05:02:21.6043711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6044137Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6044205Z 2025-03-14T05:02:21.6044477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6046032Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6046109Z 2025-03-14T05:02:21.6046400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6046545Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:02:21.6046617Z 2025-03-14T05:02:21.6046869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6047300Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6047395Z 2025-03-14T05:02:21.6047664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6049210Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6049289Z 2025-03-14T05:02:21.6049583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6049742Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:02:21.6049821Z 2025-03-14T05:02:21.6050086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6050519Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6050602Z 2025-03-14T05:02:21.6050876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6052383Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6052463Z 2025-03-14T05:02:21.6052748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6052902Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:02:21.6052982Z 2025-03-14T05:02:21.6053261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6053422Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:02:21.6053489Z 2025-03-14T05:02:21.6053745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6054174Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6054248Z 2025-03-14T05:02:21.6054514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6056023Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6056099Z 2025-03-14T05:02:21.6056442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6056590Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:02:21.6056671Z 2025-03-14T05:02:21.6056942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6057358Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6057433Z 2025-03-14T05:02:21.6057694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6059215Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6059292Z 2025-03-14T05:02:21.6059577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6059723Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:02:21.6059787Z 2025-03-14T05:02:21.6060045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6060469Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6060560Z 2025-03-14T05:02:21.6060827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6062347Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6062423Z 2025-03-14T05:02:21.6062705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6062887Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:02:21.6062952Z 2025-03-14T05:02:21.6063253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6063423Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:02:21.6063498Z 2025-03-14T05:02:21.6063750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6064246Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6064320Z 2025-03-14T05:02:21.6064599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6066156Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6066227Z 2025-03-14T05:02:21.6066530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6066688Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:02:21.6066769Z 2025-03-14T05:02:21.6067031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6067524Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6067596Z 2025-03-14T05:02:21.6067897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6069415Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6069517Z 2025-03-14T05:02:21.6069822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6069990Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:02:21.6070078Z 2025-03-14T05:02:21.6070336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6070768Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6070843Z 2025-03-14T05:02:21.6071108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6072636Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6072713Z 2025-03-14T05:02:21.6072968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6073424Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6073491Z 2025-03-14T05:02:21.6073761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6075359Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6075436Z 2025-03-14T05:02:21.6075720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6075870Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:02:21.6075943Z 2025-03-14T05:02:21.6076241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6076406Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:02:21.6076473Z 2025-03-14T05:02:21.6076750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6077181Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6077258Z 2025-03-14T05:02:21.6077524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6079051Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6079129Z 2025-03-14T05:02:21.6079413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6079562Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:02:21.6079628Z 2025-03-14T05:02:21.6079887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6080312Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6080407Z 2025-03-14T05:02:21.6080670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6082375Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6082462Z 2025-03-14T05:02:21.6082764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6082966Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:02:21.6083037Z 2025-03-14T05:02:21.6083309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6083791Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6083892Z 2025-03-14T05:02:21.6084171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6085722Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6085798Z 2025-03-14T05:02:21.6086077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6086242Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:02:21.6086307Z 2025-03-14T05:02:21.6086599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6086752Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:02:21.6086828Z 2025-03-14T05:02:21.6087076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6087530Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6087596Z 2025-03-14T05:02:21.6087868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6089387Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6089455Z 2025-03-14T05:02:21.6089764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6089909Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:02:21.6089999Z 2025-03-14T05:02:21.6090247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6090693Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6090762Z 2025-03-14T05:02:21.6091039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6092578Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6092646Z 2025-03-14T05:02:21.6092944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6093088Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:02:21.6093162Z 2025-03-14T05:02:21.6093415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6093857Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6093947Z 2025-03-14T05:02:21.6094212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6095741Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6095810Z 2025-03-14T05:02:21.6096101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6096272Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:02:21.6096349Z 2025-03-14T05:02:21.6096653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6096830Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:02:21.6096897Z 2025-03-14T05:02:21.6097159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6097588Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6097655Z 2025-03-14T05:02:21.6097927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6099458Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6099536Z 2025-03-14T05:02:21.6099821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6099972Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:02:21.6100039Z 2025-03-14T05:02:21.6100297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6100748Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6100814Z 2025-03-14T05:02:21.6101085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6102631Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6102709Z 2025-03-14T05:02:21.6103009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6103172Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:02:21.6103261Z 2025-03-14T05:02:21.6103509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6103958Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6104030Z 2025-03-14T05:02:21.6104420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6106059Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6106135Z 2025-03-14T05:02:21.6106448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6106622Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:02:21.6106703Z 2025-03-14T05:02:21.6107018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6107198Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:02:21.6107292Z 2025-03-14T05:02:21.6107581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6108054Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6108136Z 2025-03-14T05:02:21.6108431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6110178Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6110263Z 2025-03-14T05:02:21.6110599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6110775Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:02:21.6110850Z 2025-03-14T05:02:21.6111139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6111611Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6111698Z 2025-03-14T05:02:21.6111964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6113489Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6113564Z 2025-03-14T05:02:21.6113850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6113996Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:02:21.6114062Z 2025-03-14T05:02:21.6114324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6114757Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6114831Z 2025-03-14T05:02:21.6115097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6116616Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6116693Z 2025-03-14T05:02:21.6116961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6117412Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6117494Z 2025-03-14T05:02:21.6117761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6119301Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6119378Z 2025-03-14T05:02:21.6119665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6119809Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:02:21.6119886Z 2025-03-14T05:02:21.6120166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6120323Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:02:21.6120391Z 2025-03-14T05:02:21.6120649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6121062Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6121154Z 2025-03-14T05:02:21.6121418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6122925Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6123002Z 2025-03-14T05:02:21.6123309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6123457Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:02:21.6123523Z 2025-03-14T05:02:21.6123797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6124236Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6124313Z 2025-03-14T05:02:21.6124577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6126104Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6126183Z 2025-03-14T05:02:21.6126467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6126610Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:02:21.6126674Z 2025-03-14T05:02:21.6126933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6127352Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6127441Z 2025-03-14T05:02:21.6127704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6129218Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6129293Z 2025-03-14T05:02:21.6129572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6129726Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:02:21.6129806Z 2025-03-14T05:02:21.6130096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6130257Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:02:21.6130342Z 2025-03-14T05:02:21.6130593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6131020Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6131088Z 2025-03-14T05:02:21.6131362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6132892Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6132965Z 2025-03-14T05:02:21.6133263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6133400Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:02:21.6133477Z 2025-03-14T05:02:21.6133726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6134154Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6134236Z 2025-03-14T05:02:21.6134506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6136011Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6136079Z 2025-03-14T05:02:21.6136381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6136514Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:02:21.6136587Z 2025-03-14T05:02:21.6136847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6137282Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6137350Z 2025-03-14T05:02:21.6137621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6139138Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6139208Z 2025-03-14T05:02:21.6139496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6139640Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:02:21.6139713Z 2025-03-14T05:02:21.6139994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6140144Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:02:21.6140208Z 2025-03-14T05:02:21.6140481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6140890Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6140963Z 2025-03-14T05:02:21.6141235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6142745Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6142835Z 2025-03-14T05:02:21.6143122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6143534Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:02:21.6143618Z 2025-03-14T05:02:21.6143884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6144398Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6144474Z 2025-03-14T05:02:21.6144767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6146349Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6146430Z 2025-03-14T05:02:21.6146738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6146887Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:02:21.6146958Z 2025-03-14T05:02:21.6147234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6147688Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6147789Z 2025-03-14T05:02:21.6148084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6149700Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6149783Z 2025-03-14T05:02:21.6150094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6150256Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:02:21.6150333Z 2025-03-14T05:02:21.6150644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6150820Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:02:21.6150892Z 2025-03-14T05:02:21.6151160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6151597Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6151676Z 2025-03-14T05:02:21.6151955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6153528Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6153606Z 2025-03-14T05:02:21.6153893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6154038Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:02:21.6154103Z 2025-03-14T05:02:21.6154361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6154796Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6154869Z 2025-03-14T05:02:21.6155133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6156642Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6156733Z 2025-03-14T05:02:21.6157018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6157174Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:02:21.6157252Z 2025-03-14T05:02:21.6157508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6157928Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6158001Z 2025-03-14T05:02:21.6158265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6159810Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6159885Z 2025-03-14T05:02:21.6160166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6160319Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:02:21.6160387Z 2025-03-14T05:02:21.6160676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6160862Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:02:21.6160935Z 2025-03-14T05:02:21.6161184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6161607Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6161673Z 2025-03-14T05:02:21.6161945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6163502Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6163577Z 2025-03-14T05:02:21.6163884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6164035Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:02:21.6164107Z 2025-03-14T05:02:21.6164355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6164782Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6164850Z 2025-03-14T05:02:21.6165120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6166633Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6166708Z 2025-03-14T05:02:21.6167001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6167135Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:02:21.6167206Z 2025-03-14T05:02:21.6167455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6167896Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6167961Z 2025-03-14T05:02:21.6168231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6169744Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6169829Z 2025-03-14T05:02:21.6170117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6170275Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:02:21.6170369Z 2025-03-14T05:02:21.6170655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6170806Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:02:21.6170872Z 2025-03-14T05:02:21.6171130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6171539Z x_88: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6171613Z 2025-03-14T05:02:21.6171879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6173416Z x_89: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6173492Z 2025-03-14T05:02:21.6173780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6173939Z out_52: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:02:21.6174003Z 2025-03-14T05:02:21.6174261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6174685Z x_90: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_52 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6174759Z 2025-03-14T05:02:21.6175027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6176563Z x_91: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6176639Z 2025-03-14T05:02:21.6176937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6177094Z out_53: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:02:21.6177161Z 2025-03-14T05:02:21.6177417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6177845Z x_92: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6177921Z 2025-03-14T05:02:21.6178185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6179702Z x_93: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6179781Z 2025-03-14T05:02:21.6180038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6180512Z x_94: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6180610Z 2025-03-14T05:02:21.6180900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6182717Z x_95: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6182797Z 2025-03-14T05:02:21.6183122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6183319Z x_93 += x_95; out_54: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:02:21.6183401Z 2025-03-14T05:02:21.6183705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6183890Z out_55: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:02:21.6183982Z 2025-03-14T05:02:21.6184306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6184751Z x_96: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6184829Z 2025-03-14T05:02:21.6185107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6186722Z x_97: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6186806Z 2025-03-14T05:02:21.6187109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6187261Z out_56: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:02:21.6187331Z 2025-03-14T05:02:21.6187609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6188071Z x_98: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_56 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6188150Z 2025-03-14T05:02:21.6188435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6190011Z x_99: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6190093Z 2025-03-14T05:02:21.6190407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6190558Z out_57: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:02:21.6190627Z 2025-03-14T05:02:21.6190912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6191382Z x_100: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6191460Z 2025-03-14T05:02:21.6191744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6193344Z x_101: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6193423Z 2025-03-14T05:02:21.6193716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6193888Z x_101 += out_55; out_58: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:02:21.6193956Z 2025-03-14T05:02:21.6194263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6194418Z out_59: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:02:21.6194511Z 2025-03-14T05:02:21.6194777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6195220Z x_102: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6195299Z 2025-03-14T05:02:21.6195578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6197148Z x_103: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6197219Z 2025-03-14T05:02:21.6197511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6197683Z out_60: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:02:21.6197765Z 2025-03-14T05:02:21.6198023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6198445Z x_104: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_60 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6198520Z 2025-03-14T05:02:21.6198785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6200328Z x_105: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6200406Z 2025-03-14T05:02:21.6200690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6200845Z out_61: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:02:21.6200915Z 2025-03-14T05:02:21.6201178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6201616Z x_106: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6201688Z 2025-03-14T05:02:21.6201951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6203479Z x_107: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6203555Z 2025-03-14T05:02:21.6203850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6204012Z x_107 += out_59; out_62: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:02:21.6204090Z 2025-03-14T05:02:21.6204382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6204542Z out_63: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:02:21.6204617Z 2025-03-14T05:02:21.6205053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:21.6205220Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:02:21.6205286Z 2025-03-14T05:02:21.6205593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6205734Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:02:21.6205817Z 2025-03-14T05:02:21.6206250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:21.6206416Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:02:21.6206481Z 2025-03-14T05:02:21.6206782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6206924Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:02:21.6206999Z 2025-03-14T05:02:21.6207374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:02:21.6207566Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:02:21.6207666Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:02:21.6207815Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:02:21.6207882Z 2025-03-14T05:02:21.6208225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:02:21.6208355Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:02:21.6208430Z 2025-03-14T05:02:21.6208758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:02:21.6208888Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:02:21.6208955Z 2025-03-14T05:02:21.6209353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:02:21.6209569Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:02:21.6209643Z 2025-03-14T05:02:21.6210064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:02:21.6210215Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:02:21.6210666Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:02:21.6210807Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:02:21.6210935Z x_108: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:02:21.6211002Z 2025-03-14T05:02:21.6211316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:21.6211444Z tensor: "f32[82125, 4][4, 1]cpu" = x_108.to(torch.float32); x_108 = None 2025-03-14T05:02:21.6211519Z 2025-03-14T05:02:21.6211775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6212550Z x_109: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_63 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:02:21.6212619Z 2025-03-14T05:02:21.6212904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:02:21.6213097Z x_110: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_109, inplace = False); x_109 = None 2025-03-14T05:02:21.6213171Z 2025-03-14T05:02:21.6213552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:02:21.6214403Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:02:21.6214495Z 2025-03-14T05:02:21.6214853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:02:21.6215676Z x_111: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_110 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:02:21.6215744Z 2025-03-14T05:02:21.6216088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:02:21.6216243Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:02:21.6216394Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:02:21.6216459Z 2025-03-14T05:02:21.6216895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:02:21.6217073Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_111.view(4, -1, 4, 73, 75); x_111 = None 2025-03-14T05:02:21.6217273Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:02:21.6217451Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:02:21.6217522Z 2025-03-14T05:02:21.6217921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:02:21.6218136Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:02:21.6218210Z 2025-03-14T05:02:21.6218643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:02:21.6218804Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:02:21.6218957Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:02:21.6219102Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:02:21.6219167Z 2025-03-14T05:02:21.6219550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:21.6219724Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:02:21.6219797Z 2025-03-14T05:02:21.6220109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:21.6220256Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:02:21.6220321Z 2025-03-14T05:02:21.6220659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:21.6220792Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:21.6220929Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:21.6221074Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:02:21.6221148Z 2025-03-14T05:02:21.6221470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:21.6221602Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:21.6221724Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:21.6221877Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:21.6221944Z 2025-03-14T05:02:21.6222260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:21.6222383Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:21.6222478Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:02:21.6222626Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:02:21.6222701Z 2025-03-14T05:02:21.6223026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:21.6223198Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:21.6223291Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:02:21.6223430Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:02:21.6223497Z 2025-03-14T05:02:21.6223844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:21.6224003Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:21.6224197Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:02:21.6224276Z 2025-03-14T05:02:21.6224597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:21.6224752Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:21.6224878Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:02:21.6224947Z 2025-03-14T05:02:21.6225264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:21.6225439Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:21.6225550Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:02:21.6225626Z 2025-03-14T05:02:21.6225925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:21.6226124Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:21.6226243Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:02:21.6226320Z 2025-03-14T05:02:21.6226663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:21.6226842Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:21.6226909Z 2025-03-14T05:02:21.6227258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:21.6227400Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:21.6227473Z 2025-03-14T05:02:21.6227847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:21.6228000Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:21.6228129Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:02:21.6228294Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:21.6228437Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:02:21.6228511Z 2025-03-14T05:02:21.6228879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:21.6229031Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:21.6229171Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:02:21.6229350Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:21.6229489Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:02:21.6229568Z 2025-03-14T05:02:21.6229906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:21.6230037Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:21.6230201Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:21.6230347Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:02:21.6230414Z 2025-03-14T05:02:21.6230761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:21.6230882Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:21.6231063Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:21.6231200Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:02:21.6231276Z 2025-03-14T05:02:21.6231594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:21.6231701Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:21.6231823Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:21.6231899Z 2025-03-14T05:02:21.6232215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:21.6232322Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:21.6232438Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:21.6232533Z 2025-03-14T05:02:21.6232840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:21.6232968Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:21.6233099Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:21.6233173Z 2025-03-14T05:02:21.6233482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:21.6233609Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:21.6233746Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:21.6233812Z 2025-03-14T05:02:21.6234173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:21.6234363Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:21.6234435Z 2025-03-14T05:02:21.6234787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:21.6234961Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:02:21.6235029Z 2025-03-14T05:02:21.6235437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:02:21.6235628Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:02:21.6235705Z 2025-03-14T05:02:21.6236194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:02:21.6236342Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:02:21.6236409Z 2025-03-14T05:02:21.6236724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6236871Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:02:21.6236948Z 2025-03-14T05:02:21.6237391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:02:21.6237518Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:02:21.6237628Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:02:21.6237755Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:02:21.6237823Z 2025-03-14T05:02:21.6238295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:02:21.6238466Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:02:21.6238719Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:02:21.6238783Z 2025-03-14T05:02:21.6239251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:02:21.6239416Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:02:21.6239491Z 2025-03-14T05:02:21.6239783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6239942Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:02:21.6240007Z 2025-03-14T05:02:21.6240388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:02:21.6240542Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:02:21.6240607Z 2025-03-14T05:02:21.6240909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:21.6241050Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:02:21.6241122Z 2025-03-14T05:02:21.6241501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:02:21.6241659Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:02:21.6241738Z 2025-03-14T05:02:21.6242208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:02:21.6242346Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:02:21.6242473Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:21.6242624Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:02:21.6242761Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:02:21.6242824Z 2025-03-14T05:02:21.6243196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:02:21.6243314Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:02:21.6243387Z 2025-03-14T05:02:21.6243396Z 2025-03-14T05:02:21.6243504Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:21.6295377Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:02:21.6295923Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:02:21.6296280Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6296671Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6297061Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6297430Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6297796Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6298124Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6298569Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6299001Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6299405Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6299795Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6300143Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6300572Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6300974Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6301376Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6301766Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6302103Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6302508Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6302898Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6303314Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6303699Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6304078Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.6304604Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6305079Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6305540Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6305945Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6306297Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6306723Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6307121Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6307470Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6307821Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6308161Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6308562Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6308942Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6309294Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6309641Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6309959Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6310341Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6310709Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6311078Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6311421Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6311748Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6312121Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6312502Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6312855Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6313213Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6313554Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6313931Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6314327Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6314682Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6315032Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6315342Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6315721Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6316103Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6316457Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6316800Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6317118Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6317495Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6317916Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6318276Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6318650Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6318977Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6319368Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6319748Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6320108Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6320479Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6320813Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6321212Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6321586Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6321951Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6322304Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6322639Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.6323038Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6323423Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6323803Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6324165Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6324491Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6324894Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6325292Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6325662Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6326025Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6326351Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6326732Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6327114Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6327490Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6327886Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6328222Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6328608Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6328990Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6329348Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6329703Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6330021Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6330405Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6330783Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6331147Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6331491Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6331818Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6332228Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6332606Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6332974Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6333325Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6333657Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6334037Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6334444Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6334791Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6335148Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6335479Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6335848Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6336222Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6336583Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6336943Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6337249Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6337628Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6337993Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6338347Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6338695Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6339018Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6339407Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6339781Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6340138Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6340477Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6340794Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6341172Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6343768Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6344109Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6344537Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6344845Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6345234Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6345674Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6346029Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6346377Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6346671Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6347035Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6347389Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6347725Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6348049Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6348383Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.6348754Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6349131Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6349479Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6349813Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6350111Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6350473Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6350896Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6351238Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6351552Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6351846Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6352185Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6352530Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6352849Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6353166Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6353451Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6353800Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6354145Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6354464Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6354799Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6355082Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6355430Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6355766Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6356095Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6356407Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6356699Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6357072Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6357422Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6357760Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6358066Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6358357Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6358696Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6359039Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6359358Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6359676Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6359965Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6360302Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6360639Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6360974Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6361288Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6361574Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6361921Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6362255Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6362579Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6362893Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6363192Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6363552Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6363897Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6364222Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6364531Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6364821Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6365159Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6365500Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6365826Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6366131Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6366422Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6366761Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6367103Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6367440Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6367756Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6368044Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6368390Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6368736Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6369057Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6369372Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6369686Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6370033Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6370385Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6370713Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6371021Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6371313Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6371656Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6371992Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6372319Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6372628Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6372918Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6373256Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6373618Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6373934Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6374252Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6374547Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6374886Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6375231Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6375549Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6375879Z l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6376204Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6376570Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6376906Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6377229Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6377547Z l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6377827Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6378173Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6378510Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6378836Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6379145Z l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6379450Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:02:21.6379798Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6380170Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6380511Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6380835Z l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6381123Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6381606Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6381965Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6382319Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6382670Z l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6382959Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6383329Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6383675Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6384018Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6384426Z l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6384754Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6385148Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6385510Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6385835Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6386184Z l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6386511Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:02:21.6386924Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6387311Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6387677Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6388026Z l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6388352Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:02:21.6388730Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6389122Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6389507Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6389858Z l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6390195Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:02:21.6390575Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:02:21.6390957Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:02:21.6391313Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:02:21.6391664Z l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:02:21.6392052Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:02:21.6392420Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:02:21.6392732Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:02:21.6393109Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:02:21.6393472Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:02:21.6393838Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:02:21.6394186Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:02:21.6394256Z 2025-03-14T05:02:21.6394561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6395038Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6395121Z 2025-03-14T05:02:21.6395405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6396877Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6396968Z 2025-03-14T05:02:21.6397257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:02:21.6397406Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:02:21.6397471Z 2025-03-14T05:02:21.6397838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:02:21.6398078Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:02:21.6398154Z 2025-03-14T05:02:21.6398410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6398840Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6398908Z 2025-03-14T05:02:21.6399185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6400704Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6400806Z 2025-03-14T05:02:21.6401108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6401251Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:02:21.6401323Z 2025-03-14T05:02:21.6401575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6402007Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6402073Z 2025-03-14T05:02:21.6402345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6403885Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6403966Z 2025-03-14T05:02:21.6404261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6404404Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:02:21.6404478Z 2025-03-14T05:02:21.6404734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6405177Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6405245Z 2025-03-14T05:02:21.6405517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6407050Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6407131Z 2025-03-14T05:02:21.6407391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6407823Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6407899Z 2025-03-14T05:02:21.6408160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6410069Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6410151Z 2025-03-14T05:02:21.6410440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6410614Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:02:21.6410682Z 2025-03-14T05:02:21.6410976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6411139Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:02:21.6411211Z 2025-03-14T05:02:21.6411459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6411879Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6411946Z 2025-03-14T05:02:21.6412215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6413724Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6413808Z 2025-03-14T05:02:21.6414104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6414249Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:02:21.6414322Z 2025-03-14T05:02:21.6414572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6415009Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6415085Z 2025-03-14T05:02:21.6415347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6416914Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6416994Z 2025-03-14T05:02:21.6417290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6417436Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:02:21.6417512Z 2025-03-14T05:02:21.6417767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6418217Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6418290Z 2025-03-14T05:02:21.6418557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6420126Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6420195Z 2025-03-14T05:02:21.6420493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6420672Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:02:21.6420746Z 2025-03-14T05:02:21.6421035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6421198Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:02:21.6421267Z 2025-03-14T05:02:21.6421531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6421966Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6422035Z 2025-03-14T05:02:21.6422315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6423894Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6423985Z 2025-03-14T05:02:21.6424347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6424493Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:02:21.6424567Z 2025-03-14T05:02:21.6424829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6425265Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6425334Z 2025-03-14T05:02:21.6425619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6427192Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6427292Z 2025-03-14T05:02:21.6427605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6427752Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:02:21.6427831Z 2025-03-14T05:02:21.6428099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6428567Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6428638Z 2025-03-14T05:02:21.6428929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6430592Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6430691Z 2025-03-14T05:02:21.6431003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6431172Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:02:21.6431250Z 2025-03-14T05:02:21.6431552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6431717Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:02:21.6431785Z 2025-03-14T05:02:21.6432048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6432481Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6432578Z 2025-03-14T05:02:21.6432847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6434453Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6434544Z 2025-03-14T05:02:21.6434836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6434991Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:02:21.6435058Z 2025-03-14T05:02:21.6435317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6435748Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6435824Z 2025-03-14T05:02:21.6436091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6437662Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6437755Z 2025-03-14T05:02:21.6438060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6438220Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:02:21.6438289Z 2025-03-14T05:02:21.6438563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6439021Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6439101Z 2025-03-14T05:02:21.6439378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6440897Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6440989Z 2025-03-14T05:02:21.6441240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6441696Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6441764Z 2025-03-14T05:02:21.6442043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6443632Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6443705Z 2025-03-14T05:02:21.6443991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6444153Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:02:21.6444227Z 2025-03-14T05:02:21.6444507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6444665Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:02:21.6444729Z 2025-03-14T05:02:21.6444984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6445399Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6445475Z 2025-03-14T05:02:21.6445735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6447263Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6447338Z 2025-03-14T05:02:21.6447636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6447781Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:02:21.6447845Z 2025-03-14T05:02:21.6448100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6448528Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6448602Z 2025-03-14T05:02:21.6448863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6450421Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6450512Z 2025-03-14T05:02:21.6450796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6450948Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:02:21.6451013Z 2025-03-14T05:02:21.6451272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6451706Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6451782Z 2025-03-14T05:02:21.6452044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6453569Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6453647Z 2025-03-14T05:02:21.6453924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6454112Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:02:21.6454178Z 2025-03-14T05:02:21.6454474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6454622Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:02:21.6454696Z 2025-03-14T05:02:21.6454948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6455372Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6455449Z 2025-03-14T05:02:21.6455715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6457272Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6457355Z 2025-03-14T05:02:21.6457651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6457791Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:02:21.6457866Z 2025-03-14T05:02:21.6458115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6458546Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6458623Z 2025-03-14T05:02:21.6458884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6460423Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6460505Z 2025-03-14T05:02:21.6460797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6460935Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:02:21.6461008Z 2025-03-14T05:02:21.6461253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6461687Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6461761Z 2025-03-14T05:02:21.6462023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6463566Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6463646Z 2025-03-14T05:02:21.6463938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6464102Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:02:21.6464225Z 2025-03-14T05:02:21.6464526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6464680Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:02:21.6464753Z 2025-03-14T05:02:21.6465016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6465471Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6465541Z 2025-03-14T05:02:21.6465831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6467398Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6467494Z 2025-03-14T05:02:21.6467789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6467929Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:02:21.6468005Z 2025-03-14T05:02:21.6468268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6468728Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6468800Z 2025-03-14T05:02:21.6469083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6470704Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6470797Z 2025-03-14T05:02:21.6471106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6471255Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:02:21.6471329Z 2025-03-14T05:02:21.6471595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6472057Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6472130Z 2025-03-14T05:02:21.6472419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6474025Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6474121Z 2025-03-14T05:02:21.6474424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6474587Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:02:21.6474664Z 2025-03-14T05:02:21.6474968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6475136Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:02:21.6475206Z 2025-03-14T05:02:21.6475476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6475926Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6476002Z 2025-03-14T05:02:21.6476280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6477923Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6478029Z 2025-03-14T05:02:21.6478331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6478486Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:02:21.6478565Z 2025-03-14T05:02:21.6478824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6479244Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6479318Z 2025-03-14T05:02:21.6479580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6481086Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6481178Z 2025-03-14T05:02:21.6481605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6481760Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:02:21.6481827Z 2025-03-14T05:02:21.6482087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6482508Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6482588Z 2025-03-14T05:02:21.6482851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6484451Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6484550Z 2025-03-14T05:02:21.6484804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6485243Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6485341Z 2025-03-14T05:02:21.6485616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6487169Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6487237Z 2025-03-14T05:02:21.6487527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6487668Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:02:21.6487780Z 2025-03-14T05:02:21.6488063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6488215Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:02:21.6488281Z 2025-03-14T05:02:21.6488536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6488953Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6489030Z 2025-03-14T05:02:21.6489294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6490834Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6490924Z 2025-03-14T05:02:21.6491213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6491357Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:02:21.6491421Z 2025-03-14T05:02:21.6491676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6492100Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6492174Z 2025-03-14T05:02:21.6492437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6493943Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6494018Z 2025-03-14T05:02:21.6494300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6494456Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:02:21.6494522Z 2025-03-14T05:02:21.6494781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6495196Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6495271Z 2025-03-14T05:02:21.6495533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6497065Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6497153Z 2025-03-14T05:02:21.6497434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6497591Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:02:21.6497657Z 2025-03-14T05:02:21.6497946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6498088Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:02:21.6498162Z 2025-03-14T05:02:21.6498412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6498830Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6498897Z 2025-03-14T05:02:21.6499167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6500683Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6500766Z 2025-03-14T05:02:21.6501056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6501190Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:02:21.6501261Z 2025-03-14T05:02:21.6501509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6501931Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6502004Z 2025-03-14T05:02:21.6502265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6503814Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6503895Z 2025-03-14T05:02:21.6504236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6504374Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:02:21.6504449Z 2025-03-14T05:02:21.6504698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6505153Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6505229Z 2025-03-14T05:02:21.6505508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6507103Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6507173Z 2025-03-14T05:02:21.6507477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6507655Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:02:21.6507731Z 2025-03-14T05:02:21.6508030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6508188Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:02:21.6508255Z 2025-03-14T05:02:21.6508528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6508972Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6509041Z 2025-03-14T05:02:21.6509329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6510971Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6511064Z 2025-03-14T05:02:21.6511367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6511518Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:02:21.6511595Z 2025-03-14T05:02:21.6511867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6512314Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6512387Z 2025-03-14T05:02:21.6512675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6514257Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6514350Z 2025-03-14T05:02:21.6514661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6514800Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:02:21.6514877Z 2025-03-14T05:02:21.6515142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6515593Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6515662Z 2025-03-14T05:02:21.6515946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6517572Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6517660Z 2025-03-14T05:02:21.6517946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6518088Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:02:21.6518159Z 2025-03-14T05:02:21.6518438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6518584Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:02:21.6518647Z 2025-03-14T05:02:21.6518901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6519306Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6519378Z 2025-03-14T05:02:21.6519638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6521132Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6521218Z 2025-03-14T05:02:21.6521495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6521636Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:02:21.6521700Z 2025-03-14T05:02:21.6521953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6522356Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6522428Z 2025-03-14T05:02:21.6522685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6524178Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6524267Z 2025-03-14T05:02:21.6524543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6524681Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:02:21.6524744Z 2025-03-14T05:02:21.6524995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6525401Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6525475Z 2025-03-14T05:02:21.6525731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6527191Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6527279Z 2025-03-14T05:02:21.6527551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6527701Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:02:21.6527764Z 2025-03-14T05:02:21.6528052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6528192Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:02:21.6528264Z 2025-03-14T05:02:21.6528516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6528931Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6528998Z 2025-03-14T05:02:21.6529269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6530803Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6530883Z 2025-03-14T05:02:21.6531177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6531314Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:02:21.6531388Z 2025-03-14T05:02:21.6531638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6532064Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6532130Z 2025-03-14T05:02:21.6532400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6533912Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6533996Z 2025-03-14T05:02:21.6534295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6534426Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:02:21.6534498Z 2025-03-14T05:02:21.6534743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6535162Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6535230Z 2025-03-14T05:02:21.6535502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6537045Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6537128Z 2025-03-14T05:02:21.6537415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6537563Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:02:21.6537643Z 2025-03-14T05:02:21.6537931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6538082Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:02:21.6538152Z 2025-03-14T05:02:21.6538411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6538823Z x_88: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6538902Z 2025-03-14T05:02:21.6539168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6540676Z x_89: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6540765Z 2025-03-14T05:02:21.6541050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6541193Z out_52: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:02:21.6541259Z 2025-03-14T05:02:21.6541517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6541936Z x_90: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_52 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6542010Z 2025-03-14T05:02:21.6542274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6543815Z x_91: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6543905Z 2025-03-14T05:02:21.6544262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6544421Z out_53: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:02:21.6544490Z 2025-03-14T05:02:21.6544779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6545224Z x_92: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6545313Z 2025-03-14T05:02:21.6545575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6547099Z x_93: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6547196Z 2025-03-14T05:02:21.6547448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6547889Z x_94: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:02:21.6547956Z 2025-03-14T05:02:21.6548228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6549807Z x_95: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6549889Z 2025-03-14T05:02:21.6550178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6550321Z x_93 += x_95; out_54: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:02:21.6550395Z 2025-03-14T05:02:21.6550676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6550829Z out_55: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:02:21.6550895Z 2025-03-14T05:02:21.6551157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6551577Z x_96: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6551647Z 2025-03-14T05:02:21.6551918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6553442Z x_97: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6553540Z 2025-03-14T05:02:21.6553823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6553963Z out_56: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:02:21.6554027Z 2025-03-14T05:02:21.6554286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6554709Z x_98: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_56 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6554775Z 2025-03-14T05:02:21.6555043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6556572Z x_99: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6556660Z 2025-03-14T05:02:21.6556945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6557085Z out_57: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:02:21.6557151Z 2025-03-14T05:02:21.6557409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6557843Z x_100: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6557908Z 2025-03-14T05:02:21.6558174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6559682Z x_101: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6559755Z 2025-03-14T05:02:21.6560057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6560210Z x_101 += out_55; out_58: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:02:21.6560282Z 2025-03-14T05:02:21.6560565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6560720Z out_59: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:02:21.6560787Z 2025-03-14T05:02:21.6561043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6561453Z x_102: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:02:21.6561526Z 2025-03-14T05:02:21.6561790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6563339Z x_103: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6563429Z 2025-03-14T05:02:21.6563717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6563868Z out_60: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:02:21.6563934Z 2025-03-14T05:02:21.6564193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6564613Z x_104: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (2, 2), (2, 2), 1); out_60 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:02:21.6564688Z 2025-03-14T05:02:21.6564950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6566451Z x_105: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6566541Z 2025-03-14T05:02:21.6566827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6566974Z out_61: "f32[4, 512, 73, 75][2803200, 5475, 75, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:02:21.6567040Z 2025-03-14T05:02:21.6567299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6567719Z x_106: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:02:21.6567794Z 2025-03-14T05:02:21.6568055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:02:21.6569588Z x_107: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:02:21.6569679Z 2025-03-14T05:02:21.6569967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:02:21.6570129Z x_107 += out_59; out_62: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:02:21.6570194Z 2025-03-14T05:02:21.6570485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:02:21.6570630Z out_63: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:02:21.6570703Z 2025-03-14T05:02:21.6571142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:21.6571306Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:02:21.6571372Z 2025-03-14T05:02:21.6571677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6571815Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:02:21.6571888Z 2025-03-14T05:02:21.6572326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:21.6572486Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:02:21.6572552Z 2025-03-14T05:02:21.6572854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6573008Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:02:21.6573083Z 2025-03-14T05:02:21.6573457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:02:21.6573647Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:02:21.6573749Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:02:21.6573881Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:02:21.6573947Z 2025-03-14T05:02:21.6574287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:02:21.6574417Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:02:21.6574489Z 2025-03-14T05:02:21.6574812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:02:21.6574941Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:02:21.6575007Z 2025-03-14T05:02:21.6575423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:02:21.6575639Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:02:21.6575738Z 2025-03-14T05:02:21.6576162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:02:21.6576292Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:02:21.6576725Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:02:21.6576852Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:02:21.6576979Z x_108: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:02:21.6577044Z 2025-03-14T05:02:21.6577351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:21.6577478Z tensor: "f32[82125, 4][4, 1]cpu" = x_108.to(torch.float32); x_108 = None 2025-03-14T05:02:21.6577553Z 2025-03-14T05:02:21.6577805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:21.6578577Z x_109: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_63 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:02:21.6578643Z 2025-03-14T05:02:21.6578925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:02:21.6579122Z x_110: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_109, inplace = False); x_109 = None 2025-03-14T05:02:21.6579210Z 2025-03-14T05:02:21.6579594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:02:21.6580445Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:02:21.6580520Z 2025-03-14T05:02:21.6580875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:02:21.6581872Z x_111: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_110, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_110 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:02:21.6581965Z 2025-03-14T05:02:21.6582319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:02:21.6582499Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:02:21.6582652Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:02:21.6582718Z 2025-03-14T05:02:21.6583142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:02:21.6583306Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_111.view(4, -1, 4, 73, 75); x_111 = None 2025-03-14T05:02:21.6583493Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:02:21.6583680Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:02:21.6583747Z 2025-03-14T05:02:21.6584211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:02:21.6584456Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:02:21.6584537Z 2025-03-14T05:02:21.6585013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:02:21.6585182Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:02:21.6585350Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:02:21.6585500Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:02:21.6585566Z 2025-03-14T05:02:21.6585948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:21.6586182Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:02:21.6586256Z 2025-03-14T05:02:21.6586570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:21.6586718Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:02:21.6586786Z 2025-03-14T05:02:21.6587105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:21.6587251Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:21.6587398Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:21.6587563Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:02:21.6587646Z 2025-03-14T05:02:21.6588000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:21.6588148Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:21.6588300Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:21.6588490Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:21.6588564Z 2025-03-14T05:02:21.6588919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:21.6589072Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:21.6589184Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:02:21.6589321Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:02:21.6589402Z 2025-03-14T05:02:21.6589746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:21.6589914Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:21.6590018Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:02:21.6590180Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:02:21.6590251Z 2025-03-14T05:02:21.6590617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:21.6590789Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:21.6590923Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:02:21.6590995Z 2025-03-14T05:02:21.6591328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:21.6591503Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:21.6591628Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:02:21.6591706Z 2025-03-14T05:02:21.6592030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:21.6592207Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:21.6592348Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:02:21.6592424Z 2025-03-14T05:02:21.6592748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:21.6592955Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:21.6593076Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:02:21.6593153Z 2025-03-14T05:02:21.6593524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:21.6593686Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:21.6593755Z 2025-03-14T05:02:21.6594124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:21.6594273Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:21.6594352Z 2025-03-14T05:02:21.6594720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:21.6594880Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:21.6595020Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:02:21.6595180Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:21.6595333Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:02:21.6595410Z 2025-03-14T05:02:21.6595758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:21.6595903Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:21.6596024Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:02:21.6596182Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:21.6596320Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:02:21.6596395Z 2025-03-14T05:02:21.6596723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:21.6596851Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:21.6597011Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:21.6597150Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:02:21.6597214Z 2025-03-14T05:02:21.6597548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:21.6597666Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:21.6597841Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:21.6597982Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:02:21.6598048Z 2025-03-14T05:02:21.6598366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:21.6598483Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:21.6598610Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:21.6598676Z 2025-03-14T05:02:21.6598995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:21.6599093Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:21.6599218Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:21.6599284Z 2025-03-14T05:02:21.6599598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:21.6599717Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:21.6599854Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:21.6599918Z 2025-03-14T05:02:21.6600227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:21.6600339Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:21.6600488Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:21.6600553Z 2025-03-14T05:02:21.6600928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:21.6601125Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:21.6601199Z 2025-03-14T05:02:21.6601532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:21.6601702Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:02:21.6601768Z 2025-03-14T05:02:21.6602158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:02:21.6602333Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:02:21.6602408Z 2025-03-14T05:02:21.6602884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:02:21.6603031Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:02:21.6603097Z 2025-03-14T05:02:21.6603402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6603544Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:02:21.6603617Z 2025-03-14T05:02:21.6604049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:02:21.6604173Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:02:21.6604279Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:02:21.6604404Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:02:21.6604486Z 2025-03-14T05:02:21.6604947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:02:21.6605110Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:02:21.6605355Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:02:21.6605420Z 2025-03-14T05:02:21.6605881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:02:21.6606056Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:02:21.6606126Z 2025-03-14T05:02:21.6606429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:21.6606579Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:02:21.6606653Z 2025-03-14T05:02:21.6607047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:02:21.6607217Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:02:21.6607285Z 2025-03-14T05:02:21.6607592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:21.6607753Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:02:21.6607828Z 2025-03-14T05:02:21.6608203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:02:21.6608349Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:02:21.6608415Z 2025-03-14T05:02:21.6608905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:02:21.6609044Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:02:21.6609175Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:21.6609333Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:02:21.6609475Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:02:21.6609540Z 2025-03-14T05:02:21.6609912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:02:21.6610041Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:02:21.6610113Z 2025-03-14T05:02:31.4403781Z 2025-03-14T05:02:31.4406652Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:31.4410859Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:02:31.4412722Z l_features_res5_ = L_features_res5_ 2025-03-14T05:02:31.4413158Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:02:31.4413719Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:02:31.4414266Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:02:31.4414850Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:02:31.4415470Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:02:31.4416065Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:02:31.4416754Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:02:31.4417175Z 2025-03-14T05:02:31.4417839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:31.4418712Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:02:31.4419027Z 2025-03-14T05:02:31.4419488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4420020Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:02:31.4420292Z 2025-03-14T05:02:31.4420865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:31.4421589Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:02:31.4421897Z 2025-03-14T05:02:31.4422304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4422819Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:02:31.4423092Z 2025-03-14T05:02:31.4423582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:02:31.4424316Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:02:31.4424685Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:02:31.4424980Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:02:31.4425227Z 2025-03-14T05:02:31.4425706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:02:31.4426255Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:02:31.4426541Z 2025-03-14T05:02:31.4426977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:02:31.4427504Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:02:31.4427755Z 2025-03-14T05:02:31.4428250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:02:31.4428935Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:02:31.4429277Z 2025-03-14T05:02:31.4429811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:02:31.4430441Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:02:31.4430949Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:02:31.4431439Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:02:31.4431757Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:02:31.4431997Z 2025-03-14T05:02:31.4432417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:31.4432967Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:02:31.4433215Z 2025-03-14T05:02:31.4433569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:31.4434510Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:02:31.4435239Z 2025-03-14T05:02:31.4435616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:02:31.4436149Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:02:31.4436462Z 2025-03-14T05:02:31.4436938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:02:31.4438027Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:02:31.4438790Z 2025-03-14T05:02:31.4439256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:02:31.4440287Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:02:31.4441038Z 2025-03-14T05:02:31.4441475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:02:31.4442033Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:02:31.4442389Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:02:31.4442661Z 2025-03-14T05:02:31.4443171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:02:31.4443815Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:02:31.4444205Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:02:31.4444614Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:02:31.4444906Z 2025-03-14T05:02:31.4445429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:02:31.4446114Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:02:31.4446442Z 2025-03-14T05:02:31.4446964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:02:31.4447615Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:02:31.4447981Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:02:31.4448330Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:02:31.4448597Z 2025-03-14T05:02:31.4449075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:31.4449688Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:02:31.4449984Z 2025-03-14T05:02:31.4450436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:31.4450958Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:02:31.4451224Z 2025-03-14T05:02:31.4451635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:31.4452151Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:31.4452470Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:31.4452805Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:02:31.4453083Z 2025-03-14T05:02:31.4453499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:31.4454009Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:31.4454342Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:31.4454681Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:31.4454964Z 2025-03-14T05:02:31.4455385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:31.4455909Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:31.4456187Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:02:31.4456465Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:02:31.4456723Z 2025-03-14T05:02:31.4457144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:31.4457689Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:31.4457995Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:02:31.4458284Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:02:31.4458553Z 2025-03-14T05:02:31.4459007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:31.4459568Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:31.4459938Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:02:31.4460191Z 2025-03-14T05:02:31.4460606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:31.4461167Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:31.4461512Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:02:31.4461763Z 2025-03-14T05:02:31.4462176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:31.4462716Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:31.4463060Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:02:31.4463308Z 2025-03-14T05:02:31.4463798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:31.4464481Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:31.4464861Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:02:31.4465129Z 2025-03-14T05:02:31.4465620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:31.4466237Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:31.4466512Z 2025-03-14T05:02:31.4466970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:31.4467532Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:31.4467804Z 2025-03-14T05:02:31.4468272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:31.4468873Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:31.4469213Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:02:31.4469568Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:31.4469937Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:02:31.4470217Z 2025-03-14T05:02:31.4470688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:31.4471269Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:31.4471612Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:02:31.4471963Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:31.4472327Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:02:31.4472601Z 2025-03-14T05:02:31.4473048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:31.4473602Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:31.4473967Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:31.4474336Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:02:31.4474624Z 2025-03-14T05:02:31.4475068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:31.4475599Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:31.4475957Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:31.4476328Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:02:31.4476601Z 2025-03-14T05:02:31.4477028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:31.4477521Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:31.4477804Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:31.4478060Z 2025-03-14T05:02:31.4478478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:31.4478952Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:31.4479226Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:31.4479471Z 2025-03-14T05:02:31.4479879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:31.4480370Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:31.4480676Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:31.4480939Z 2025-03-14T05:02:31.4481344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:31.4482120Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:31.4482482Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:31.4482732Z 2025-03-14T05:02:31.4483175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:31.4483765Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:31.4484067Z 2025-03-14T05:02:31.4484505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:31.4485067Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:02:31.4485359Z 2025-03-14T05:02:31.4485838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:02:31.4486451Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:02:31.4486748Z 2025-03-14T05:02:31.4487326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:02:31.4488041Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:02:31.4488347Z 2025-03-14T05:02:31.4488748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4489279Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:02:31.4489548Z 2025-03-14T05:02:31.4490078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:02:31.4490690Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:02:31.4490969Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:02:31.4491246Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:02:31.4491485Z 2025-03-14T05:02:31.4492043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:02:31.4492737Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:02:31.4493201Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:02:31.4493557Z 2025-03-14T05:02:31.4494121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:02:31.4494794Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:02:31.4495076Z 2025-03-14T05:02:31.4495459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4495963Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:02:31.4496237Z 2025-03-14T05:02:31.4496704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:02:31.4497300Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:02:31.4497569Z 2025-03-14T05:02:31.4497956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:31.4498459Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:02:31.4498728Z 2025-03-14T05:02:31.4499202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:02:31.4499780Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:02:31.4500042Z 2025-03-14T05:02:31.4500617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:02:31.4501290Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:02:31.4501608Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:31.4501961Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:02:31.4502324Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:02:31.4502587Z 2025-03-14T05:02:31.4503056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:02:31.4503625Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:02:31.4503878Z 2025-03-14T05:02:31.4503974Z 2025-03-14T05:02:31.4504087Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:31.4506807Z def forward(self, L_features_res5_: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[2048, 2048, 3, 3][18432, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[2048][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:02:31.4508180Z l_features_res5_ = L_features_res5_ 2025-03-14T05:02:31.4508593Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:02:31.4509135Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:02:31.4509632Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:02:31.4510177Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:02:31.4510768Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:02:31.4511342Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:02:31.4511968Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:02:31.4512340Z 2025-03-14T05:02:31.4512889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:31.4513539Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:02:31.4513816Z 2025-03-14T05:02:31.4514212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4514712Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:02:31.4514971Z 2025-03-14T05:02:31.4515502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:02:31.4516145Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:02:31.4516420Z 2025-03-14T05:02:31.4516808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4517325Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:02:31.4517591Z 2025-03-14T05:02:31.4518884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:02:31.4519545Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:02:31.4519893Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:02:31.4520172Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:02:31.4520424Z 2025-03-14T05:02:31.4520859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:02:31.4521388Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:02:31.4521646Z 2025-03-14T05:02:31.4522075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:02:31.4522589Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:02:31.4522842Z 2025-03-14T05:02:31.4523323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:02:31.4523984Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:02:31.4524340Z 2025-03-14T05:02:31.4524844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:02:31.4525438Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:02:31.4525936Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:02:31.4526419Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:02:31.4526733Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:02:31.4526966Z 2025-03-14T05:02:31.4527352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:31.4527820Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:02:31.4528056Z 2025-03-14T05:02:31.4528402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:02:31.4529316Z x_1: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.conv2d(l_features_res5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res5_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:02:31.4530017Z 2025-03-14T05:02:31.4530379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:02:31.4530894Z x_2: "f32[4, 2048, 73, 75][11212800, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:02:31.4531199Z 2025-03-14T05:02:31.4531699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:02:31.4532822Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:02:31.4533594Z 2025-03-14T05:02:31.4534047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:02:31.4535064Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:02:31.4535794Z 2025-03-14T05:02:31.4536234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:02:31.4536795Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:02:31.4537151Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:02:31.4537424Z 2025-03-14T05:02:31.4537941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:02:31.4538579Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:02:31.4538968Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:02:31.4539379Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:02:31.4539685Z 2025-03-14T05:02:31.4540189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:02:31.4540890Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:02:31.4541224Z 2025-03-14T05:02:31.4541759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:02:31.4542415Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:02:31.4542784Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:02:31.4543138Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:02:31.4543409Z 2025-03-14T05:02:31.4543886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:31.4544593Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:02:31.4544904Z 2025-03-14T05:02:31.4545325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:31.4545908Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:02:31.4546187Z 2025-03-14T05:02:31.4546625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:31.4547162Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:31.4547485Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:31.4547823Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:02:31.4548107Z 2025-03-14T05:02:31.4548543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:31.4549078Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:31.4549400Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:31.4549753Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:31.4550039Z 2025-03-14T05:02:31.4550460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:31.4550985Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:31.4551276Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:02:31.4551556Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:02:31.4551815Z 2025-03-14T05:02:31.4552235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:31.4552777Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:31.4553094Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:02:31.4553369Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:02:31.4553616Z 2025-03-14T05:02:31.4554034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:31.4554575Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:31.4554902Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:02:31.4555138Z 2025-03-14T05:02:31.4555529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:31.4556035Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:31.4556357Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:02:31.4556596Z 2025-03-14T05:02:31.4556983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:31.4557492Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:31.4557817Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:02:31.4558056Z 2025-03-14T05:02:31.4558447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:31.4558984Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:31.4559358Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:02:31.4559596Z 2025-03-14T05:02:31.4560037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:31.4560588Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:31.4560854Z 2025-03-14T05:02:31.4561272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:31.4561797Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:31.4562051Z 2025-03-14T05:02:31.4562481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:31.4563025Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:31.4563344Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:02:31.4563678Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:31.4564029Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:02:31.4564291Z 2025-03-14T05:02:31.4564718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:31.4565271Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:31.4565582Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:02:31.4565911Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:31.4566256Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:02:31.4566517Z 2025-03-14T05:02:31.4566936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:31.4567472Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:31.4567825Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:31.4568174Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:02:31.4568428Z 2025-03-14T05:02:31.4568851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:31.4569363Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:31.4569704Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:31.4570058Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:02:31.4570317Z 2025-03-14T05:02:31.4570719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:31.4571186Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:31.4571454Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:31.4571691Z 2025-03-14T05:02:31.4572086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:31.4572563Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:31.4572942Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:31.4573179Z 2025-03-14T05:02:31.4573573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:31.4574077Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:31.4574380Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:31.4574637Z 2025-03-14T05:02:31.4575037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:31.4575521Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:31.4575825Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:31.4576080Z 2025-03-14T05:02:31.4576532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:31.4577135Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:31.4577438Z 2025-03-14T05:02:31.4577872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:31.4578441Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:02:31.4578730Z 2025-03-14T05:02:31.4579213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:02:31.4579840Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:02:31.4580140Z 2025-03-14T05:02:31.4580727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:02:31.4581667Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:02:31.4581946Z 2025-03-14T05:02:31.4582341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4582851Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:02:31.4583113Z 2025-03-14T05:02:31.4583656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:02:31.4584349Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:02:31.4584640Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:02:31.4584928Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:02:31.4585176Z 2025-03-14T05:02:31.4585759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:02:31.4586451Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:02:31.4586975Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:02:31.4587339Z 2025-03-14T05:02:31.4587936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:02:31.4588660Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:02:31.4588954Z 2025-03-14T05:02:31.4589349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:31.4589871Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:02:31.4590149Z 2025-03-14T05:02:31.4590630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:02:31.4591224Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:02:31.4591496Z 2025-03-14T05:02:31.4591894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:31.4592401Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:02:31.4592672Z 2025-03-14T05:02:31.4593144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:02:31.4593722Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:02:31.4593991Z 2025-03-14T05:02:31.4594577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:02:31.4595265Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:02:31.4595589Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:31.4595974Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:02:31.4596322Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:02:31.4596586Z 2025-03-14T05:02:31.4597068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:02:31.4597627Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:02:31.4597865Z 2025-03-14T05:02:33.1478046Z 2025-03-14T05:02:33.1483830Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:33.1487044Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T05:02:33.1491767Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:02:33.1496396Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:02:33.1500775Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:02:33.1504544Z 2025-03-14T05:02:33.1505227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:02:33.1506307Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:02:33.1506668Z 2025-03-14T05:02:33.1507292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:02:33.1508050Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:02:33.1508450Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:02:33.1508802Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:02:33.1509068Z 2025-03-14T05:02:33.1509545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:33.1510150Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:02:33.1510440Z 2025-03-14T05:02:33.1510844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:33.1511359Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:02:33.1511626Z 2025-03-14T05:02:33.1512034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:33.1512532Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:33.1512845Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:33.1513166Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:02:33.1513432Z 2025-03-14T05:02:33.1513844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:33.1514350Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:33.1514654Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:33.1514980Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:02:33.1515300Z 2025-03-14T05:02:33.1515694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:33.1516194Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:33.1516458Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:02:33.1516726Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:02:33.1516972Z 2025-03-14T05:02:33.1517376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:33.1517895Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:33.1518186Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:02:33.1518471Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:02:33.1518723Z 2025-03-14T05:02:33.1519154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:33.1519681Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:33.1520038Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:02:33.1520283Z 2025-03-14T05:02:33.1520705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:33.1521282Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:33.1522709Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:02:33.1522948Z 2025-03-14T05:02:33.1523335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:33.1523839Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:33.1524157Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:02:33.1524389Z 2025-03-14T05:02:33.1524786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:33.1525322Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:33.1525671Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:02:33.1525904Z 2025-03-14T05:02:33.1526330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:33.1526868Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:33.1527128Z 2025-03-14T05:02:33.1527547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:33.1528075Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:33.1528330Z 2025-03-14T05:02:33.1528758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:33.1529298Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:33.1529651Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:02:33.1529994Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:33.1530353Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:02:33.1530618Z 2025-03-14T05:02:33.1531067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:33.1531620Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:33.1531947Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:02:33.1532284Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:33.1532642Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:02:33.1532910Z 2025-03-14T05:02:33.1533341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:33.1533856Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:33.1534212Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:33.1534564Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:02:33.1534840Z 2025-03-14T05:02:33.1535266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:33.1535786Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:33.1536126Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:33.1536485Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:02:33.1536741Z 2025-03-14T05:02:33.1537143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:33.1537608Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:33.1537872Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:33.1538109Z 2025-03-14T05:02:33.1538505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:33.1538963Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:33.1539222Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:33.1539451Z 2025-03-14T05:02:33.1539842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:33.1540315Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:33.1540610Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:33.1540862Z 2025-03-14T05:02:33.1541256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:33.1541726Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:33.1542019Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:33.1542268Z 2025-03-14T05:02:33.1542760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:33.1543352Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:33.1543648Z 2025-03-14T05:02:33.1544096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:33.1544821Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:02:33.1545122Z 2025-03-14T05:02:33.1545629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:02:33.1546268Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:02:33.1546581Z 2025-03-14T05:02:33.1547226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:02:33.1547954Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:02:33.1548219Z 2025-03-14T05:02:33.1548750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:33.1549275Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:02:33.1549568Z 2025-03-14T05:02:33.1550124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:02:33.1550830Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:02:33.1551187Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:02:33.1551478Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:02:33.1551722Z 2025-03-14T05:02:33.1552304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:02:33.1553021Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:02:33.1553502Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T05:02:33.1553872Z 2025-03-14T05:02:33.1554444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:02:33.1555161Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:02:33.1555460Z 2025-03-14T05:02:33.1555866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:02:33.1556399Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:02:33.1556688Z 2025-03-14T05:02:33.1557185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:02:33.1557791Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:02:33.1558063Z 2025-03-14T05:02:33.1558449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:02:33.1558948Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T05:02:33.1559217Z 2025-03-14T05:02:33.1559687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:02:33.1560258Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:02:33.1560527Z 2025-03-14T05:02:33.1561099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:02:33.1561777Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:02:33.1562091Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:33.1562422Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:02:33.1562785Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:02:33.1563042Z 2025-03-14T05:02:33.1563511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:02:33.1564058Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:02:33.1564297Z 2025-03-14T05:02:40.4300537Z 2025-03-14T05:02:40.4301492Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:40.4303905Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:40.4306525Z l_stack0_ = L_stack0_ 2025-03-14T05:02:40.4306931Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:02:40.4307475Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:02:40.4308030Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:02:40.4308582Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:02:40.4309125Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:02:40.4309724Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:02:40.4310647Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:02:40.4311240Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:02:40.4311750Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4312182Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4312603Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4313025Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4313338Z 2025-03-14T05:02:40.4313776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:02:40.4314290Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:02:40.4315092Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:02:40.4315896Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:02:40.4316655Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:02:40.4317467Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:02:40.4317768Z 2025-03-14T05:02:40.4318208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:02:40.4319164Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:02:40.4319871Z 2025-03-14T05:02:40.4320288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:02:40.4321291Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:02:40.4322117Z 2025-03-14T05:02:40.4322512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4322981Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4323241Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:40.4323481Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:40.4323764Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4324032Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:40.4324310Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:40.4324534Z 2025-03-14T05:02:40.4324912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:40.4325845Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4326548Z 2025-03-14T05:02:40.4327013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:40.4327593Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:02:40.4327874Z 2025-03-14T05:02:40.4328270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:40.4328792Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:40.4329070Z 2025-03-14T05:02:40.4329493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:40.4330011Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:40.4330321Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4330644Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:40.4330934Z 2025-03-14T05:02:40.4331339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:40.4331833Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:40.4332127Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:40.4332443Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:40.4332708Z 2025-03-14T05:02:40.4333111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:40.4333598Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4333858Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:40.4334120Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:40.4334358Z 2025-03-14T05:02:40.4334765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:40.4335275Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:40.4335560Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:40.4335823Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:40.4336068Z 2025-03-14T05:02:40.4336476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:40.4336996Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:40.4337314Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:40.4337550Z 2025-03-14T05:02:40.4337957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:40.4338462Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:40.4338792Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:40.4339030Z 2025-03-14T05:02:40.4339427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:40.4339941Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:40.4340273Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:40.4340520Z 2025-03-14T05:02:40.4340921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:40.4341471Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:40.4341824Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:40.4342065Z 2025-03-14T05:02:40.4342497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:40.4343057Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:40.4343334Z 2025-03-14T05:02:40.4343755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:40.4344393Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:40.4344672Z 2025-03-14T05:02:40.4345160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:40.4345768Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:40.4346122Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:40.4346474Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:40.4346848Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:40.4347125Z 2025-03-14T05:02:40.4347645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:40.4348349Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:40.4348811Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:40.4349276Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:40.4349760Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:40.4350037Z 2025-03-14T05:02:40.4350499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:40.4351023Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:40.4351360Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:40.4351718Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:40.4352014Z 2025-03-14T05:02:40.4352454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:40.4352984Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:40.4353334Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:40.4353697Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:40.4353961Z 2025-03-14T05:02:40.4354382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:40.4354865Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:40.4355140Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:40.4355384Z 2025-03-14T05:02:40.4355794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:40.4356276Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:40.4356546Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:40.4356780Z 2025-03-14T05:02:40.4357204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:40.4357731Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:40.4358038Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:40.4358324Z 2025-03-14T05:02:40.4358733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:40.4359222Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:40.4359518Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:40.4359771Z 2025-03-14T05:02:40.4360223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:40.4360825Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:40.4361126Z 2025-03-14T05:02:40.4361561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:40.4362137Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:40.4362428Z 2025-03-14T05:02:40.4362880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:40.4363497Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:40.4363865Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:40.4364157Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:40.4364467Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:40.4364791Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:40.4365055Z 2025-03-14T05:02:40.4365440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4366017Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4366368Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:40.4366615Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:40.4366978Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4367330Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:40.4367584Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:40.4367807Z 2025-03-14T05:02:40.4368230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:40.4368791Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:02:40.4369083Z 2025-03-14T05:02:40.4369531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:40.4370136Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:40.4370498Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:40.4370808Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:40.4371130Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:40.4371448Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:40.4371723Z 2025-03-14T05:02:40.4372269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:40.4372983Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:40.4373327Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:40.4373665Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:40.4374007Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:40.4374303Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:40.4374595Z 2025-03-14T05:02:40.4375034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:40.4375560Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:40.4375793Z 2025-03-14T05:02:40.4375945Z 2025-03-14T05:02:40.4376039Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:40.4377921Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:40.4380014Z l_stack0_ = L_stack0_ 2025-03-14T05:02:40.4380373Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:02:40.4380873Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:02:40.4381367Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:02:40.4382174Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:02:40.4382756Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:02:40.4383391Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:02:40.4384022Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:02:40.4384825Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:02:40.4385422Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4385853Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4386326Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4386741Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4387053Z 2025-03-14T05:02:40.4387453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:02:40.4402870Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:02:40.4403998Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:02:40.4405233Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:02:40.4406432Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:02:40.4407598Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:02:40.4408019Z 2025-03-14T05:02:40.4408649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:02:40.4410256Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:02:40.4411415Z 2025-03-14T05:02:40.4412036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:02:40.4413905Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:02:40.4415044Z 2025-03-14T05:02:40.4415631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4416425Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4416853Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:40.4417243Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:40.4417712Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4418162Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:40.4418563Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:40.4418937Z 2025-03-14T05:02:40.4419594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:40.4421529Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4422895Z 2025-03-14T05:02:40.4423752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:40.4424949Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:02:40.4425435Z 2025-03-14T05:02:40.4426189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:40.4427174Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:40.4427663Z 2025-03-14T05:02:40.4428424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:40.4429357Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:40.4429899Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4430465Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:40.4430930Z 2025-03-14T05:02:40.4431689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:40.4432622Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:40.4433156Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:40.4433739Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:40.4434194Z 2025-03-14T05:02:40.4434939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:40.4435873Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4436308Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:40.4436780Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:40.4437187Z 2025-03-14T05:02:40.4437920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:40.4438881Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:40.4439383Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:40.4439847Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:40.4440258Z 2025-03-14T05:02:40.4441012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:40.4441967Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:40.4442565Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:40.4442980Z 2025-03-14T05:02:40.4443700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:40.4444642Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:40.4445217Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:40.4445678Z 2025-03-14T05:02:40.4446426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:40.4447367Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:40.4447985Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:40.4448385Z 2025-03-14T05:02:40.4449107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:40.4450124Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:40.4450765Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:40.4451162Z 2025-03-14T05:02:40.4451951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:40.4452946Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:40.4453391Z 2025-03-14T05:02:40.4454164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:40.4455149Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:40.4455595Z 2025-03-14T05:02:40.4456399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:40.4457420Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:40.4457986Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:40.4458583Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:40.4459209Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:40.4459656Z 2025-03-14T05:02:40.4460464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:40.4461508Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:40.4462071Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:40.4462658Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:40.4463276Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:40.4463727Z 2025-03-14T05:02:40.4464598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:40.4465580Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:40.4466168Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:40.4466776Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:40.4467199Z 2025-03-14T05:02:40.4467989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:40.4468914Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:40.4469540Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:40.4470205Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:40.4470642Z 2025-03-14T05:02:40.4471374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:40.4472262Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:40.4472713Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:40.4473106Z 2025-03-14T05:02:40.4473823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:40.4474668Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:40.4475119Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:40.4475504Z 2025-03-14T05:02:40.4476210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:40.4477072Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:40.4477574Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:40.4477986Z 2025-03-14T05:02:40.4478695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:40.4479570Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:40.4480077Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:40.4480494Z 2025-03-14T05:02:40.4481275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:40.4482548Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:40.4483046Z 2025-03-14T05:02:40.4483808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:40.4484922Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:40.4485414Z 2025-03-14T05:02:40.4486224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:40.4487337Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:40.4487972Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:40.4488478Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:40.4488991Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:40.4489538Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:40.4489981Z 2025-03-14T05:02:40.4490655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4491668Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4492273Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:40.4492666Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:40.4493360Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4494006Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:40.4494421Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:40.4494817Z 2025-03-14T05:02:40.4495569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:40.4496601Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:02:40.4497087Z 2025-03-14T05:02:40.4497868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:40.4498967Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:40.4499603Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:40.4500095Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:40.4500615Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:40.4501170Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:40.4501606Z 2025-03-14T05:02:40.4502594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:40.4503859Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:40.4504576Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:40.4505196Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:40.4505804Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:40.4506309Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:40.4506713Z 2025-03-14T05:02:40.4507508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:40.4508515Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:40.4508905Z 2025-03-14T05:02:40.4509163Z 2025-03-14T05:02:40.4509313Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:40.4512885Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:40.4516732Z l_stack0_ = L_stack0_ 2025-03-14T05:02:40.4517374Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:02:40.4518273Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:02:40.4519146Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:02:40.4520047Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:02:40.4521006Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:02:40.4522059Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:02:40.4523115Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:02:40.4524156Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:02:40.4525008Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4525728Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4526426Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4527132Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4527667Z 2025-03-14T05:02:40.4528310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:02:40.4529133Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:02:40.4530360Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:02:40.4531665Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:02:40.4533006Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:02:40.4534303Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:02:40.4534775Z 2025-03-14T05:02:40.4535470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:02:40.4537240Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:02:40.4538521Z 2025-03-14T05:02:40.4539227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:02:40.4541092Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:02:40.4542503Z 2025-03-14T05:02:40.4543168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4544042Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4544597Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:40.4545033Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:40.4545539Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4545996Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:40.4546413Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:40.4546798Z 2025-03-14T05:02:40.4547489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:40.4549335Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4550726Z 2025-03-14T05:02:40.4551580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:40.4552679Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:02:40.4553162Z 2025-03-14T05:02:40.4553898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:40.4554913Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:40.4555416Z 2025-03-14T05:02:40.4556186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:40.4557157Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:40.4557666Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4558257Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:40.4558700Z 2025-03-14T05:02:40.4559428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:40.4560320Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:40.4560832Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:40.4561387Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:40.4561822Z 2025-03-14T05:02:40.4562525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:40.4563410Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4563840Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:40.4564272Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:40.4564671Z 2025-03-14T05:02:40.4565379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:40.4566328Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:40.4566804Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:40.4567275Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:40.4567680Z 2025-03-14T05:02:40.4568423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:40.4569336Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:40.4569898Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:40.4570285Z 2025-03-14T05:02:40.4570975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:40.4571875Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:40.4572435Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:40.4572836Z 2025-03-14T05:02:40.4573518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:40.4574439Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:40.4575002Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:40.4575398Z 2025-03-14T05:02:40.4576100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:40.4577081Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:40.4577686Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:40.4578061Z 2025-03-14T05:02:40.4578822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:40.4579786Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:40.4580215Z 2025-03-14T05:02:40.4581006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:40.4582147Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:40.4582592Z 2025-03-14T05:02:40.4583375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:40.4584498Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:40.4585127Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:40.4585739Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:40.4586401Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:40.4586845Z 2025-03-14T05:02:40.4587644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:40.4588651Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:40.4589207Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:40.4589876Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:40.4590534Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:40.4590981Z 2025-03-14T05:02:40.4591759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:40.4592719Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:40.4593297Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:40.4593903Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:40.4594325Z 2025-03-14T05:02:40.4595093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:40.4596026Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:40.4596626Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:40.4597236Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:40.4597673Z 2025-03-14T05:02:40.4598398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:40.4599249Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:40.4599689Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:40.4600070Z 2025-03-14T05:02:40.4600759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:40.4601578Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:40.4602007Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:40.4602378Z 2025-03-14T05:02:40.4603077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:40.4603926Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:40.4604529Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:40.4604927Z 2025-03-14T05:02:40.4605611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:40.4606464Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:40.4606956Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:40.4607364Z 2025-03-14T05:02:40.4608128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:40.4609163Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:40.4609650Z 2025-03-14T05:02:40.4610391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:40.4611371Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:40.4611852Z 2025-03-14T05:02:40.4612676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:40.4613733Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:40.4614267Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:40.4614627Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:40.4614938Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:40.4615264Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:40.4615535Z 2025-03-14T05:02:40.4615928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4616500Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4616861Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:40.4617123Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:40.4617490Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4617856Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:40.4618115Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:40.4618346Z 2025-03-14T05:02:40.4618781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:40.4619356Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:02:40.4619652Z 2025-03-14T05:02:40.4620116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:40.4620737Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:40.4621106Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:40.4621410Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:40.4621720Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:40.4622074Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:40.4622348Z 2025-03-14T05:02:40.4622918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:40.4623639Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:40.4623993Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:40.4624452Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:40.4624823Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:40.4625139Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:40.4625398Z 2025-03-14T05:02:40.4625870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:40.4626407Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:40.4626650Z 2025-03-14T05:02:40.4626738Z 2025-03-14T05:02:40.4626837Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:40.4628834Z def forward(self, L_stack0_: "f32[3230, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 100352][100352, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:40.4630937Z l_stack0_ = L_stack0_ 2025-03-14T05:02:40.4631284Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:02:40.4631764Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:02:40.4632236Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:02:40.4632700Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:02:40.4633211Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:02:40.4633767Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:02:40.4634323Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:02:40.4634874Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:02:40.4635357Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4635780Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4636171Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4636559Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:40.4636849Z 2025-03-14T05:02:40.4637218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:02:40.4637690Z x: "f32[3230, 100352][100352, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:02:40.4638403Z x_1: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:02:40.4639108Z x_2: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:02:40.4639821Z x_3: "f32[3230, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:02:40.4640546Z x_4: "f32[3230, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:02:40.4640829Z 2025-03-14T05:02:40.4641245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:02:40.4642208Z scores: "f32[3230, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:02:40.4642915Z 2025-03-14T05:02:40.4643314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:02:40.4644309Z proposal_deltas: "f32[3230, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:02:40.4645029Z 2025-03-14T05:02:40.4645407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4645871Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4646124Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:40.4646351Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:40.4646631Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:40.4646893Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:40.4647143Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:40.4647364Z 2025-03-14T05:02:40.4647736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:40.4648659Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4649391Z 2025-03-14T05:02:40.4649856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:40.4650432Z deltas: "f32[3230, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:02:40.4650707Z 2025-03-14T05:02:40.4651107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:40.4651626Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:40.4651911Z 2025-03-14T05:02:40.4652316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:40.4652816Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:40.4653120Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4653437Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:40.4653700Z 2025-03-14T05:02:40.4654103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:40.4654619Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:40.4654932Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:40.4655248Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:40.4655530Z 2025-03-14T05:02:40.4655933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:40.4656423Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:40.4656682Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:40.4656941Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:40.4657185Z 2025-03-14T05:02:40.4657585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:40.4658101Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:40.4658388Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:40.4658653Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:40.4658898Z 2025-03-14T05:02:40.4659308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:40.4659830Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:40.4660157Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:40.4660397Z 2025-03-14T05:02:40.4660792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:40.4661310Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:40.4661632Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:40.4661869Z 2025-03-14T05:02:40.4662257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:40.4662787Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:40.4663125Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:40.4663373Z 2025-03-14T05:02:40.4663783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:40.4664463Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:40.4664841Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:40.4665096Z 2025-03-14T05:02:40.4665591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:40.4666202Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:40.4666490Z 2025-03-14T05:02:40.4666940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:40.4667499Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:40.4667776Z 2025-03-14T05:02:40.4668295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:40.4668867Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:40.4669203Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:40.4669575Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:40.4669942Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:40.4670215Z 2025-03-14T05:02:40.4670683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:40.4671263Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:40.4671601Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:40.4671946Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:40.4672308Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:40.4672581Z 2025-03-14T05:02:40.4673033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:40.4673567Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:40.4673908Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:40.4674265Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:40.4674529Z 2025-03-14T05:02:40.4674981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:40.4675506Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:40.4675853Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:40.4676225Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:40.4676512Z 2025-03-14T05:02:40.4676925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:40.4677410Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:40.4677676Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:40.4677916Z 2025-03-14T05:02:40.4678316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:40.4678781Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:40.4679042Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:40.4679279Z 2025-03-14T05:02:40.4679676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:40.4680152Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:40.4680445Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:40.4680694Z 2025-03-14T05:02:40.4681076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:40.4681968Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:40.4682294Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:40.4682551Z 2025-03-14T05:02:40.4682989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:40.4683597Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:40.4683892Z 2025-03-14T05:02:40.4684307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:40.4684862Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:40.4685152Z 2025-03-14T05:02:40.4685598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:40.4686206Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:40.4686572Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:40.4686861Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:40.4687168Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:40.4687485Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:40.4687747Z 2025-03-14T05:02:40.4688128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:40.4688685Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4689036Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:40.4689279Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:40.4689640Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:40.4689995Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:40.4690271Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:40.4690494Z 2025-03-14T05:02:40.4690917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:40.4691477Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:02:40.4691768Z 2025-03-14T05:02:40.4692215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:40.4692818Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:40.4693188Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:40.4693488Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:40.4693798Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:40.4694128Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:40.4694398Z 2025-03-14T05:02:40.4694991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:40.4695710Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:40.4696061Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:40.4696432Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:40.4696785Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:40.4697088Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:40.4697342Z 2025-03-14T05:02:40.4697808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:40.4698365Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:40.4698611Z 2025-03-14T05:02:42.4551090Z 2025-03-14T05:02:42.4557300Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:42.4562455Z def forward(self, L_predictions_0_: "f32[3230, 81][81, 1]cpu", L_predictions_1_: "f32[3230, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:42.4563788Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:02:42.4564100Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:02:42.4564458Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4564886Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4565300Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4565707Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4566012Z 2025-03-14T05:02:42.4566447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:42.4566935Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:42.4567510Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:42.4567768Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:42.4568071Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:42.4568358Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:42.4568626Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:42.4568874Z 2025-03-14T05:02:42.4569296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:42.4570334Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4571110Z 2025-03-14T05:02:42.4571602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:42.4572204Z deltas: "f32[3230, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:02:42.4572495Z 2025-03-14T05:02:42.4572976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:42.4573562Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:42.4573854Z 2025-03-14T05:02:42.4574269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:42.4574843Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:42.4575163Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:42.4575493Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:42.4575765Z 2025-03-14T05:02:42.4576190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:42.4576705Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:42.4577011Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:42.4577336Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:42.4577607Z 2025-03-14T05:02:42.4578021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:42.4578523Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:42.4578791Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:42.4579060Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:42.4579308Z 2025-03-14T05:02:42.4579721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:42.4580248Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:42.4580547Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:42.4580825Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:42.4581078Z 2025-03-14T05:02:42.4581723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:42.4582309Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:42.4582660Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:42.4582913Z 2025-03-14T05:02:42.4583337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:42.4583852Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:42.4584283Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:42.4584542Z 2025-03-14T05:02:42.4584976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:42.4585525Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:42.4585863Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:42.4586116Z 2025-03-14T05:02:42.4586516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:42.4587077Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:42.4587486Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:42.4587797Z 2025-03-14T05:02:42.4588278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:42.4588899Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:42.4589186Z 2025-03-14T05:02:42.4589648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:42.4590228Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:42.4590512Z 2025-03-14T05:02:42.4590983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:42.4591588Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:42.4591931Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:42.4592301Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:42.4592687Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:42.4592979Z 2025-03-14T05:02:42.4593462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:42.4594069Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:42.4594389Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:42.4594724Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:42.4595072Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:42.4595338Z 2025-03-14T05:02:42.4595764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:42.4596307Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:42.4596637Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:42.4596985Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:42.4597241Z 2025-03-14T05:02:42.4597682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:42.4598203Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:42.4598536Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:42.4598897Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:42.4599155Z 2025-03-14T05:02:42.4599570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:42.4600047Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:42.4600322Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:42.4600559Z 2025-03-14T05:02:42.4600979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:42.4601436Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:42.4601710Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:42.4601946Z 2025-03-14T05:02:42.4602359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:42.4602834Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:42.4603127Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:42.4603379Z 2025-03-14T05:02:42.4603771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:42.4604242Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:42.4604531Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:42.4604782Z 2025-03-14T05:02:42.4605228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:42.4605828Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:42.4606131Z 2025-03-14T05:02:42.4606569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:42.4607139Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:42.4607432Z 2025-03-14T05:02:42.4607889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:42.4608531Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:42.4608961Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:42.4609264Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:42.4609595Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:42.4609927Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:42.4610202Z 2025-03-14T05:02:42.4610603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:42.4611172Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4611533Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:42.4611787Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:42.4612161Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4612526Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:42.4612781Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:42.4613012Z 2025-03-14T05:02:42.4613444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:42.4614058Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:02:42.4614394Z 2025-03-14T05:02:42.4614889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:42.4615528Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:42.4615915Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:42.4616214Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:42.4616523Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:42.4616841Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:42.4617108Z 2025-03-14T05:02:42.4617678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:42.4618390Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:42.4618748Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:42.4619094Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:42.4619447Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:42.4619753Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:42.4620005Z 2025-03-14T05:02:42.4620462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:42.4621003Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:42.4621248Z 2025-03-14T05:02:42.4621347Z 2025-03-14T05:02:42.4621444Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:42.4622282Z def forward(self, L_predictions_0_: "f32[3230, 81][81, 1]cpu", L_predictions_1_: "f32[3230, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:42.4623100Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:02:42.4623338Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:02:42.4623667Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4624097Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4624661Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4625106Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4625434Z 2025-03-14T05:02:42.4625852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:42.4626347Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:42.4626618Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:42.4626874Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:42.4627154Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:42.4627424Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:42.4627681Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:42.4627918Z 2025-03-14T05:02:42.4628342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:42.4629348Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4630147Z 2025-03-14T05:02:42.4630633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:42.4631242Z deltas: "f32[3230, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:02:42.4631533Z 2025-03-14T05:02:42.4631946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:42.4632501Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:42.4632798Z 2025-03-14T05:02:42.4633222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:42.4633744Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:42.4634067Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:42.4634404Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:42.4634680Z 2025-03-14T05:02:42.4635111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:42.4635632Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:42.4635947Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:42.4636280Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:42.4636558Z 2025-03-14T05:02:42.4636978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:42.4637488Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:42.4637779Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:42.4638048Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:42.4638290Z 2025-03-14T05:02:42.4638686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:42.4639191Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:42.4639473Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:42.4639740Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:42.4639981Z 2025-03-14T05:02:42.4640383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:42.4640917Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:42.4641247Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:42.4641484Z 2025-03-14T05:02:42.4641869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:42.4642388Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:42.4642733Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:42.4642973Z 2025-03-14T05:02:42.4643362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:42.4643877Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:42.4644197Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:42.4644429Z 2025-03-14T05:02:42.4644815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:42.4645349Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:42.4645690Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:42.4645924Z 2025-03-14T05:02:42.4646352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:42.4646882Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:42.4647137Z 2025-03-14T05:02:42.4647555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:42.4648079Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:42.4648333Z 2025-03-14T05:02:42.4648761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:42.4649305Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:42.4649618Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:42.4649952Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:42.4650298Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:42.4650574Z 2025-03-14T05:02:42.4651009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:42.4651546Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:42.4651862Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:42.4652189Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:42.4652532Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:42.4652790Z 2025-03-14T05:02:42.4653209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:42.4653716Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:42.4654040Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:42.4654380Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:42.4654629Z 2025-03-14T05:02:42.4655071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:42.4655575Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:42.4655925Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:42.4656272Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:42.4656544Z 2025-03-14T05:02:42.4656945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:42.4657413Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:42.4657678Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:42.4657916Z 2025-03-14T05:02:42.4658423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:42.4658899Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:42.4659166Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:42.4659404Z 2025-03-14T05:02:42.4659799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:42.4660282Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:42.4660574Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:42.4660823Z 2025-03-14T05:02:42.4661217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:42.4661687Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:42.4661976Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:42.4662221Z 2025-03-14T05:02:42.4662658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:42.4663239Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:42.4663574Z 2025-03-14T05:02:42.4663993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:42.4664640Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:42.4664946Z 2025-03-14T05:02:42.4665423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:42.4666081Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:42.4666461Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:42.4666773Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:42.4667096Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:42.4667437Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:42.4667714Z 2025-03-14T05:02:42.4668117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:42.4668705Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4669091Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:42.4669351Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:42.4669750Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4670137Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:42.4670398Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:42.4670629Z 2025-03-14T05:02:42.4671070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:42.4671695Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:02:42.4672041Z 2025-03-14T05:02:42.4672504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:42.4673129Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:42.4673506Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:42.4673814Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:42.4674126Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:42.4674456Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:42.4674728Z 2025-03-14T05:02:42.4675305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:42.4676022Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:42.4676385Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:42.4676739Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:42.4677097Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:42.4677412Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:42.4678588Z 2025-03-14T05:02:42.4679034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:42.4679549Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:42.4679785Z 2025-03-14T05:02:42.4679920Z 2025-03-14T05:02:42.4680013Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:42.4680820Z def forward(self, L_predictions_0_: "f32[3230, 81][81, 1]cpu", L_predictions_1_: "f32[3230, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1230 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1230 - s0, 4][4, 1]cpu"): 2025-03-14T05:02:42.4681752Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:02:42.4681991Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:02:42.4682312Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4682715Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4683113Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4683576Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:02:42.4683875Z 2025-03-14T05:02:42.4684298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:42.4684787Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:42.4685043Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:02:42.4685278Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:02:42.4685554Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:02:42.4685817Z getitem_2: "Sym(1230 - s0)" = size_1[0] 2025-03-14T05:02:42.4686066Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:02:42.4686291Z 2025-03-14T05:02:42.4686661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:02:42.4687604Z proposal_boxes: "f32[3230, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4688304Z 2025-03-14T05:02:42.4688762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:02:42.4689334Z deltas: "f32[3230, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:02:42.4689608Z 2025-03-14T05:02:42.4690004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:02:42.4690523Z boxes: "f32[3230, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:02:42.4690806Z 2025-03-14T05:02:42.4691210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:02:42.4691709Z getitem_4: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:02:42.4692010Z getitem_5: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:42.4692350Z widths: "f32[3230][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:02:42.4692609Z 2025-03-14T05:02:42.4693019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:02:42.4693527Z getitem_6: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:02:42.4693833Z getitem_7: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:02:42.4694157Z heights: "f32[3230][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:02:42.4694426Z 2025-03-14T05:02:42.4694833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:02:42.4695334Z getitem_8: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:02:42.4695601Z mul: "f32[3230][1]cpu" = 0.5 * widths 2025-03-14T05:02:42.4695853Z ctr_x: "f32[3230][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:02:42.4696099Z 2025-03-14T05:02:42.4696500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:02:42.4697029Z getitem_9: "f32[3230][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:02:42.4697339Z mul_1: "f32[3230][1]cpu" = 0.5 * heights 2025-03-14T05:02:42.4697620Z ctr_y: "f32[3230][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:02:42.4697867Z 2025-03-14T05:02:42.4698267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:02:42.4698789Z getitem_10: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:02:42.4699115Z dx: "f32[3230, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:02:42.4699355Z 2025-03-14T05:02:42.4699738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:02:42.4700241Z getitem_11: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:02:42.4700566Z dy: "f32[3230, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:02:42.4700799Z 2025-03-14T05:02:42.4701181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:02:42.4701681Z getitem_12: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:02:42.4702008Z dw: "f32[3230, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:02:42.4702249Z 2025-03-14T05:02:42.4702642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:02:42.4703188Z getitem_13: "f32[3230, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:02:42.4703546Z dh: "f32[3230, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:02:42.4703780Z 2025-03-14T05:02:42.4704281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:02:42.4704834Z dw_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:02:42.4705106Z 2025-03-14T05:02:42.4705556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:02:42.4706120Z dh_1: "f32[3230, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:02:42.4706384Z 2025-03-14T05:02:42.4706829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:02:42.4707383Z getitem_14: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:02:42.4707711Z mul_2: "f32[3230, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:02:42.4708055Z getitem_15: "f32[3230, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:02:42.4708411Z pred_ctr_x: "f32[3230, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:02:42.4708679Z 2025-03-14T05:02:42.4709128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:02:42.4709678Z getitem_16: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:02:42.4709999Z mul_3: "f32[3230, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:02:42.4710354Z getitem_17: "f32[3230, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:02:42.4710720Z pred_ctr_y: "f32[3230, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:02:42.4710987Z 2025-03-14T05:02:42.4711421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:02:42.4711965Z exp: "f32[3230, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:02:42.4712303Z getitem_18: "f32[3230, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:02:42.4712651Z pred_w: "f32[3230, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:02:42.4712908Z 2025-03-14T05:02:42.4713341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:02:42.4713856Z exp_1: "f32[3230, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:02:42.4714196Z getitem_19: "f32[3230, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:02:42.4714551Z pred_h: "f32[3230, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:02:42.4714804Z 2025-03-14T05:02:42.4715219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:02:42.4715695Z mul_6: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:02:42.4715967Z x1: "f32[3230, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:02:42.4716210Z 2025-03-14T05:02:42.4716618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:02:42.4717091Z mul_7: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:02:42.4717360Z y1: "f32[3230, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:02:42.4717603Z 2025-03-14T05:02:42.4718004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:02:42.4718496Z mul_8: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:02:42.4718814Z x2: "f32[3230, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:02:42.4719068Z 2025-03-14T05:02:42.4719458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:02:42.4719934Z mul_9: "f32[3230, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:02:42.4720225Z y2: "f32[3230, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:02:42.4720477Z 2025-03-14T05:02:42.4720917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:02:42.4721496Z pred_boxes: "f32[3230, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:02:42.4721794Z 2025-03-14T05:02:42.4722220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:02:42.4722777Z predict_boxes: "f32[3230, 320][320, 1]cpu" = pred_boxes.reshape((3230, 320)); pred_boxes = None 2025-03-14T05:02:42.4723069Z 2025-03-14T05:02:42.4723533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:02:42.4724160Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:02:42.4724528Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:02:42.4724819Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:02:42.4725151Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:02:42.4725469Z getitem_23: "f32[1230 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:02:42.4725735Z 2025-03-14T05:02:42.4726114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:02:42.4726671Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4727019Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:02:42.4727275Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:02:42.4727633Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:02:42.4727982Z getitem_26: "Sym(1230 - s0)" = size_3[0] 2025-03-14T05:02:42.4728230Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:02:42.4728453Z 2025-03-14T05:02:42.4728863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:02:42.4729455Z probs: "f32[3230, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:02:42.4729782Z 2025-03-14T05:02:42.4730228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:02:42.4730823Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:02:42.4731180Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:02:42.4731478Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:02:42.4731773Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:02:42.4732098Z getitem_31: "f32[1230 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:02:42.4732352Z 2025-03-14T05:02:42.4732887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:42.4733572Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:02:42.4733912Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:42.4734251Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:02:42.4734592Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:42.4734888Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:42.4735130Z 2025-03-14T05:02:42.4735677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:42.4736239Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:42.4736476Z 2025-03-14T05:02:44.6507719Z 2025-03-14T05:02:44.6508346Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:44.6509298Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:02:44.6509661Z l_scores_0_ = L_scores_0_ 2025-03-14T05:02:44.6509952Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:02:44.6510162Z 2025-03-14T05:02:44.6510789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:44.6511609Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:02:44.6511955Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:44.6512294Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:02:44.6512627Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:44.6512935Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:44.6513187Z 2025-03-14T05:02:44.6513658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:44.6514200Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:44.6514448Z 2025-03-14T05:02:44.6514538Z 2025-03-14T05:02:44.6514646Z class GraphModule(torch.nn.Module): 2025-03-14T05:02:44.6514959Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:02:44.6515263Z l_scores_0_ = L_scores_0_ 2025-03-14T05:02:44.6515477Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:02:44.6515672Z 2025-03-14T05:02:44.6516234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:02:44.6516908Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:02:44.6517238Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:02:44.6517626Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:02:44.6517951Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:02:44.6518349Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:02:44.6518599Z 2025-03-14T05:02:44.6519056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:02:44.6519588Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:02:44.6519830Z 2025-03-14T05:03:00.5834903Z Compilation time (from dynamo_timed): 35.340866331 2025-03-14T05:03:00.5840180Z pass 2025-03-14T05:03:00.5845488Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:00.5849881Z TIMING: entire_frame_compile:35.34087 gc:0.0354 _recursive_pre_grad_passes:0.0288 async_compile.wait:8.62863 backend_compile:23.86179 _recursive_joint_graph_passes:0.46896 _recursive_post_grad_passes:0.09653 code_gen:11.68252 inductor_compile:13.21656 total_wall_time:35.34087 2025-03-14T05:03:00.5851257Z STATS: call_* op count: 611 | FakeTensorMode.__torch_dispatch__:18545 | FakeTensor.__torch_dispatch__:1849 | ProxyTorchDispatchMode.__torch_dispatch__:5936 | attempt fast:51 | slow no contiguity match:20 | fast is_contiguous:31 2025-03-14T05:03:00.5851880Z Dynamo produced 52 graphs covering 611 ops with 42 graph breaks (6 unique) 2025-03-14T05:03:06.0327194Z 2025-03-14T05:03:13.0557562Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:03:13.0560860Z loading model: 0it [00:07, ?it/s] 2025-03-14T05:03:13.0563048Z cpu eval detectron2_fasterrcnn_r_50_fpn 2025-03-14T05:03:26.9833300Z WARNING:common:fp64 golden ref were not generated for detectron2_fasterrcnn_r_50_fpn. Setting accuracy check to cosine 2025-03-14T05:03:27.0141783Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:36.5564026Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:46.9872024Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:03:57.2142119Z 2025-03-14T05:03:57.2142691Z class GraphModule(torch.nn.Module): 2025-03-14T05:03:57.2220748Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:03:57.2283345Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:03:57.2283843Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2284621Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2285451Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2286248Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2287037Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2287788Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2288591Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2289446Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2290273Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2291168Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2291940Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2292741Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2293595Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2294420Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2295250Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2296047Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2297143Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2298037Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2298874Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2299671Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2300458Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.2301280Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2302153Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2302999Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2303875Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2304851Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2305701Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2306546Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2307363Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2308159Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2308917Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2309737Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2310589Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2311426Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2312220Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2312990Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2313796Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2314643Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2315470Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2316266Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2317039Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2317841Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2318712Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2319529Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2320321Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2321082Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2321893Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2322748Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2323589Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2324400Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2325164Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2325954Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2326804Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2327625Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2328422Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2329185Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2329977Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2330809Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2331653Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2332451Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2333226Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2334020Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2334862Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2335682Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2336513Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2337281Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2338088Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2338931Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2339746Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2340538Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2341321Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.2342143Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2343014Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2343882Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2344891Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2345825Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2346716Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2347660Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2348516Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2349412Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2350287Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2351208Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2352104Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2352965Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2353781Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2354568Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2355387Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2356262Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2357107Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2357929Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2358718Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2359539Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2360430Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2361301Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2362111Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2362889Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2363698Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2364577Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2365432Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2366276Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2367052Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2367882Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2368722Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2369580Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2370385Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2371158Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2371951Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2372817Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2373837Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2374629Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2375392Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2376179Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2377031Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2377851Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2378677Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2379441Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2380254Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2381102Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2382106Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2382927Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2383722Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2384578Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2385445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2386282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2387095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2387951Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2388770Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2389644Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2390495Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2391316Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2392128Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2392965Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2393856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2394690Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2395514Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2396347Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.2397183Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2398077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2398961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2399812Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2400604Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2401436Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2402291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2403133Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2403943Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2404720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2405527Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2406423Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2407273Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2408104Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2408892Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2409707Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2410575Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2411416Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2412232Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2413016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2413828Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2414688Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2415549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2416365Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2417150Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2417960Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2418842Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2419705Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2420543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2421340Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2422153Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2423023Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2423867Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2424836Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2425709Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2426609Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2427583Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2428523Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2429471Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2430347Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2431256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2432214Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2433159Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2434067Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2434963Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2435866Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2436788Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2437676Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2438533Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2439349Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2440201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2441110Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2441993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2442851Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2443677Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2444573Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2445463Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2446303Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2447122Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2447905Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2448715Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2449617Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2450457Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2451292Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2452063Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2452875Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2453742Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2454587Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2455405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2456188Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2456994Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2457858Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2458712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2459520Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2460294Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2461109Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2461969Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2462825Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2463659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2464566Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2465490Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2466390Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2467326Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2468234Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2469112Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2470033Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2470999Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2471939Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2472795Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2473576Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2474386Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2475248Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2476093Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2476909Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2478560Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.2479422Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2480349Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2481200Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2482197Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2482985Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2483806Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2484679Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2485508Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2486302Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2487061Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2487910Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2488751Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2489570Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2490384Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2491169Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2492006Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2492883Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2493746Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2494552Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2495339Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.2496155Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2497045Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2497890Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2498702Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2499483Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.2500297Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2501182Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2502024Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2502848Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2503628Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.2504525Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.2505436Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.2506308Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.2507127Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.2507858Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:03:57.2508368Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:03:57.2508872Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:03:57.2509362Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:03:57.2509885Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:03:57.2510368Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:03:57.2510848Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:03:57.2511328Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:03:57.2511802Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:03:57.2512282Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:03:57.2512759Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:03:57.2513237Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:03:57.2513713Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:03:57.2514191Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:03:57.2514686Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:03:57.2515177Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:03:57.2515801Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:03:57.2516556Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:03:57.2517300Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:03:57.2518051Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:03:57.2518772Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:03:57.2519491Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:03:57.2520182Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:03:57.2520918Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:03:57.2521686Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:03:57.2522434Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:03:57.2523176Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:03:57.2523636Z 2025-03-14T05:03:57.2524026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2524895Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2525532Z 2025-03-14T05:03:57.2525892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2527906Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2529750Z 2025-03-14T05:03:57.2530132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:03:57.2530616Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:03:57.2530877Z 2025-03-14T05:03:57.2531338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:03:57.2531974Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:03:57.2532319Z 2025-03-14T05:03:57.2532656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2533466Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2534059Z 2025-03-14T05:03:57.2534429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2536488Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2538322Z 2025-03-14T05:03:57.2538691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2539169Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:03:57.2539423Z 2025-03-14T05:03:57.2539757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2540540Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2541136Z 2025-03-14T05:03:57.2541486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2543582Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2545709Z 2025-03-14T05:03:57.2546092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2546581Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:03:57.2546839Z 2025-03-14T05:03:57.2547179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2548068Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2548716Z 2025-03-14T05:03:57.2549074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2551193Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2553081Z 2025-03-14T05:03:57.2553429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2554250Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.2554878Z 2025-03-14T05:03:57.2555237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2557397Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2559536Z 2025-03-14T05:03:57.2559911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2560406Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:03:57.2560673Z 2025-03-14T05:03:57.2561052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2561568Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:03:57.2561841Z 2025-03-14T05:03:57.2562197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2563002Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2563627Z 2025-03-14T05:03:57.2563987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2566187Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2568027Z 2025-03-14T05:03:57.2568399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2568884Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:03:57.2569152Z 2025-03-14T05:03:57.2569489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2570280Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2570898Z 2025-03-14T05:03:57.2571250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2573296Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2575161Z 2025-03-14T05:03:57.2575559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2576064Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:03:57.2576331Z 2025-03-14T05:03:57.2576669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2577512Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2578128Z 2025-03-14T05:03:57.2578479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2580585Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2582680Z 2025-03-14T05:03:57.2583086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2583609Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:03:57.2583907Z 2025-03-14T05:03:57.2584363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2584949Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:03:57.2585238Z 2025-03-14T05:03:57.2585596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2586453Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2587100Z 2025-03-14T05:03:57.2587481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2589765Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2591785Z 2025-03-14T05:03:57.2592181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2592696Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:03:57.2592972Z 2025-03-14T05:03:57.2593327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2594172Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2594813Z 2025-03-14T05:03:57.2595181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2597316Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2599212Z 2025-03-14T05:03:57.2599591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2600074Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:03:57.2600340Z 2025-03-14T05:03:57.2600689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2601508Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2602128Z 2025-03-14T05:03:57.2602473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2604633Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2606532Z 2025-03-14T05:03:57.2606899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2607389Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:03:57.2607663Z 2025-03-14T05:03:57.2608036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2608585Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:03:57.2608862Z 2025-03-14T05:03:57.2609197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2609993Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2610591Z 2025-03-14T05:03:57.2610959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2613031Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2614885Z 2025-03-14T05:03:57.2615409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2615901Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:03:57.2616166Z 2025-03-14T05:03:57.2616503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2617290Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2617894Z 2025-03-14T05:03:57.2618254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2620356Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2622252Z 2025-03-14T05:03:57.2622632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2623131Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:03:57.2623401Z 2025-03-14T05:03:57.2623740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2624644Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2625342Z 2025-03-14T05:03:57.2625741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2627879Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2629848Z 2025-03-14T05:03:57.2630210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2631049Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.2631668Z 2025-03-14T05:03:57.2632019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2634222Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2636333Z 2025-03-14T05:03:57.2636706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2637191Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:03:57.2637461Z 2025-03-14T05:03:57.2637824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2638318Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:03:57.2638591Z 2025-03-14T05:03:57.2638929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2639727Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2640337Z 2025-03-14T05:03:57.2640681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2642825Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2644719Z 2025-03-14T05:03:57.2645092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2645619Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:03:57.2645878Z 2025-03-14T05:03:57.2646210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2647020Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2647658Z 2025-03-14T05:03:57.2648010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2650118Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2651996Z 2025-03-14T05:03:57.2652370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2652857Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:03:57.2653126Z 2025-03-14T05:03:57.2653463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2654266Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2654897Z 2025-03-14T05:03:57.2655254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2657334Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2659208Z 2025-03-14T05:03:57.2659579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2660091Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:03:57.2660369Z 2025-03-14T05:03:57.2660784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2661283Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:03:57.2661569Z 2025-03-14T05:03:57.2661909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2662704Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2663302Z 2025-03-14T05:03:57.2663655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2666030Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2667982Z 2025-03-14T05:03:57.2668359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2668850Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:03:57.2669136Z 2025-03-14T05:03:57.2669482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2670316Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2670935Z 2025-03-14T05:03:57.2671294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2673419Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2675276Z 2025-03-14T05:03:57.2675672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2676165Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:03:57.2676435Z 2025-03-14T05:03:57.2676779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2677592Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2678803Z 2025-03-14T05:03:57.2679190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2681321Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2683475Z 2025-03-14T05:03:57.2683843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2684375Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:03:57.2684644Z 2025-03-14T05:03:57.2685008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2685493Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:03:57.2685769Z 2025-03-14T05:03:57.2686106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2686889Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2687479Z 2025-03-14T05:03:57.2687820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2689913Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2691768Z 2025-03-14T05:03:57.2692124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2692597Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:03:57.2692856Z 2025-03-14T05:03:57.2693186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2693967Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2694568Z 2025-03-14T05:03:57.2694903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2696956Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2698795Z 2025-03-14T05:03:57.2699162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2699640Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:03:57.2699898Z 2025-03-14T05:03:57.2700226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2700998Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2701593Z 2025-03-14T05:03:57.2701939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2704026Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2706026Z 2025-03-14T05:03:57.2706394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2706866Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:03:57.2707135Z 2025-03-14T05:03:57.2707501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2707995Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:03:57.2708270Z 2025-03-14T05:03:57.2708604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2709390Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2709980Z 2025-03-14T05:03:57.2710326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2712399Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2714284Z 2025-03-14T05:03:57.2714655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2715130Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:03:57.2715390Z 2025-03-14T05:03:57.2715727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2716554Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2717166Z 2025-03-14T05:03:57.2717517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2719593Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2721456Z 2025-03-14T05:03:57.2721830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2722317Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:03:57.2722570Z 2025-03-14T05:03:57.2722897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2723672Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2724259Z 2025-03-14T05:03:57.2724599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2726665Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2728478Z 2025-03-14T05:03:57.2728813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2729668Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.2730394Z 2025-03-14T05:03:57.2730742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2732937Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2735043Z 2025-03-14T05:03:57.2735414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2735893Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:03:57.2736155Z 2025-03-14T05:03:57.2736532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2737019Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:03:57.2737291Z 2025-03-14T05:03:57.2737626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2738390Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2739001Z 2025-03-14T05:03:57.2739343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2741454Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2743344Z 2025-03-14T05:03:57.2743729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2744320Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:03:57.2744603Z 2025-03-14T05:03:57.2744960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2745795Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2746407Z 2025-03-14T05:03:57.2746757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2748872Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2750777Z 2025-03-14T05:03:57.2751155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2751641Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:03:57.2751902Z 2025-03-14T05:03:57.2752243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2753047Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2753671Z 2025-03-14T05:03:57.2754027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2756115Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2758006Z 2025-03-14T05:03:57.2758384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2758855Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:03:57.2759132Z 2025-03-14T05:03:57.2759493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2759963Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:03:57.2760214Z 2025-03-14T05:03:57.2760541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2761303Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2761877Z 2025-03-14T05:03:57.2762216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2764239Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2766049Z 2025-03-14T05:03:57.2766458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2766922Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:03:57.2767172Z 2025-03-14T05:03:57.2767499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2768277Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2768865Z 2025-03-14T05:03:57.2769210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2771285Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2773114Z 2025-03-14T05:03:57.2773478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2773940Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:03:57.2774192Z 2025-03-14T05:03:57.2774518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2775283Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2775872Z 2025-03-14T05:03:57.2776212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2778229Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2780064Z 2025-03-14T05:03:57.2780424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2780898Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:03:57.2781159Z 2025-03-14T05:03:57.2781666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2782152Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:03:57.2782421Z 2025-03-14T05:03:57.2782759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2783549Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2784218Z 2025-03-14T05:03:57.2784632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2786752Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2788667Z 2025-03-14T05:03:57.2789641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2790141Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:03:57.2790409Z 2025-03-14T05:03:57.2790760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2791543Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2792132Z 2025-03-14T05:03:57.2792477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2794524Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2796432Z 2025-03-14T05:03:57.2796808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2797287Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:03:57.2797547Z 2025-03-14T05:03:57.2797885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2798684Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2799309Z 2025-03-14T05:03:57.2800090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2802252Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2804086Z 2025-03-14T05:03:57.2804449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2804922Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:03:57.2805184Z 2025-03-14T05:03:57.2805544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2806013Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:03:57.2806272Z 2025-03-14T05:03:57.2806596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2807360Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2807934Z 2025-03-14T05:03:57.2808300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2810376Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2812212Z 2025-03-14T05:03:57.2812571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2813036Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:03:57.2813283Z 2025-03-14T05:03:57.2813650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2814569Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2815180Z 2025-03-14T05:03:57.2815528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2817569Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2819386Z 2025-03-14T05:03:57.2819748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2820211Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:03:57.2820464Z 2025-03-14T05:03:57.2820792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2821560Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2822166Z 2025-03-14T05:03:57.2822506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2824616Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2826487Z 2025-03-14T05:03:57.2826874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2827376Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:03:57.2827645Z 2025-03-14T05:03:57.2828018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2828530Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:03:57.2828798Z 2025-03-14T05:03:57.2829136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2829932Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2830528Z 2025-03-14T05:03:57.2830883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2832958Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2834835Z 2025-03-14T05:03:57.2835210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2835708Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:03:57.2835967Z 2025-03-14T05:03:57.2836300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2837096Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2837692Z 2025-03-14T05:03:57.2838043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2840114Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2841943Z 2025-03-14T05:03:57.2842305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2842768Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:03:57.2843020Z 2025-03-14T05:03:57.2843350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2844126Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2844718Z 2025-03-14T05:03:57.2845061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2847084Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2848893Z 2025-03-14T05:03:57.2849279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2849751Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:03:57.2850013Z 2025-03-14T05:03:57.2850376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2850851Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:03:57.2851112Z 2025-03-14T05:03:57.2851439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2852210Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2852787Z 2025-03-14T05:03:57.2853129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2855206Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2857023Z 2025-03-14T05:03:57.2857388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2857853Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:03:57.2858105Z 2025-03-14T05:03:57.2858430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2859203Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2859790Z 2025-03-14T05:03:57.2860132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2862153Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2864045Z 2025-03-14T05:03:57.2864501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2865011Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:03:57.2865282Z 2025-03-14T05:03:57.2865632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2866408Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2867035Z 2025-03-14T05:03:57.2867427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2869658Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2871656Z 2025-03-14T05:03:57.2872015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2872855Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.2873498Z 2025-03-14T05:03:57.2873873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2876024Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2878090Z 2025-03-14T05:03:57.2878452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2878919Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:03:57.2879175Z 2025-03-14T05:03:57.2879540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2880015Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:03:57.2880273Z 2025-03-14T05:03:57.2880603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2881393Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2882151Z 2025-03-14T05:03:57.2882544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2884575Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2886409Z 2025-03-14T05:03:57.2886776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2887242Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:03:57.2887497Z 2025-03-14T05:03:57.2887829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2888603Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2889186Z 2025-03-14T05:03:57.2889531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2891577Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2893412Z 2025-03-14T05:03:57.2893775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2894240Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:03:57.2894487Z 2025-03-14T05:03:57.2894824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2895654Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2896259Z 2025-03-14T05:03:57.2896616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2898681Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2900495Z 2025-03-14T05:03:57.2900861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2901340Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:03:57.2901609Z 2025-03-14T05:03:57.2901969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2902438Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:03:57.2902695Z 2025-03-14T05:03:57.2903023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2903807Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.2904469Z 2025-03-14T05:03:57.2904845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2907046Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2908915Z 2025-03-14T05:03:57.2909314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2909819Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:03:57.2910084Z 2025-03-14T05:03:57.2910421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2911240Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.2911843Z 2025-03-14T05:03:57.2912196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2914302Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2916181Z 2025-03-14T05:03:57.2916555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2917035Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:03:57.2917300Z 2025-03-14T05:03:57.2917641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2918456Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.2919057Z 2025-03-14T05:03:57.2919411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.2921518Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.2923352Z 2025-03-14T05:03:57.2923726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.2924204Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:03:57.2924490Z 2025-03-14T05:03:57.2924852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.2925323Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:03:57.2925578Z 2025-03-14T05:03:57.2925907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2926754Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:03:57.2927417Z 2025-03-14T05:03:57.2927745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2928568Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:03:57.2929207Z 2025-03-14T05:03:57.2929693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.2930398Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:03:57.2930773Z 2025-03-14T05:03:57.2931100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2931974Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:03:57.2932631Z 2025-03-14T05:03:57.2933057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.2933650Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:03:57.2933967Z 2025-03-14T05:03:57.2934300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2935172Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:03:57.2935869Z 2025-03-14T05:03:57.2936405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.2937184Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:03:57.2937633Z 2025-03-14T05:03:57.2937969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2938859Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:03:57.2939557Z 2025-03-14T05:03:57.2939988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.2940597Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:03:57.2940929Z 2025-03-14T05:03:57.2941264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2942150Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:03:57.2942849Z 2025-03-14T05:03:57.2943331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.2944112Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:03:57.2944673Z 2025-03-14T05:03:57.2945025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2945940Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:03:57.2946623Z 2025-03-14T05:03:57.2947058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.2947664Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:03:57.2947999Z 2025-03-14T05:03:57.2948335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.2949310Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:03:57.2950034Z 2025-03-14T05:03:57.2950496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:03:57.2951138Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:03:57.2951470Z 2025-03-14T05:03:57.2951992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2952610Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:03:57.2952877Z 2025-03-14T05:03:57.2953251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2953730Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:03:57.2953984Z 2025-03-14T05:03:57.2954486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2955102Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:03:57.2955371Z 2025-03-14T05:03:57.2955739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2956212Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:03:57.2956472Z 2025-03-14T05:03:57.2956922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.2957508Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:03:57.2957837Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:03:57.2958104Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:03:57.2958352Z 2025-03-14T05:03:57.2958765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.2959271Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:03:57.2959519Z 2025-03-14T05:03:57.2959925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.2960422Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:03:57.2960661Z 2025-03-14T05:03:57.2961123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.2961757Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:03:57.2962082Z 2025-03-14T05:03:57.2962576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.2963159Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:03:57.2963785Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:03:57.2964383Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:03:57.2964685Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:03:57.2964928Z 2025-03-14T05:03:57.2965441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2966068Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:03:57.2966335Z 2025-03-14T05:03:57.2966711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2967191Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:03:57.2967455Z 2025-03-14T05:03:57.2967968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2968587Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:03:57.2968858Z 2025-03-14T05:03:57.2969242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2969734Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:03:57.2969997Z 2025-03-14T05:03:57.2970463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.2971086Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:03:57.2971445Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:03:57.2971731Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:03:57.2972000Z 2025-03-14T05:03:57.2972418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.2972947Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:03:57.2973196Z 2025-03-14T05:03:57.2973609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.2974099Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:03:57.2974339Z 2025-03-14T05:03:57.2974789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.2975421Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:03:57.2975745Z 2025-03-14T05:03:57.2976232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.2976824Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:03:57.2977428Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:03:57.2978026Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:03:57.2978329Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:03:57.2978569Z 2025-03-14T05:03:57.2979079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2979691Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:03:57.2979958Z 2025-03-14T05:03:57.2980337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2980816Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:03:57.2981076Z 2025-03-14T05:03:57.2981755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2982393Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:03:57.2982665Z 2025-03-14T05:03:57.2983047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2983535Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:03:57.2983800Z 2025-03-14T05:03:57.2984306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.2984927Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:03:57.2985281Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:03:57.2985604Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:03:57.2985848Z 2025-03-14T05:03:57.2986262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.2986776Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:03:57.2987017Z 2025-03-14T05:03:57.2987431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.2987940Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:03:57.2988189Z 2025-03-14T05:03:57.2988655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.2989302Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:03:57.2989643Z 2025-03-14T05:03:57.2990181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.2990801Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:03:57.2991433Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:03:57.2992067Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:03:57.2992362Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:03:57.2992603Z 2025-03-14T05:03:57.2993117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2993745Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:03:57.2994015Z 2025-03-14T05:03:57.2994400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2994888Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:03:57.2995152Z 2025-03-14T05:03:57.2995664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.2996290Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:03:57.2996560Z 2025-03-14T05:03:57.2996938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.2997422Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:03:57.2997682Z 2025-03-14T05:03:57.2998141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.2998753Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:03:57.2999125Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:03:57.2999401Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:03:57.2999650Z 2025-03-14T05:03:57.3000066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3000577Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:03:57.3000832Z 2025-03-14T05:03:57.3001251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3001760Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:03:57.3002012Z 2025-03-14T05:03:57.3002483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3003129Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:03:57.3003473Z 2025-03-14T05:03:57.3003981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3004580Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:03:57.3005167Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:03:57.3005774Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:03:57.3006078Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:03:57.3006324Z 2025-03-14T05:03:57.3006836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3007469Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:03:57.3007738Z 2025-03-14T05:03:57.3008117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3008602Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:03:57.3008863Z 2025-03-14T05:03:57.3009376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3010014Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:03:57.3010293Z 2025-03-14T05:03:57.3010682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3011164Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:03:57.3011426Z 2025-03-14T05:03:57.3011884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.3012495Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:03:57.3012865Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:03:57.3013139Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:03:57.3013384Z 2025-03-14T05:03:57.3013819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3014358Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:03:57.3014626Z 2025-03-14T05:03:57.3015041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3015543Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:03:57.3015791Z 2025-03-14T05:03:57.3016249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3016900Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:03:57.3017230Z 2025-03-14T05:03:57.3018557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3019186Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:03:57.3019791Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:03:57.3020404Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:03:57.3020701Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:03:57.3020943Z 2025-03-14T05:03:57.3021334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:03:57.3021831Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:03:57.3022164Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:03:57.3022490Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:03:57.3022812Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:03:57.3023131Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:03:57.3023386Z 2025-03-14T05:03:57.3023748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3024364Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:03:57.3024445Z 2025-03-14T05:03:57.3024759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3024967Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:03:57.3025048Z 2025-03-14T05:03:57.3025456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3026044Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3026121Z 2025-03-14T05:03:57.3026502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3027034Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:03:57.3027103Z 2025-03-14T05:03:57.3027365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3027874Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:03:57.3027950Z 2025-03-14T05:03:57.3028259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3028476Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:03:57.3028559Z 2025-03-14T05:03:57.3028952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3029487Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3029553Z 2025-03-14T05:03:57.3029915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3030426Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:03:57.3030505Z 2025-03-14T05:03:57.3030757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3031238Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:03:57.3031318Z 2025-03-14T05:03:57.3031612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3031805Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:03:57.3031879Z 2025-03-14T05:03:57.3032281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3032786Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3032861Z 2025-03-14T05:03:57.3033221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3033733Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:03:57.3033803Z 2025-03-14T05:03:57.3034066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3034558Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:03:57.3034637Z 2025-03-14T05:03:57.3034934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3035143Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:03:57.3035210Z 2025-03-14T05:03:57.3035589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3036081Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3036156Z 2025-03-14T05:03:57.3036513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3037007Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:03:57.3037081Z 2025-03-14T05:03:57.3037329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3038089Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:03:57.3038156Z 2025-03-14T05:03:57.3038443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3038649Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:03:57.3038725Z 2025-03-14T05:03:57.3039096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3039974Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:03:57.3040051Z 2025-03-14T05:03:57.3040423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3041255Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:03:57.3041349Z 2025-03-14T05:03:57.3041696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:03:57.3041879Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:03:57.3042033Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:03:57.3042195Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:03:57.3042350Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:03:57.3042500Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:03:57.3042648Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:03:57.3042793Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:03:57.3042936Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:03:57.3043082Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:03:57.3043226Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:03:57.3043294Z 2025-03-14T05:03:57.3043727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:03:57.3043906Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:03:57.3044099Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:03:57.3044287Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:03:57.3044452Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:03:57.3044653Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:03:57.3044823Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:03:57.3044977Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:03:57.3045145Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:03:57.3045326Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:03:57.3045473Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:03:57.3045647Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:03:57.3045825Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:03:57.3045971Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:03:57.3046128Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:03:57.3046315Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:03:57.3046382Z 2025-03-14T05:03:57.3046806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3047033Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:03:57.3047117Z 2025-03-14T05:03:57.3047574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3070787Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:03:57.3071151Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:03:57.3071348Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:03:57.3071442Z 2025-03-14T05:03:57.3071886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3072094Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:03:57.3072176Z 2025-03-14T05:03:57.3072535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3072691Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:03:57.3072774Z 2025-03-14T05:03:57.3073117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3073274Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3073409Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3073584Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:03:57.3073656Z 2025-03-14T05:03:57.3074000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3074249Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3074389Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3074553Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:03:57.3074636Z 2025-03-14T05:03:57.3074970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3075111Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3075218Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:03:57.3075366Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:03:57.3075438Z 2025-03-14T05:03:57.3075773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3075930Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:03:57.3076034Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:03:57.3076204Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:03:57.3076282Z 2025-03-14T05:03:57.3076655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3076831Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3076997Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:03:57.3077071Z 2025-03-14T05:03:57.3077372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3077534Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3077648Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:03:57.3077717Z 2025-03-14T05:03:57.3078017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3078179Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3078291Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:03:57.3078366Z 2025-03-14T05:03:57.3078670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3078867Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:03:57.3078978Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:03:57.3079050Z 2025-03-14T05:03:57.3079391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3079545Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:03:57.3079609Z 2025-03-14T05:03:57.3079954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3080122Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:03:57.3080187Z 2025-03-14T05:03:57.3080545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3080686Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:03:57.3080824Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:03:57.3080982Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:03:57.3081132Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:03:57.3081201Z 2025-03-14T05:03:57.3081745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3081897Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:03:57.3082034Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:03:57.3082186Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:03:57.3082417Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:03:57.3082487Z 2025-03-14T05:03:57.3082849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3082973Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:03:57.3083176Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:03:57.3083314Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:03:57.3083387Z 2025-03-14T05:03:57.3083715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3083841Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:03:57.3084009Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:03:57.3084153Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:03:57.3084219Z 2025-03-14T05:03:57.3084537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3084639Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:03:57.3084769Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:03:57.3084834Z 2025-03-14T05:03:57.3085149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3085244Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:03:57.3085368Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:03:57.3085434Z 2025-03-14T05:03:57.3085747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3085863Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:03:57.3086005Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:03:57.3086092Z 2025-03-14T05:03:57.3086404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3086517Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:03:57.3086651Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:03:57.3086716Z 2025-03-14T05:03:57.3087076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3087264Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:03:57.3087342Z 2025-03-14T05:03:57.3087675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3087852Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:03:57.3087918Z 2025-03-14T05:03:57.3088312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3088511Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:03:57.3088586Z 2025-03-14T05:03:57.3088999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3089237Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:03:57.3089312Z 2025-03-14T05:03:57.3089743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3089908Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:03:57.3090061Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:03:57.3090212Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:03:57.3090277Z 2025-03-14T05:03:57.3090652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3090821Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:03:57.3090897Z 2025-03-14T05:03:57.3091202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3091355Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:03:57.3091420Z 2025-03-14T05:03:57.3091737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3091873Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3092006Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3092160Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:03:57.3092234Z 2025-03-14T05:03:57.3092548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3092694Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3092816Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3092976Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:03:57.3093050Z 2025-03-14T05:03:57.3093362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3093481Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3093582Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:03:57.3093716Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:03:57.3093789Z 2025-03-14T05:03:57.3094097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3094262Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:03:57.3094356Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:03:57.3094508Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:03:57.3094573Z 2025-03-14T05:03:57.3094892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3095061Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3095182Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:03:57.3095249Z 2025-03-14T05:03:57.3095545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3095701Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3095812Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:03:57.3095882Z 2025-03-14T05:03:57.3096171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3096324Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3096435Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:03:57.3096509Z 2025-03-14T05:03:57.3096810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3097001Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:03:57.3097112Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:03:57.3097184Z 2025-03-14T05:03:57.3097517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3097665Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:03:57.3097740Z 2025-03-14T05:03:57.3098067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3098220Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:03:57.3098294Z 2025-03-14T05:03:57.3098642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3098789Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:03:57.3098918Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:03:57.3099087Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:03:57.3099232Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:03:57.3099307Z 2025-03-14T05:03:57.3099654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3099804Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:03:57.3099930Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:03:57.3100091Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:03:57.3100248Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:03:57.3100323Z 2025-03-14T05:03:57.3100665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3100806Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:03:57.3100969Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:03:57.3101115Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:03:57.3101182Z 2025-03-14T05:03:57.3101518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3101632Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:03:57.3101808Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:03:57.3101950Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:03:57.3102016Z 2025-03-14T05:03:57.3102338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3102437Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:03:57.3102563Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:03:57.3102627Z 2025-03-14T05:03:57.3102938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3103031Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:03:57.3103154Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:03:57.3103218Z 2025-03-14T05:03:57.3103525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3103645Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:03:57.3103788Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:03:57.3103881Z 2025-03-14T05:03:57.3104264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3104387Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:03:57.3104532Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:03:57.3104604Z 2025-03-14T05:03:57.3104980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3105184Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:03:57.3105264Z 2025-03-14T05:03:57.3105613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3105808Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:03:57.3105876Z 2025-03-14T05:03:57.3106299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3106505Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:03:57.3106583Z 2025-03-14T05:03:57.3106980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3107212Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:03:57.3107278Z 2025-03-14T05:03:57.3107716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3107868Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:03:57.3108030Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:03:57.3108175Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:03:57.3108241Z 2025-03-14T05:03:57.3108617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3108787Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:03:57.3108859Z 2025-03-14T05:03:57.3109166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3109315Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:03:57.3109379Z 2025-03-14T05:03:57.3109698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3109828Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3109962Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3110108Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:03:57.3110240Z 2025-03-14T05:03:57.3110560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3110690Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3110809Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3110968Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:03:57.3111033Z 2025-03-14T05:03:57.3111355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3111477Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3111576Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:03:57.3111708Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:03:57.3111785Z 2025-03-14T05:03:57.3112102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3112258Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:03:57.3112374Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:03:57.3112531Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:03:57.3112597Z 2025-03-14T05:03:57.3112914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3113086Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3113211Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:03:57.3113276Z 2025-03-14T05:03:57.3113584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3113734Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3113864Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:03:57.3113930Z 2025-03-14T05:03:57.3114238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3114387Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3114506Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:03:57.3114572Z 2025-03-14T05:03:57.3114880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3115071Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:03:57.3115183Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:03:57.3115257Z 2025-03-14T05:03:57.3115595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3115742Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:03:57.3115810Z 2025-03-14T05:03:57.3116149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3116303Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:03:57.3116374Z 2025-03-14T05:03:57.3116715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3116857Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:03:57.3116985Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:03:57.3117146Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:03:57.3117285Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:03:57.3117359Z 2025-03-14T05:03:57.3117704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3117848Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:03:57.3117972Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:03:57.3118144Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:03:57.3118298Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:03:57.3118370Z 2025-03-14T05:03:57.3118696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3118833Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:03:57.3118993Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:03:57.3119137Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:03:57.3119205Z 2025-03-14T05:03:57.3119543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3119655Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:03:57.3119828Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:03:57.3119961Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:03:57.3120036Z 2025-03-14T05:03:57.3120349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3120456Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:03:57.3120571Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:03:57.3120645Z 2025-03-14T05:03:57.3120952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3121056Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:03:57.3121172Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:03:57.3121246Z 2025-03-14T05:03:57.3121552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3121680Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:03:57.3121832Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:03:57.3121906Z 2025-03-14T05:03:57.3122213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3122334Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:03:57.3122465Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:03:57.3122538Z 2025-03-14T05:03:57.3122891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3123088Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:03:57.3123161Z 2025-03-14T05:03:57.3123499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3123668Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:03:57.3123733Z 2025-03-14T05:03:57.3124146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3124337Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:03:57.3124411Z 2025-03-14T05:03:57.3124833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3125046Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:03:57.3125114Z 2025-03-14T05:03:57.3125548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3125696Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:03:57.3125856Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:03:57.3125993Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:03:57.3126067Z 2025-03-14T05:03:57.3126436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3126614Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:03:57.3126681Z 2025-03-14T05:03:57.3127000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3127146Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:03:57.3127219Z 2025-03-14T05:03:57.3127533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3127671Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3127799Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3127973Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:03:57.3128037Z 2025-03-14T05:03:57.3128359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3128483Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3128614Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3128767Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:03:57.3128840Z 2025-03-14T05:03:57.3129148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3129280Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3129375Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:03:57.3129514Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:03:57.3129579Z 2025-03-14T05:03:57.3129891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3130061Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:03:57.3130156Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:03:57.3130310Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:03:57.3130378Z 2025-03-14T05:03:57.3130705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3130860Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3130979Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:03:57.3131044Z 2025-03-14T05:03:57.3131346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3131497Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3131616Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:03:57.3131682Z 2025-03-14T05:03:57.3131986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3132133Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3132250Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:03:57.3132316Z 2025-03-14T05:03:57.3132619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3132802Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:03:57.3132923Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:03:57.3132989Z 2025-03-14T05:03:57.3133328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3133468Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:03:57.3133542Z 2025-03-14T05:03:57.3133888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3134031Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:03:57.3134095Z 2025-03-14T05:03:57.3134446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3134579Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:03:57.3134716Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:03:57.3134871Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:03:57.3135020Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:03:57.3135085Z 2025-03-14T05:03:57.3135434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3135575Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:03:57.3135697Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:03:57.3135870Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:03:57.3136028Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:03:57.3136102Z 2025-03-14T05:03:57.3136443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3136563Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:03:57.3136724Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:03:57.3136864Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:03:57.3136931Z 2025-03-14T05:03:57.3137265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3137377Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:03:57.3137546Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:03:57.3137677Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:03:57.3137751Z 2025-03-14T05:03:57.3138053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3138156Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:03:57.3138272Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:03:57.3138343Z 2025-03-14T05:03:57.3138645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3138747Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:03:57.3138860Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:03:57.3138932Z 2025-03-14T05:03:57.3139232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3139372Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:03:57.3139505Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:03:57.3139578Z 2025-03-14T05:03:57.3139880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3140001Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:03:57.3140132Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:03:57.3140205Z 2025-03-14T05:03:57.3140549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3140744Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:03:57.3140808Z 2025-03-14T05:03:57.3141146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3141307Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:03:57.3141378Z 2025-03-14T05:03:57.3141786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3141964Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:03:57.3142046Z 2025-03-14T05:03:57.3142442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3142646Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:03:57.3142715Z 2025-03-14T05:03:57.3143140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3143296Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:03:57.3143448Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:03:57.3143581Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:03:57.3143656Z 2025-03-14T05:03:57.3144030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3144294Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:03:57.3144370Z 2025-03-14T05:03:57.3144709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3144860Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:03:57.3144933Z 2025-03-14T05:03:57.3145266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3145409Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3145537Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3145724Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:03:57.3145789Z 2025-03-14T05:03:57.3146113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3146238Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3146366Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3146519Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:03:57.3146592Z 2025-03-14T05:03:57.3146914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3147053Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3147148Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:03:57.3147290Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:03:57.3147361Z 2025-03-14T05:03:57.3147694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3147869Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:03:57.3147994Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:03:57.3148128Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:03:57.3148221Z 2025-03-14T05:03:57.3148544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3148715Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3148833Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:03:57.3148905Z 2025-03-14T05:03:57.3149216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3149375Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3149491Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:03:57.3149568Z 2025-03-14T05:03:57.3149880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3150039Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3150154Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:03:57.3150227Z 2025-03-14T05:03:57.3150551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3150736Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:03:57.3150856Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:03:57.3150923Z 2025-03-14T05:03:57.3151279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3151421Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:03:57.3151510Z 2025-03-14T05:03:57.3151854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3152001Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:03:57.3152067Z 2025-03-14T05:03:57.3152433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3152573Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:03:57.3152704Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:03:57.3152865Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:03:57.3153013Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:03:57.3153080Z 2025-03-14T05:03:57.3153441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3153580Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:03:57.3153731Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:03:57.3153907Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:03:57.3154059Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:03:57.3154144Z 2025-03-14T05:03:57.3154471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3154583Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:03:57.3154738Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:03:57.3154869Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:03:57.3154941Z 2025-03-14T05:03:57.3155264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3155375Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:03:57.3155534Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:03:57.3155668Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:03:57.3155733Z 2025-03-14T05:03:57.3156045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3156143Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:03:57.3156262Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:03:57.3156327Z 2025-03-14T05:03:57.3156632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3156728Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:03:57.3156846Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:03:57.3156912Z 2025-03-14T05:03:57.3157218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3157352Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:03:57.3157488Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:03:57.3157553Z 2025-03-14T05:03:57.3157850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3157961Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:03:57.3158094Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:03:57.3158157Z 2025-03-14T05:03:57.3158500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3158692Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:03:57.3158757Z 2025-03-14T05:03:57.3159085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3159239Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:03:57.3159311Z 2025-03-14T05:03:57.3159711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3159887Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:03:57.3159965Z 2025-03-14T05:03:57.3160445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:03:57.3160579Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:03:57.3160649Z 2025-03-14T05:03:57.3160940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3161095Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:03:57.3161159Z 2025-03-14T05:03:57.3161590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3161702Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:03:57.3161813Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:03:57.3161925Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:03:57.3161995Z 2025-03-14T05:03:57.3162443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3162583Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3162811Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:03:57.3162889Z 2025-03-14T05:03:57.3163333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3163521Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3163586Z 2025-03-14T05:03:57.3163878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3163996Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:03:57.3164069Z 2025-03-14T05:03:57.3164486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3164606Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:03:57.3164721Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:03:57.3164836Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:03:57.3164904Z 2025-03-14T05:03:57.3165356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3165492Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3165732Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:03:57.3165821Z 2025-03-14T05:03:57.3166257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3166443Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3166508Z 2025-03-14T05:03:57.3166799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3166923Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:03:57.3166994Z 2025-03-14T05:03:57.3167412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3167531Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:03:57.3167635Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:03:57.3167757Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:03:57.3167822Z 2025-03-14T05:03:57.3168273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3168402Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3168640Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:03:57.3168702Z 2025-03-14T05:03:57.3169150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3169308Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3169397Z 2025-03-14T05:03:57.3169679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3169806Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:03:57.3169870Z 2025-03-14T05:03:57.3170287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3170399Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:03:57.3170511Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:03:57.3170623Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:03:57.3170695Z 2025-03-14T05:03:57.3171137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3171269Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3171503Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:03:57.3171566Z 2025-03-14T05:03:57.3172046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3172205Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3172292Z 2025-03-14T05:03:57.3172576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3172706Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:03:57.3172769Z 2025-03-14T05:03:57.3173188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3173299Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:03:57.3173411Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:03:57.3173524Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:03:57.3173597Z 2025-03-14T05:03:57.3174028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3174198Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:03:57.3174423Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:03:57.3174496Z 2025-03-14T05:03:57.3174929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3175095Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3175162Z 2025-03-14T05:03:57.3175450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3175586Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:03:57.3175660Z 2025-03-14T05:03:57.3175931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.3176308Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:03:57.3176383Z 2025-03-14T05:03:57.3176659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.3177122Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:03:57.3177192Z 2025-03-14T05:03:57.3177472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.3177666Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:03:57.3177760Z 2025-03-14T05:03:57.3178157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:03:57.3178316Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:03:57.3178381Z 2025-03-14T05:03:57.3178677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:03:57.3178824Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:03:57.3178894Z 2025-03-14T05:03:57.3179258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:03:57.3179396Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:03:57.3179460Z 2025-03-14T05:03:57.3179934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:03:57.3180067Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:03:57.3180197Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:03:57.3180349Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:03:57.3180486Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:03:57.3181369Z 2025-03-14T05:03:57.3181975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:03:57.3182099Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:03:57.3182175Z 2025-03-14T05:03:57.3182727Z 2025-03-14T05:03:57.3182824Z class GraphModule(torch.nn.Module): 2025-03-14T05:03:57.3247920Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:03:57.3248489Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:03:57.3248909Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3249353Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3249854Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3250315Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3250726Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3251146Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3251632Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3252088Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3252499Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3252878Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3253247Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3253645Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3254052Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3254429Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3254803Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3255150Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3255558Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3255957Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3256336Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3256726Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3257086Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3257505Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3257922Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3258316Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3258717Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3259078Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3259499Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3259892Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3260276Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3260650Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3260993Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3261399Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3261793Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3262173Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3262539Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3262905Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3263308Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3263699Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3264089Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3264563Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3264975Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3265461Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3265914Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3266377Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3266747Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3267095Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3267489Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3267888Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3268262Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3268636Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3268983Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3269382Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3269804Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3270184Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3270562Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3270906Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3271314Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3271733Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3272127Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3272519Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3272870Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3273275Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3273670Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3274054Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3274427Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3274766Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3275172Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3275562Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3275967Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3276332Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3276699Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3277119Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3277521Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3277929Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3278350Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3278701Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3279116Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3279511Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3279890Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3280254Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3280602Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3280996Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3281394Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3281985Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3282357Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3282744Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3283141Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3283540Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3283915Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3284290Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3284640Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3285083Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3285483Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3285894Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3286267Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3286611Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3287015Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3287417Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3287788Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3288163Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3288503Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3288960Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3289427Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3289857Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3290277Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3290649Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3291052Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3291456Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3291890Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3292318Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3292707Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3293158Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3293593Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3294015Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3294424Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3294816Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3295683Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3296159Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3297183Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3297549Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3297901Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3298304Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3298719Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3299097Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3299516Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3299885Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3300301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3300702Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3301084Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3301465Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3301820Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3302233Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3302652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3303021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3303390Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3303769Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3304231Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3304673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3305102Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3305524Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3306306Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3306768Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3307194Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3307593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3307971Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3308332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3308751Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3309158Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3309561Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3309929Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3310277Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3310695Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3311094Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3311478Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3311841Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3312188Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3312583Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3313016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3313400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3313779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3314128Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3314523Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3314916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3315286Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3315658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3316005Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3316398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3316797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3317186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3317557Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3317897Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3318300Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3318695Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3319078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3319509Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3319864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3320272Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3320672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3321063Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3321453Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3321796Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3322201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3322594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3322984Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3323380Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3323736Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3324163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3324562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3324958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3325335Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3325723Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3326158Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3326599Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3326993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3327372Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3327732Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3328155Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3328568Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3328962Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3329359Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3329716Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3330144Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3330553Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3330943Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3331341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3331687Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3332109Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3332543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3332935Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3333335Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3333695Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3334120Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3334521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3334906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3335276Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3335624Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3336024Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3336419Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3336813Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3337179Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3337529Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3337923Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3338323Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3338716Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3339095Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3339458Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3339856Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3340256Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3340627Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3340995Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3341358Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3341767Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3342181Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3342568Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3342981Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3343322Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3343727Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3344207Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3344622Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3345044Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3345464Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3345877Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3346295Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3346690Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3347066Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3347402Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3347805Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3348196Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3348575Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3348945Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3349293Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3349714Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3350113Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3350511Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3350883Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3351237Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3351674Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3352100Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3352503Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3352873Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3353235Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3353629Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3354026Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3354412Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3354774Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3355008Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:03:57.3355221Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:03:57.3355448Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:03:57.3355671Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:03:57.3355893Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:03:57.3356100Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:03:57.3356325Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:03:57.3356530Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:03:57.3356753Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:03:57.3356960Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:03:57.3357181Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:03:57.3357383Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:03:57.3357605Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:03:57.3357835Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:03:57.3358067Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:03:57.3358279Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:03:57.3358639Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:03:57.3358988Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:03:57.3359327Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:03:57.3359666Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:03:57.3360000Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:03:57.3360322Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:03:57.3360626Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:03:57.3360993Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:03:57.3361347Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:03:57.3361692Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:03:57.3362049Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:03:57.3362116Z 2025-03-14T05:03:57.3362401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3362928Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3363005Z 2025-03-14T05:03:57.3363280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3364997Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3365087Z 2025-03-14T05:03:57.3365371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:03:57.3365517Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:03:57.3365581Z 2025-03-14T05:03:57.3365946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:03:57.3366181Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:03:57.3366253Z 2025-03-14T05:03:57.3366501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3366982Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3367048Z 2025-03-14T05:03:57.3367318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3369061Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3369146Z 2025-03-14T05:03:57.3369441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3369577Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:03:57.3369650Z 2025-03-14T05:03:57.3369898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3370385Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3370456Z 2025-03-14T05:03:57.3370731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3372488Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3372581Z 2025-03-14T05:03:57.3372861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3373008Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:03:57.3373073Z 2025-03-14T05:03:57.3373326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3373810Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3373882Z 2025-03-14T05:03:57.3374141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3375881Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3375968Z 2025-03-14T05:03:57.3376214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3376714Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.3376779Z 2025-03-14T05:03:57.3377046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3378896Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3378979Z 2025-03-14T05:03:57.3379261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3379406Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:03:57.3379479Z 2025-03-14T05:03:57.3379756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3379915Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:03:57.3379981Z 2025-03-14T05:03:57.3380236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3380727Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3380801Z 2025-03-14T05:03:57.3381064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3383043Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3383182Z 2025-03-14T05:03:57.3383475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3383630Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:03:57.3383696Z 2025-03-14T05:03:57.3383975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3384633Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3384708Z 2025-03-14T05:03:57.3385009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3386859Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3386943Z 2025-03-14T05:03:57.3387264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3387419Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:03:57.3387498Z 2025-03-14T05:03:57.3387768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3388333Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3388406Z 2025-03-14T05:03:57.3388698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3390639Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3390721Z 2025-03-14T05:03:57.3391037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3391204Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:03:57.3391283Z 2025-03-14T05:03:57.3391617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3391814Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:03:57.3391883Z 2025-03-14T05:03:57.3392175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3392712Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3392790Z 2025-03-14T05:03:57.3393067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3394977Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3395058Z 2025-03-14T05:03:57.3395372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3395540Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:03:57.3395604Z 2025-03-14T05:03:57.3395864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3396393Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3396466Z 2025-03-14T05:03:57.3396728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3398526Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3398605Z 2025-03-14T05:03:57.3398904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3399066Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:03:57.3399131Z 2025-03-14T05:03:57.3399388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3399900Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3399967Z 2025-03-14T05:03:57.3400239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3402035Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3402112Z 2025-03-14T05:03:57.3402398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3402553Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:03:57.3402652Z 2025-03-14T05:03:57.3402942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3403103Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:03:57.3403169Z 2025-03-14T05:03:57.3403430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3403932Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3404007Z 2025-03-14T05:03:57.3404277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3406094Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3406186Z 2025-03-14T05:03:57.3406469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3406619Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:03:57.3406682Z 2025-03-14T05:03:57.3406939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3407429Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3407502Z 2025-03-14T05:03:57.3407757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3409492Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3409588Z 2025-03-14T05:03:57.3409861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3410007Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:03:57.3410070Z 2025-03-14T05:03:57.3410323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3410797Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3410871Z 2025-03-14T05:03:57.3411123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3412867Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3412958Z 2025-03-14T05:03:57.3413203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3413692Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.3413766Z 2025-03-14T05:03:57.3414023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3415814Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3415907Z 2025-03-14T05:03:57.3416180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3416337Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:03:57.3416404Z 2025-03-14T05:03:57.3416698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3416852Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:03:57.3416925Z 2025-03-14T05:03:57.3417174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3417667Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3417732Z 2025-03-14T05:03:57.3418021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3419806Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3419895Z 2025-03-14T05:03:57.3420188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3420332Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:03:57.3420404Z 2025-03-14T05:03:57.3420652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3421151Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3421218Z 2025-03-14T05:03:57.3421489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3423253Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3423339Z 2025-03-14T05:03:57.3423630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3423773Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:03:57.3423849Z 2025-03-14T05:03:57.3424098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3424701Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3424773Z 2025-03-14T05:03:57.3425063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3426868Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3426965Z 2025-03-14T05:03:57.3427257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3427416Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:03:57.3427492Z 2025-03-14T05:03:57.3427774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3427932Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:03:57.3428011Z 2025-03-14T05:03:57.3428265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3428755Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3428839Z 2025-03-14T05:03:57.3429112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3430887Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3430968Z 2025-03-14T05:03:57.3431257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3431416Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:03:57.3431489Z 2025-03-14T05:03:57.3431756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3432255Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3432336Z 2025-03-14T05:03:57.3432609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3434392Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3434459Z 2025-03-14T05:03:57.3434751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3434891Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:03:57.3434966Z 2025-03-14T05:03:57.3435210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3435706Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3435790Z 2025-03-14T05:03:57.3436059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3437848Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3437917Z 2025-03-14T05:03:57.3438219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3438388Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:03:57.3438476Z 2025-03-14T05:03:57.3438755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3438913Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:03:57.3438977Z 2025-03-14T05:03:57.3439233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3439719Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3439789Z 2025-03-14T05:03:57.3440051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3441773Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3441848Z 2025-03-14T05:03:57.3442123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3442285Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:03:57.3442356Z 2025-03-14T05:03:57.3442600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3443084Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3443148Z 2025-03-14T05:03:57.3443411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3445169Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3445260Z 2025-03-14T05:03:57.3445548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3445684Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:03:57.3445758Z 2025-03-14T05:03:57.3446004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3446486Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3446551Z 2025-03-14T05:03:57.3446817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3448543Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3448625Z 2025-03-14T05:03:57.3448908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3449058Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:03:57.3449128Z 2025-03-14T05:03:57.3449406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3449563Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:03:57.3449629Z 2025-03-14T05:03:57.3449878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3450344Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3450417Z 2025-03-14T05:03:57.3450674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3452446Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3452536Z 2025-03-14T05:03:57.3452814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3452954Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:03:57.3453020Z 2025-03-14T05:03:57.3453270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3453736Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3453810Z 2025-03-14T05:03:57.3454070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3455802Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3455901Z 2025-03-14T05:03:57.3456184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3456329Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:03:57.3456402Z 2025-03-14T05:03:57.3456653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3457157Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3457238Z 2025-03-14T05:03:57.3457527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3459305Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3459397Z 2025-03-14T05:03:57.3459660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3460156Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.3460229Z 2025-03-14T05:03:57.3460498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3462343Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3462431Z 2025-03-14T05:03:57.3462708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3462856Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:03:57.3462923Z 2025-03-14T05:03:57.3463210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3463355Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:03:57.3463431Z 2025-03-14T05:03:57.3463677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3464243Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3464317Z 2025-03-14T05:03:57.3464602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3466422Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3466488Z 2025-03-14T05:03:57.3466778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3466911Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:03:57.3466984Z 2025-03-14T05:03:57.3467229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3467710Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3467776Z 2025-03-14T05:03:57.3468039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3469779Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3469848Z 2025-03-14T05:03:57.3470133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3470262Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:03:57.3470332Z 2025-03-14T05:03:57.3470592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3471087Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3471173Z 2025-03-14T05:03:57.3471436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3473179Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3473255Z 2025-03-14T05:03:57.3473538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3473689Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:03:57.3473753Z 2025-03-14T05:03:57.3474042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3474186Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:03:57.3474260Z 2025-03-14T05:03:57.3474510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3474998Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3475062Z 2025-03-14T05:03:57.3475328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3477074Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3477173Z 2025-03-14T05:03:57.3477481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3477615Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:03:57.3477702Z 2025-03-14T05:03:57.3477950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3478423Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3478486Z 2025-03-14T05:03:57.3478756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3480460Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3480527Z 2025-03-14T05:03:57.3480818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3480947Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:03:57.3481020Z 2025-03-14T05:03:57.3481277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3481867Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3481936Z 2025-03-14T05:03:57.3482206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3483986Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3484056Z 2025-03-14T05:03:57.3484334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3484508Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:03:57.3484580Z 2025-03-14T05:03:57.3484854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3485000Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:03:57.3485074Z 2025-03-14T05:03:57.3485318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3485790Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3485855Z 2025-03-14T05:03:57.3486120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3487833Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3487930Z 2025-03-14T05:03:57.3488216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3488347Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:03:57.3488419Z 2025-03-14T05:03:57.3488664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3489141Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3489206Z 2025-03-14T05:03:57.3489469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3491207Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3491297Z 2025-03-14T05:03:57.3491590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3491721Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:03:57.3491790Z 2025-03-14T05:03:57.3492039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3492518Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3492585Z 2025-03-14T05:03:57.3492854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3494575Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3494656Z 2025-03-14T05:03:57.3494935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3495076Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:03:57.3495149Z 2025-03-14T05:03:57.3495421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3495567Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:03:57.3495631Z 2025-03-14T05:03:57.3495880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3496355Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3496429Z 2025-03-14T05:03:57.3496697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3498417Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3498506Z 2025-03-14T05:03:57.3498787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3498925Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:03:57.3498988Z 2025-03-14T05:03:57.3499234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3499711Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3499778Z 2025-03-14T05:03:57.3500041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3501778Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3501880Z 2025-03-14T05:03:57.3502204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3502338Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:03:57.3502411Z 2025-03-14T05:03:57.3502660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3503183Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3503250Z 2025-03-14T05:03:57.3503517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3505341Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3505421Z 2025-03-14T05:03:57.3505712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3505855Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:03:57.3505930Z 2025-03-14T05:03:57.3506212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3506361Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:03:57.3506428Z 2025-03-14T05:03:57.3506688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3507196Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3507295Z 2025-03-14T05:03:57.3507579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3509375Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3509455Z 2025-03-14T05:03:57.3509760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3509918Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:03:57.3509984Z 2025-03-14T05:03:57.3510239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3510744Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3510816Z 2025-03-14T05:03:57.3511086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3512867Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3512943Z 2025-03-14T05:03:57.3513227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3513366Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:03:57.3513432Z 2025-03-14T05:03:57.3513686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3514210Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3514276Z 2025-03-14T05:03:57.3514545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3516357Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3516438Z 2025-03-14T05:03:57.3516745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3516892Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:03:57.3516980Z 2025-03-14T05:03:57.3517269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3517417Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:03:57.3517482Z 2025-03-14T05:03:57.3517735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3518217Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3518294Z 2025-03-14T05:03:57.3518555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3520277Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3520365Z 2025-03-14T05:03:57.3520645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3520784Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:03:57.3520847Z 2025-03-14T05:03:57.3521098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3521568Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3521640Z 2025-03-14T05:03:57.3521898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3523700Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3523799Z 2025-03-14T05:03:57.3524074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3524207Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:03:57.3524271Z 2025-03-14T05:03:57.3524524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3524991Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3525063Z 2025-03-14T05:03:57.3525317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3527038Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3527165Z 2025-03-14T05:03:57.3527417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3527910Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.3527984Z 2025-03-14T05:03:57.3528247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3530114Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3530207Z 2025-03-14T05:03:57.3530495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3530644Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:03:57.3530709Z 2025-03-14T05:03:57.3531003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3531149Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:03:57.3531228Z 2025-03-14T05:03:57.3531481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3531969Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3532039Z 2025-03-14T05:03:57.3532312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3534071Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3534162Z 2025-03-14T05:03:57.3534449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3534578Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:03:57.3534654Z 2025-03-14T05:03:57.3534894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3535371Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3535436Z 2025-03-14T05:03:57.3535703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3537457Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3537540Z 2025-03-14T05:03:57.3537825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3537954Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:03:57.3538027Z 2025-03-14T05:03:57.3538268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3538755Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3538819Z 2025-03-14T05:03:57.3539079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3540832Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3540915Z 2025-03-14T05:03:57.3541203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3541356Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:03:57.3541431Z 2025-03-14T05:03:57.3541710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3541858Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:03:57.3541924Z 2025-03-14T05:03:57.3542180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3542698Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3542764Z 2025-03-14T05:03:57.3543041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3544843Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3544932Z 2025-03-14T05:03:57.3545236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3545379Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:03:57.3545457Z 2025-03-14T05:03:57.3545720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3546224Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3546292Z 2025-03-14T05:03:57.3546569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3548334Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3548411Z 2025-03-14T05:03:57.3548712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3548845Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:03:57.3548918Z 2025-03-14T05:03:57.3549175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3549675Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3549765Z 2025-03-14T05:03:57.3550035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3551844Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3551913Z 2025-03-14T05:03:57.3552202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3552364Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:03:57.3552437Z 2025-03-14T05:03:57.3552716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3552861Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:03:57.3552926Z 2025-03-14T05:03:57.3553184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3553767Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:03:57.3553840Z 2025-03-14T05:03:57.3554088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3554638Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:03:57.3554715Z 2025-03-14T05:03:57.3555123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.3555404Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:03:57.3555469Z 2025-03-14T05:03:57.3555745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3556312Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:03:57.3556404Z 2025-03-14T05:03:57.3556739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.3556937Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:03:57.3557001Z 2025-03-14T05:03:57.3557253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3557811Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:03:57.3557879Z 2025-03-14T05:03:57.3558275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.3558588Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:03:57.3558660Z 2025-03-14T05:03:57.3558905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3559468Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:03:57.3559552Z 2025-03-14T05:03:57.3559893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.3560095Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:03:57.3560168Z 2025-03-14T05:03:57.3560411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3560979Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:03:57.3561053Z 2025-03-14T05:03:57.3561438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.3561774Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:03:57.3561841Z 2025-03-14T05:03:57.3562109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3562661Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:03:57.3562749Z 2025-03-14T05:03:57.3563083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.3563299Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:03:57.3563365Z 2025-03-14T05:03:57.3563620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3564214Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:03:57.3564287Z 2025-03-14T05:03:57.3564645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:03:57.3564856Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:03:57.3564926Z 2025-03-14T05:03:57.3565349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3565510Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:03:57.3565590Z 2025-03-14T05:03:57.3565903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3566043Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:03:57.3566114Z 2025-03-14T05:03:57.3566537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3566695Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:03:57.3566759Z 2025-03-14T05:03:57.3567056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3567196Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:03:57.3567269Z 2025-03-14T05:03:57.3567632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.3567824Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:03:57.3567924Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:03:57.3568071Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:03:57.3568136Z 2025-03-14T05:03:57.3568482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3568629Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:03:57.3568704Z 2025-03-14T05:03:57.3569022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3569154Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:03:57.3569218Z 2025-03-14T05:03:57.3569595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3569805Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:03:57.3569878Z 2025-03-14T05:03:57.3570280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3570416Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:03:57.3570830Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:03:57.3570960Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:03:57.3571088Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:03:57.3571152Z 2025-03-14T05:03:57.3571576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3571725Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:03:57.3571819Z 2025-03-14T05:03:57.3572103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3572247Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:03:57.3572311Z 2025-03-14T05:03:57.3572728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3572870Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:03:57.3572940Z 2025-03-14T05:03:57.3573219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3573360Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:03:57.3573424Z 2025-03-14T05:03:57.3573785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.3573976Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:03:57.3574108Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:03:57.3574236Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:03:57.3574322Z 2025-03-14T05:03:57.3574636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3574787Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:03:57.3574854Z 2025-03-14T05:03:57.3575173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3575297Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:03:57.3575370Z 2025-03-14T05:03:57.3575734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3575949Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:03:57.3576013Z 2025-03-14T05:03:57.3576417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3576545Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:03:57.3576954Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:03:57.3577085Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:03:57.3577202Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:03:57.3577275Z 2025-03-14T05:03:57.3577687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3577843Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:03:57.3577924Z 2025-03-14T05:03:57.3578217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3578353Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:03:57.3578426Z 2025-03-14T05:03:57.3578843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3578993Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:03:57.3579057Z 2025-03-14T05:03:57.3579347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3579481Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:03:57.3579553Z 2025-03-14T05:03:57.3579912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.3580106Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:03:57.3580221Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:03:57.3580368Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:03:57.3580432Z 2025-03-14T05:03:57.3580753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3580891Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:03:57.3580964Z 2025-03-14T05:03:57.3581276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3581405Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:03:57.3581631Z 2025-03-14T05:03:57.3582015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3582224Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:03:57.3582302Z 2025-03-14T05:03:57.3582711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3582848Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:03:57.3583268Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:03:57.3583402Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:03:57.3583526Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:03:57.3583592Z 2025-03-14T05:03:57.3584024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3584276Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:03:57.3584355Z 2025-03-14T05:03:57.3584649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3584795Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:03:57.3584863Z 2025-03-14T05:03:57.3585317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3585464Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:03:57.3585544Z 2025-03-14T05:03:57.3585839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3585995Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:03:57.3586061Z 2025-03-14T05:03:57.3586439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.3586659Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:03:57.3586790Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:03:57.3586913Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:03:57.3586986Z 2025-03-14T05:03:57.3587344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3587478Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:03:57.3587543Z 2025-03-14T05:03:57.3587879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3588000Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:03:57.3588071Z 2025-03-14T05:03:57.3588449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3588672Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:03:57.3588738Z 2025-03-14T05:03:57.3589154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3589282Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:03:57.3589706Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:03:57.3589836Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:03:57.3589951Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:03:57.3590022Z 2025-03-14T05:03:57.3590451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3590619Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:03:57.3590684Z 2025-03-14T05:03:57.3590980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3591117Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:03:57.3591192Z 2025-03-14T05:03:57.3591625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.3591777Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:03:57.3591841Z 2025-03-14T05:03:57.3592135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3592271Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:03:57.3592342Z 2025-03-14T05:03:57.3592710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.3592924Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:03:57.3593043Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:03:57.3593169Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:03:57.3593251Z 2025-03-14T05:03:57.3593581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.3593707Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:03:57.3593782Z 2025-03-14T05:03:57.3594099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.3594228Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:03:57.3594295Z 2025-03-14T05:03:57.3594681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.3594888Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:03:57.3594966Z 2025-03-14T05:03:57.3595371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.3595506Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:03:57.3595917Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:03:57.3596049Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:03:57.3596171Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:03:57.3596237Z 2025-03-14T05:03:57.3596541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:03:57.3596696Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:03:57.3596834Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:03:57.3596961Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:03:57.3597088Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:03:57.3597208Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:03:57.3597283Z 2025-03-14T05:03:57.3597541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3598050Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:03:57.3598116Z 2025-03-14T05:03:57.3598396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3598594Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:03:57.3598664Z 2025-03-14T05:03:57.3599071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3599590Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3599672Z 2025-03-14T05:03:57.3600042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3600564Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:03:57.3600640Z 2025-03-14T05:03:57.3600912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3601381Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:03:57.3601454Z 2025-03-14T05:03:57.3601721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3601918Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:03:57.3601982Z 2025-03-14T05:03:57.3602354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3602857Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3602946Z 2025-03-14T05:03:57.3603289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3603796Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:03:57.3603864Z 2025-03-14T05:03:57.3604124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3604600Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:03:57.3604667Z 2025-03-14T05:03:57.3604946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3605130Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:03:57.3605219Z 2025-03-14T05:03:57.3605606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3606114Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3606195Z 2025-03-14T05:03:57.3606555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3607059Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:03:57.3607132Z 2025-03-14T05:03:57.3607385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3607865Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:03:57.3607937Z 2025-03-14T05:03:57.3608208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3608400Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:03:57.3608465Z 2025-03-14T05:03:57.3608842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3609344Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.3609434Z 2025-03-14T05:03:57.3609785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3610292Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:03:57.3610365Z 2025-03-14T05:03:57.3610616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3611348Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:03:57.3611420Z 2025-03-14T05:03:57.3611709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.3611894Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:03:57.3611964Z 2025-03-14T05:03:57.3612318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.3613165Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:03:57.3613228Z 2025-03-14T05:03:57.3613580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.3614361Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:03:57.3614434Z 2025-03-14T05:03:57.3614770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:03:57.3614931Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:03:57.3615082Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:03:57.3615240Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:03:57.3615389Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:03:57.3615559Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:03:57.3615701Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:03:57.3615842Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:03:57.3615980Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:03:57.3616122Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:03:57.3616259Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:03:57.3616326Z 2025-03-14T05:03:57.3616742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:03:57.3616921Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:03:57.3617112Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:03:57.3617287Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:03:57.3617472Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:03:57.3617666Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:03:57.3617844Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:03:57.3618013Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:03:57.3618185Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:03:57.3618348Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:03:57.3618496Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:03:57.3618659Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:03:57.3618820Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:03:57.3618963Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:03:57.3619117Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:03:57.3619285Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:03:57.3619350Z 2025-03-14T05:03:57.3619762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3619968Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:03:57.3620041Z 2025-03-14T05:03:57.3620472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3620637Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:03:57.3620802Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:03:57.3620951Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:03:57.3621018Z 2025-03-14T05:03:57.3621396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3621566Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:03:57.3621642Z 2025-03-14T05:03:57.3621955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3622106Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:03:57.3622170Z 2025-03-14T05:03:57.3622489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3622621Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3622757Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3622909Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:03:57.3623000Z 2025-03-14T05:03:57.3623338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3623476Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3623646Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3623810Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:03:57.3623878Z 2025-03-14T05:03:57.3624272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3624406Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3624511Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:03:57.3624646Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:03:57.3624724Z 2025-03-14T05:03:57.3625040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3625213Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:03:57.3625306Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:03:57.3625447Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:03:57.3625512Z 2025-03-14T05:03:57.3625861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3626027Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3626147Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:03:57.3626219Z 2025-03-14T05:03:57.3626516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3626678Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3626790Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:03:57.3626886Z 2025-03-14T05:03:57.3627184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3627344Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3627457Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:03:57.3627528Z 2025-03-14T05:03:57.3627827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3628020Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:03:57.3628135Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:03:57.3628242Z 2025-03-14T05:03:57.3628575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3628728Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:03:57.3628793Z 2025-03-14T05:03:57.3629140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3629293Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:03:57.3629370Z 2025-03-14T05:03:57.3629712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3629875Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:03:57.3630001Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:03:57.3630164Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:03:57.3630304Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:03:57.3630378Z 2025-03-14T05:03:57.3630723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3630873Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:03:57.3630997Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:03:57.3631156Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:03:57.3631302Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:03:57.3631367Z 2025-03-14T05:03:57.3631706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3631828Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:03:57.3631997Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:03:57.3632134Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:03:57.3632207Z 2025-03-14T05:03:57.3632538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3632666Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:03:57.3632854Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:03:57.3632999Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:03:57.3633065Z 2025-03-14T05:03:57.3633378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3633479Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:03:57.3633609Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:03:57.3633675Z 2025-03-14T05:03:57.3633998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3634099Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:03:57.3634224Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:03:57.3634293Z 2025-03-14T05:03:57.3634602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3634722Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:03:57.3634877Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:03:57.3634944Z 2025-03-14T05:03:57.3635269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3635385Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:03:57.3635537Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:03:57.3635604Z 2025-03-14T05:03:57.3635959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3636139Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:03:57.3636211Z 2025-03-14T05:03:57.3636547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3636719Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:03:57.3636783Z 2025-03-14T05:03:57.3637182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3637357Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:03:57.3637430Z 2025-03-14T05:03:57.3637822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3638039Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:03:57.3638103Z 2025-03-14T05:03:57.3638531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3638688Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:03:57.3638861Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:03:57.3638999Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:03:57.3639072Z 2025-03-14T05:03:57.3639435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3639610Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:03:57.3639681Z 2025-03-14T05:03:57.3639983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3640137Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:03:57.3640201Z 2025-03-14T05:03:57.3640515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3640646Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3640780Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3640928Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:03:57.3641016Z 2025-03-14T05:03:57.3641347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3641479Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3641616Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3641769Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:03:57.3641833Z 2025-03-14T05:03:57.3642134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3642254Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3642353Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:03:57.3642485Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:03:57.3642557Z 2025-03-14T05:03:57.3642857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3643012Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:03:57.3643106Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:03:57.3643241Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:03:57.3643305Z 2025-03-14T05:03:57.3643602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3643753Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3643874Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:03:57.3643937Z 2025-03-14T05:03:57.3644236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3644386Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3644505Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:03:57.3644586Z 2025-03-14T05:03:57.3644889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3645040Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3645163Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:03:57.3645231Z 2025-03-14T05:03:57.3645536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3645725Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:03:57.3645841Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:03:57.3645919Z 2025-03-14T05:03:57.3646245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3646393Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:03:57.3646460Z 2025-03-14T05:03:57.3646804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3646955Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:03:57.3647028Z 2025-03-14T05:03:57.3647361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3647520Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:03:57.3647649Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:03:57.3647810Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:03:57.3647950Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:03:57.3648021Z 2025-03-14T05:03:57.3648358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3648501Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:03:57.3648626Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:03:57.3648784Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:03:57.3648922Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:03:57.3648992Z 2025-03-14T05:03:57.3649311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3649433Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:03:57.3649593Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:03:57.3649738Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:03:57.3649800Z 2025-03-14T05:03:57.3650129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3650260Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:03:57.3650434Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:03:57.3650565Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:03:57.3650637Z 2025-03-14T05:03:57.3650939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3651045Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:03:57.3651163Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:03:57.3651236Z 2025-03-14T05:03:57.3651530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3651633Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:03:57.3651747Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:03:57.3651820Z 2025-03-14T05:03:57.3652110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3652234Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:03:57.3652399Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:03:57.3652486Z 2025-03-14T05:03:57.3652781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3652918Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:03:57.3653050Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:03:57.3653122Z 2025-03-14T05:03:57.3653457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3653654Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:03:57.3653726Z 2025-03-14T05:03:57.3654047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3654214Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:03:57.3654278Z 2025-03-14T05:03:57.3654658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3654833Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:03:57.3654907Z 2025-03-14T05:03:57.3655296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3655509Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:03:57.3655572Z 2025-03-14T05:03:57.3655999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3656165Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:03:57.3656324Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:03:57.3656458Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:03:57.3656528Z 2025-03-14T05:03:57.3656890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3657066Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:03:57.3657131Z 2025-03-14T05:03:57.3657441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3657584Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:03:57.3657658Z 2025-03-14T05:03:57.3657962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3658095Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3658220Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3658390Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:03:57.3658474Z 2025-03-14T05:03:57.3658789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3658931Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3659061Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3659212Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:03:57.3659285Z 2025-03-14T05:03:57.3659585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3659713Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3659805Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:03:57.3659943Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:03:57.3660006Z 2025-03-14T05:03:57.3660313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3660469Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:03:57.3660565Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:03:57.3660699Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:03:57.3660763Z 2025-03-14T05:03:57.3661066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3661216Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3661338Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:03:57.3661401Z 2025-03-14T05:03:57.3661695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3661844Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3661978Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:03:57.3662042Z 2025-03-14T05:03:57.3662335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3662478Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3662595Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:03:57.3662660Z 2025-03-14T05:03:57.3662960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3663138Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:03:57.3663255Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:03:57.3663319Z 2025-03-14T05:03:57.3663651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3663787Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:03:57.3663859Z 2025-03-14T05:03:57.3664303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3664458Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:03:57.3664543Z 2025-03-14T05:03:57.3664896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3665032Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:03:57.3665168Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:03:57.3665323Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:03:57.3665478Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:03:57.3665543Z 2025-03-14T05:03:57.3665898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3666044Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:03:57.3666167Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:03:57.3666329Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:03:57.3666466Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:03:57.3666540Z 2025-03-14T05:03:57.3666873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3666998Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:03:57.3667161Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:03:57.3667305Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:03:57.3667372Z 2025-03-14T05:03:57.3667712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3667844Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:03:57.3668014Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:03:57.3668163Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:03:57.3668235Z 2025-03-14T05:03:57.3668547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3668654Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:03:57.3668771Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:03:57.3668845Z 2025-03-14T05:03:57.3669179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3669287Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:03:57.3669400Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:03:57.3669470Z 2025-03-14T05:03:57.3669772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3669914Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:03:57.3670065Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:03:57.3670140Z 2025-03-14T05:03:57.3670441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3670581Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:03:57.3670715Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:03:57.3670788Z 2025-03-14T05:03:57.3671127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3671323Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:03:57.3671389Z 2025-03-14T05:03:57.3671723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3671886Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:03:57.3671960Z 2025-03-14T05:03:57.3672338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3672520Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:03:57.3672585Z 2025-03-14T05:03:57.3672987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3673193Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:03:57.3673268Z 2025-03-14T05:03:57.3673698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3673872Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:03:57.3674032Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:03:57.3674169Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:03:57.3674243Z 2025-03-14T05:03:57.3674620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3674804Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:03:57.3674872Z 2025-03-14T05:03:57.3675196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3675344Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:03:57.3675416Z 2025-03-14T05:03:57.3675730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3675867Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3676011Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3676187Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:03:57.3676254Z 2025-03-14T05:03:57.3676579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3676721Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3676850Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3676998Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:03:57.3677071Z 2025-03-14T05:03:57.3677377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3677505Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3677598Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:03:57.3677737Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:03:57.3677803Z 2025-03-14T05:03:57.3678120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3678267Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:03:57.3678369Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:03:57.3678497Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:03:57.3678569Z 2025-03-14T05:03:57.3678875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3679037Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3679150Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:03:57.3679226Z 2025-03-14T05:03:57.3679527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3679701Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3679814Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:03:57.3679887Z 2025-03-14T05:03:57.3680185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3680344Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3680466Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:03:57.3680531Z 2025-03-14T05:03:57.3680841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3681024Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:03:57.3681146Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:03:57.3681213Z 2025-03-14T05:03:57.3681700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3681841Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:03:57.3681963Z 2025-03-14T05:03:57.3682306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3682449Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:03:57.3682539Z 2025-03-14T05:03:57.3682892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3683032Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:03:57.3683168Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:03:57.3683326Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:03:57.3683480Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:03:57.3683547Z 2025-03-14T05:03:57.3683908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3684044Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:03:57.3684174Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:03:57.3684325Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:03:57.3684472Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:03:57.3684540Z 2025-03-14T05:03:57.3684924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3685039Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:03:57.3685207Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:03:57.3685341Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:03:57.3685416Z 2025-03-14T05:03:57.3685767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3685884Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:03:57.3686044Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:03:57.3686180Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:03:57.3686244Z 2025-03-14T05:03:57.3686552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3686650Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:03:57.3686774Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:03:57.3686838Z 2025-03-14T05:03:57.3687145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3687238Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:03:57.3687358Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:03:57.3687421Z 2025-03-14T05:03:57.3687742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3687875Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:03:57.3688014Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:03:57.3688093Z 2025-03-14T05:03:57.3688403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3688526Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:03:57.3688653Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:03:57.3688726Z 2025-03-14T05:03:57.3689069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3689263Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:03:57.3689328Z 2025-03-14T05:03:57.3689664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3689825Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:03:57.3689899Z 2025-03-14T05:03:57.3690274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3690450Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:03:57.3690512Z 2025-03-14T05:03:57.3690904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.3691104Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:03:57.3691176Z 2025-03-14T05:03:57.3691590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.3691761Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:03:57.3691907Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:03:57.3692048Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:03:57.3692112Z 2025-03-14T05:03:57.3692499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.3692661Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:03:57.3692733Z 2025-03-14T05:03:57.3693037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.3693186Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:03:57.3693250Z 2025-03-14T05:03:57.3693563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.3693703Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:03:57.3693834Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3693996Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:03:57.3694071Z 2025-03-14T05:03:57.3694403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.3694531Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:03:57.3694649Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:03:57.3694803Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:03:57.3694866Z 2025-03-14T05:03:57.3695176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.3695302Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:03:57.3695392Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:03:57.3695527Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:03:57.3695592Z 2025-03-14T05:03:57.3695900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.3696044Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:03:57.3696143Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:03:57.3696268Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:03:57.3696339Z 2025-03-14T05:03:57.3696632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.3696788Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.3696898Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:03:57.3696970Z 2025-03-14T05:03:57.3697257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.3697425Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.3697534Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:03:57.3697604Z 2025-03-14T05:03:57.3697893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.3698045Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.3698152Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:03:57.3698225Z 2025-03-14T05:03:57.3698519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.3698704Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:03:57.3698811Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:03:57.3698880Z 2025-03-14T05:03:57.3699206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.3699361Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:03:57.3699426Z 2025-03-14T05:03:57.3699805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.3699954Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:03:57.3700029Z 2025-03-14T05:03:57.3700365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.3700506Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:03:57.3700625Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:03:57.3700784Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:03:57.3700920Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:03:57.3700992Z 2025-03-14T05:03:57.3701334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.3701468Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:03:57.3701593Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:03:57.3701739Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:03:57.3701878Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:03:57.3701940Z 2025-03-14T05:03:57.3702272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.3702386Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:03:57.3702548Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:03:57.3702681Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:03:57.3702772Z 2025-03-14T05:03:57.3703104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.3703225Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:03:57.3703391Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:03:57.3703529Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:03:57.3703594Z 2025-03-14T05:03:57.3703910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.3704010Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:03:57.3704184Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:03:57.3704260Z 2025-03-14T05:03:57.3704578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.3704678Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:03:57.3704801Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:03:57.3704867Z 2025-03-14T05:03:57.3705204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.3705341Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:03:57.3705483Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:03:57.3705578Z 2025-03-14T05:03:57.3705900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.3706017Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:03:57.3706153Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:03:57.3706217Z 2025-03-14T05:03:57.3706560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.3706748Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:03:57.3706821Z 2025-03-14T05:03:57.3707152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.3707318Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:03:57.3707385Z 2025-03-14T05:03:57.3707767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.3707939Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:03:57.3708014Z 2025-03-14T05:03:57.3708489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:03:57.3708633Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:03:57.3708699Z 2025-03-14T05:03:57.3709002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3709172Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:03:57.3709239Z 2025-03-14T05:03:57.3709677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3709796Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:03:57.3709906Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:03:57.3710021Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:03:57.3710095Z 2025-03-14T05:03:57.3710550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3710696Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3710925Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:03:57.3710998Z 2025-03-14T05:03:57.3711464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3711655Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3711722Z 2025-03-14T05:03:57.3712023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3712160Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:03:57.3712235Z 2025-03-14T05:03:57.3712666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3712794Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:03:57.3712905Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:03:57.3713037Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:03:57.3713106Z 2025-03-14T05:03:57.3713571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3713707Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3713949Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:03:57.3714016Z 2025-03-14T05:03:57.3714478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3714648Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3714726Z 2025-03-14T05:03:57.3715023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3715160Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:03:57.3715244Z 2025-03-14T05:03:57.3715682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3715803Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:03:57.3715909Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:03:57.3716034Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:03:57.3716099Z 2025-03-14T05:03:57.3716562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3716699Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3716948Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:03:57.3717014Z 2025-03-14T05:03:57.3717475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3717655Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3717731Z 2025-03-14T05:03:57.3718073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3718221Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:03:57.3718288Z 2025-03-14T05:03:57.3718718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3718836Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:03:57.3718952Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:03:57.3719072Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:03:57.3719150Z 2025-03-14T05:03:57.3719599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3719742Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.3719991Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:03:57.3720066Z 2025-03-14T05:03:57.3720499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3720668Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3720734Z 2025-03-14T05:03:57.3721029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3721150Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:03:57.3721227Z 2025-03-14T05:03:57.3721638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.3721771Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:03:57.3721881Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:03:57.3721992Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:03:57.3722055Z 2025-03-14T05:03:57.3722507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.3722672Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:03:57.3722903Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:03:57.3722975Z 2025-03-14T05:03:57.3723414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.3723577Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.3723643Z 2025-03-14T05:03:57.3723950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.3724086Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:03:57.3724159Z 2025-03-14T05:03:57.3724440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.3724805Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:03:57.3724870Z 2025-03-14T05:03:57.3725143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.3725582Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:03:57.3725655Z 2025-03-14T05:03:57.3725917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.3726117Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:03:57.3726181Z 2025-03-14T05:03:57.3726561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:03:57.3726705Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:03:57.3726770Z 2025-03-14T05:03:57.3727061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:03:57.3727215Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:03:57.3727287Z 2025-03-14T05:03:57.3727648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:03:57.3727807Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:03:57.3727870Z 2025-03-14T05:03:57.3728352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:03:57.3728491Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:03:57.3728618Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:03:57.3728770Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:03:57.3728910Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:03:57.3728974Z 2025-03-14T05:03:57.3729345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:03:57.3729459Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:03:57.3729532Z 2025-03-14T05:03:57.3729538Z 2025-03-14T05:03:57.3729630Z class GraphModule(torch.nn.Module): 2025-03-14T05:03:57.3792160Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:03:57.3792743Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:03:57.3793168Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3793662Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3794126Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3794581Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3795021Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3795422Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3795900Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3796373Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3797451Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3797935Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3798371Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3798888Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3799403Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3799855Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3800302Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3800674Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3801087Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3801481Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3801894Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3802272Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3802641Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3803057Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3803463Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3803861Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3804241Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3804587Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3804999Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3805390Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3805769Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3806149Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3806501Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3806900Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3807307Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3808091Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3808493Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3808868Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3809296Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3809701Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3810078Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3810452Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3810803Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3811201Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3811604Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3811980Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3812357Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3812714Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3813118Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3813513Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3813882Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3814253Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3814591Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3815026Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3815419Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3815826Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3816248Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3816632Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3817074Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3817459Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3817843Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3818207Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3818555Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3818956Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3819358Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3819738Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3820101Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3820447Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3820840Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3821253Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3821649Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3822028Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3822392Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3822804Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3823218Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3823617Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3824024Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3824472Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3824937Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3825390Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3825779Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3826154Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3826506Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3826902Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3827303Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3827675Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3828112Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3828455Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3828876Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3829278Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3829649Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3830019Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3830356Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3830757Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3831144Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3831522Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3831891Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3832245Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3832646Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3833038Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3833414Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3833775Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3834119Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3834557Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3834946Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3835340Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3835704Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3836054Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3836446Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3836853Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3837230Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3837595Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3837941Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3838336Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3838750Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3839124Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3839506Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3839849Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3840250Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3840664Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3841051Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3841441Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3841781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3842182Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3842575Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3842958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3843331Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3843671Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3844077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3844470Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3844864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3845228Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3845579Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3845980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3846373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3846755Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3847153Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3847517Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3847941Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3848424Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3848899Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3849351Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3849776Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3850198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3850615Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3851025Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3851437Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3851840Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3852276Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3852718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3853143Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3853556Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3853960Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3854419Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3854879Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3855297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3855717Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3856101Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3856558Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3856967Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3857348Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3857724Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3858063Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3858483Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3858870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3859250Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3859614Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3859960Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3860357Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3860778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3861159Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3861544Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3861893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3862298Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3862683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3863062Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3863426Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3863772Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3864271Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3864739Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3865198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3865619Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3865986Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3866383Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3866782Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3867174Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3867562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3867929Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3868325Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3868720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3869093Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3869465Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3869806Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3870209Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3870608Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3870974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3871366Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3871702Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3872106Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3872493Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3872873Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3873240Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3873593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3874015Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3874415Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3874800Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3875163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3875507Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3875906Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3876296Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3876688Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3877095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3877461Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3877870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3878272Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3878652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3879017Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3879363Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3879752Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3880175Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3880547Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3880940Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3881287Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3881808Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3882210Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3882582Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3882956Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3883293Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3883697Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3884090Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3884503Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3884871Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3885224Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:03:57.3885637Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3886034Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3886454Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3886870Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3887238Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3887640Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3888028Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3888409Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3888782Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3889121Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3889523Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3889912Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3890293Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3890671Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3891016Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3891416Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3891808Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3892193Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3892552Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3892927Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:03:57.3893332Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3893742Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3894123Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3894487Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3894835Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:03:57.3895229Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3895630Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3896001Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3896378Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3896722Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:03:57.3897131Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:03:57.3897531Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:03:57.3897904Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:03:57.3898276Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:03:57.3898500Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:03:57.3898723Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:03:57.3898970Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:03:57.3899228Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:03:57.3899479Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:03:57.3899708Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:03:57.3899929Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:03:57.3900135Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:03:57.3900358Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:03:57.3900568Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:03:57.3900788Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:03:57.3900990Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:03:57.3901215Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:03:57.3901427Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:03:57.3901650Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:03:57.3901863Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:03:57.3902218Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:03:57.3902562Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:03:57.3903358Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:03:57.3904181Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:03:57.3904969Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:03:57.3905734Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:03:57.3906442Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:03:57.3907166Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:03:57.3907933Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:03:57.3908709Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:03:57.3909464Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:03:57.3909946Z 2025-03-14T05:03:57.3910324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3911172Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3911911Z 2025-03-14T05:03:57.3912270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3914267Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3916040Z 2025-03-14T05:03:57.3916417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:03:57.3916883Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:03:57.3917139Z 2025-03-14T05:03:57.3917573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:03:57.3918221Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:03:57.3918566Z 2025-03-14T05:03:57.3918902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3919682Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3920264Z 2025-03-14T05:03:57.3920614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3922682Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3924527Z 2025-03-14T05:03:57.3924900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3925378Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:03:57.3925634Z 2025-03-14T05:03:57.3925972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3926765Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3927363Z 2025-03-14T05:03:57.3927712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3929787Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3931638Z 2025-03-14T05:03:57.3932003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3932477Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:03:57.3932735Z 2025-03-14T05:03:57.3933071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3933869Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3934475Z 2025-03-14T05:03:57.3934828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3936930Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3938817Z 2025-03-14T05:03:57.3939166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3940095Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.3940793Z 2025-03-14T05:03:57.3941204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3943461Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3945658Z 2025-03-14T05:03:57.3946045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3946533Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:03:57.3946803Z 2025-03-14T05:03:57.3947181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3947681Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:03:57.3947956Z 2025-03-14T05:03:57.3948300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3949163Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3949804Z 2025-03-14T05:03:57.3950157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3952325Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3954222Z 2025-03-14T05:03:57.3954602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3955108Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:03:57.3955369Z 2025-03-14T05:03:57.3955694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3956474Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3957068Z 2025-03-14T05:03:57.3957414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3959463Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3961354Z 2025-03-14T05:03:57.3961723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3962198Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:03:57.3962456Z 2025-03-14T05:03:57.3962789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3963579Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3964173Z 2025-03-14T05:03:57.3964546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3966630Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3968487Z 2025-03-14T05:03:57.3968856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3969346Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:03:57.3969620Z 2025-03-14T05:03:57.3969984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3970467Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:03:57.3970737Z 2025-03-14T05:03:57.3971074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3971851Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3972438Z 2025-03-14T05:03:57.3972782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3974857Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3976689Z 2025-03-14T05:03:57.3977056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3977535Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:03:57.3977802Z 2025-03-14T05:03:57.3978162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3978955Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.3979567Z 2025-03-14T05:03:57.3979913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3982075Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3984004Z 2025-03-14T05:03:57.3984438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3984939Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:03:57.3985209Z 2025-03-14T05:03:57.3985551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3986361Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.3987023Z 2025-03-14T05:03:57.3987369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3989461Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3991317Z 2025-03-14T05:03:57.3991672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.3992191Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:03:57.3992482Z 2025-03-14T05:03:57.3992856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.3993364Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:03:57.3993636Z 2025-03-14T05:03:57.3993970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.3994752Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.3995349Z 2025-03-14T05:03:57.3995698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.3997770Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.3999617Z 2025-03-14T05:03:57.3999987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4000471Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:03:57.4000763Z 2025-03-14T05:03:57.4001099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4001910Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4002515Z 2025-03-14T05:03:57.4002867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4004978Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4006840Z 2025-03-14T05:03:57.4007204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4007679Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:03:57.4007936Z 2025-03-14T05:03:57.4008258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4009064Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4009670Z 2025-03-14T05:03:57.4010016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4012077Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4013922Z 2025-03-14T05:03:57.4014280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4015070Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.4015681Z 2025-03-14T05:03:57.4016028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4018167Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4020225Z 2025-03-14T05:03:57.4020589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4021085Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:03:57.4021348Z 2025-03-14T05:03:57.4021716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4022204Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:03:57.4022472Z 2025-03-14T05:03:57.4022807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4023591Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4024285Z 2025-03-14T05:03:57.4024696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4026778Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4028631Z 2025-03-14T05:03:57.4028997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4029472Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:03:57.4029734Z 2025-03-14T05:03:57.4030065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4030851Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4031451Z 2025-03-14T05:03:57.4031797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4033884Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4035734Z 2025-03-14T05:03:57.4036101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4036587Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:03:57.4036856Z 2025-03-14T05:03:57.4037193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4037985Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4038589Z 2025-03-14T05:03:57.4038936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4040986Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4042849Z 2025-03-14T05:03:57.4043201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4043693Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:03:57.4043962Z 2025-03-14T05:03:57.4044335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4044816Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:03:57.4045085Z 2025-03-14T05:03:57.4045418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4046213Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4046804Z 2025-03-14T05:03:57.4047161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4049223Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4051047Z 2025-03-14T05:03:57.4051412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4051888Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:03:57.4052144Z 2025-03-14T05:03:57.4052468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4053246Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4053836Z 2025-03-14T05:03:57.4054177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4056228Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4058083Z 2025-03-14T05:03:57.4058447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4058923Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:03:57.4059180Z 2025-03-14T05:03:57.4059506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4060322Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4060935Z 2025-03-14T05:03:57.4061278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4063332Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4065259Z 2025-03-14T05:03:57.4065642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4066155Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:03:57.4066429Z 2025-03-14T05:03:57.4066837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4067371Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:03:57.4067660Z 2025-03-14T05:03:57.4068011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4068882Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4069568Z 2025-03-14T05:03:57.4069945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4072086Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4073969Z 2025-03-14T05:03:57.4074388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4074879Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:03:57.4075173Z 2025-03-14T05:03:57.4075519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4076389Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4077024Z 2025-03-14T05:03:57.4077398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4079544Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4081409Z 2025-03-14T05:03:57.4081892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4082377Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:03:57.4082640Z 2025-03-14T05:03:57.4082976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4083799Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4084393Z 2025-03-14T05:03:57.4084734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4086831Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4088658Z 2025-03-14T05:03:57.4089021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4089526Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:03:57.4089797Z 2025-03-14T05:03:57.4090158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4090637Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:03:57.4090903Z 2025-03-14T05:03:57.4091232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4092003Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4092575Z 2025-03-14T05:03:57.4092917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4094967Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4096805Z 2025-03-14T05:03:57.4097175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4097642Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:03:57.4097898Z 2025-03-14T05:03:57.4098232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4099016Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4099609Z 2025-03-14T05:03:57.4099952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4102042Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4103881Z 2025-03-14T05:03:57.4104304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4104798Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:03:57.4105058Z 2025-03-14T05:03:57.4105403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4106194Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4106807Z 2025-03-14T05:03:57.4107155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4109251Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4111161Z 2025-03-14T05:03:57.4111507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4112354Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.4113013Z 2025-03-14T05:03:57.4113387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4115592Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4117681Z 2025-03-14T05:03:57.4118065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4118562Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:03:57.4118820Z 2025-03-14T05:03:57.4119202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4119704Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:03:57.4119956Z 2025-03-14T05:03:57.4120287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4121053Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4121630Z 2025-03-14T05:03:57.4121969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4123988Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4125828Z 2025-03-14T05:03:57.4126194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4126662Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:03:57.4126915Z 2025-03-14T05:03:57.4127244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4128023Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4128609Z 2025-03-14T05:03:57.4128976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4131032Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4132845Z 2025-03-14T05:03:57.4133208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4133675Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:03:57.4133926Z 2025-03-14T05:03:57.4134254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4135019Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4135600Z 2025-03-14T05:03:57.4135942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4137973Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4139810Z 2025-03-14T05:03:57.4140175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4140648Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:03:57.4140911Z 2025-03-14T05:03:57.4141274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4141743Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:03:57.4141998Z 2025-03-14T05:03:57.4142344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4143119Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4143724Z 2025-03-14T05:03:57.4144072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4146279Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4148152Z 2025-03-14T05:03:57.4148524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4149013Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:03:57.4149271Z 2025-03-14T05:03:57.4149612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4150430Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4151061Z 2025-03-14T05:03:57.4151416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4153534Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4155396Z 2025-03-14T05:03:57.4155768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4156276Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:03:57.4156533Z 2025-03-14T05:03:57.4156887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4157680Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4158306Z 2025-03-14T05:03:57.4158662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4160748Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4162621Z 2025-03-14T05:03:57.4162986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4163471Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:03:57.4163738Z 2025-03-14T05:03:57.4164102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4164581Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:03:57.4164867Z 2025-03-14T05:03:57.4165208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4166002Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4166601Z 2025-03-14T05:03:57.4166949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4169097Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4170979Z 2025-03-14T05:03:57.4171352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4171901Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:03:57.4172157Z 2025-03-14T05:03:57.4172486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4173262Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4173847Z 2025-03-14T05:03:57.4174189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4176212Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4178018Z 2025-03-14T05:03:57.4178383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4178868Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:03:57.4179116Z 2025-03-14T05:03:57.4179445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4180222Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4180808Z 2025-03-14T05:03:57.4181148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4183319Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4185247Z 2025-03-14T05:03:57.4185611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4186088Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:03:57.4186348Z 2025-03-14T05:03:57.4186709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4187178Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:03:57.4187433Z 2025-03-14T05:03:57.4187764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4188522Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4189102Z 2025-03-14T05:03:57.4189440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4191476Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4193339Z 2025-03-14T05:03:57.4193705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4194168Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:03:57.4194421Z 2025-03-14T05:03:57.4194753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4195540Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4196128Z 2025-03-14T05:03:57.4196485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4198560Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4200384Z 2025-03-14T05:03:57.4200749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4201210Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:03:57.4201462Z 2025-03-14T05:03:57.4201792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4202567Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4203153Z 2025-03-14T05:03:57.4203496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4205532Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4207378Z 2025-03-14T05:03:57.4207748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4208221Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:03:57.4208484Z 2025-03-14T05:03:57.4208848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4209319Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:03:57.4209575Z 2025-03-14T05:03:57.4209908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4210719Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4211298Z 2025-03-14T05:03:57.4211641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4213679Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4215485Z 2025-03-14T05:03:57.4215847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4216307Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:03:57.4216559Z 2025-03-14T05:03:57.4216888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4217661Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4218248Z 2025-03-14T05:03:57.4218591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4220648Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4222462Z 2025-03-14T05:03:57.4222827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4223291Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:03:57.4223548Z 2025-03-14T05:03:57.4223917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4224800Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4225454Z 2025-03-14T05:03:57.4225851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4228038Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4230578Z 2025-03-14T05:03:57.4231023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4231586Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:03:57.4231868Z 2025-03-14T05:03:57.4232249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4232745Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:03:57.4233012Z 2025-03-14T05:03:57.4233342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4234141Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4234722Z 2025-03-14T05:03:57.4235068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4237116Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4238978Z 2025-03-14T05:03:57.4239789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4240289Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:03:57.4240572Z 2025-03-14T05:03:57.4240916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4241717Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4242329Z 2025-03-14T05:03:57.4242677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4244699Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4246524Z 2025-03-14T05:03:57.4246888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4247351Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:03:57.4247621Z 2025-03-14T05:03:57.4247949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4248726Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4249315Z 2025-03-14T05:03:57.4249658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4251732Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4253558Z 2025-03-14T05:03:57.4253888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4254688Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:03:57.4255279Z 2025-03-14T05:03:57.4255620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4257706Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4259733Z 2025-03-14T05:03:57.4260098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4260564Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:03:57.4260821Z 2025-03-14T05:03:57.4261178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4261673Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:03:57.4261929Z 2025-03-14T05:03:57.4262257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4263029Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4263619Z 2025-03-14T05:03:57.4263966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4266136Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4268021Z 2025-03-14T05:03:57.4268396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4268872Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:03:57.4269127Z 2025-03-14T05:03:57.4269464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4270262Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4270860Z 2025-03-14T05:03:57.4271209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4273293Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4275184Z 2025-03-14T05:03:57.4275556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4276027Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:03:57.4276283Z 2025-03-14T05:03:57.4276620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4277421Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4278027Z 2025-03-14T05:03:57.4278381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4280467Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4282456Z 2025-03-14T05:03:57.4282825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4283304Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:03:57.4283572Z 2025-03-14T05:03:57.4283929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4284403Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:03:57.4284657Z 2025-03-14T05:03:57.4284988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4285753Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:03:57.4286331Z 2025-03-14T05:03:57.4286667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4288686Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4288795Z 2025-03-14T05:03:57.4289087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4289223Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:03:57.4289298Z 2025-03-14T05:03:57.4289544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4290347Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:03:57.4290431Z 2025-03-14T05:03:57.4290739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4292502Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4292608Z 2025-03-14T05:03:57.4292891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4293037Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:03:57.4293106Z 2025-03-14T05:03:57.4293357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4293834Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:03:57.4293909Z 2025-03-14T05:03:57.4294168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:03:57.4295916Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:03:57.4296004Z 2025-03-14T05:03:57.4296290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:03:57.4296453Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:03:57.4296519Z 2025-03-14T05:03:57.4296813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:03:57.4296955Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:03:57.4297026Z 2025-03-14T05:03:57.4297307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4297884Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:03:57.4297966Z 2025-03-14T05:03:57.4298215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4298752Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:03:57.4298824Z 2025-03-14T05:03:57.4299242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.4299504Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:03:57.4299578Z 2025-03-14T05:03:57.4299827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4300400Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:03:57.4300777Z 2025-03-14T05:03:57.4301189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.4301390Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:03:57.4301487Z 2025-03-14T05:03:57.4301737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4302308Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:03:57.4302374Z 2025-03-14T05:03:57.4302787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.4303112Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:03:57.4303179Z 2025-03-14T05:03:57.4303434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4304032Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:03:57.4304107Z 2025-03-14T05:03:57.4304512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.4304771Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:03:57.4304840Z 2025-03-14T05:03:57.4305110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4305712Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:03:57.4305784Z 2025-03-14T05:03:57.4306181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:03:57.4306508Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:03:57.4306579Z 2025-03-14T05:03:57.4306826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4307403Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:03:57.4307468Z 2025-03-14T05:03:57.4307812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:03:57.4308038Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:03:57.4308111Z 2025-03-14T05:03:57.4308360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4308988Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:03:57.4309054Z 2025-03-14T05:03:57.4309421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:03:57.4309637Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:03:57.4309713Z 2025-03-14T05:03:57.4310146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4310328Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:03:57.4310395Z 2025-03-14T05:03:57.4310709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4310874Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:03:57.4310940Z 2025-03-14T05:03:57.4311661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4311835Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:03:57.4311915Z 2025-03-14T05:03:57.4312211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4312363Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:03:57.4312430Z 2025-03-14T05:03:57.4312809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.4312992Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:03:57.4313106Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:03:57.4313229Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:03:57.4313301Z 2025-03-14T05:03:57.4313629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.4313767Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:03:57.4313834Z 2025-03-14T05:03:57.4314168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.4314292Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:03:57.4314367Z 2025-03-14T05:03:57.4314745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.4314996Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:03:57.4315060Z 2025-03-14T05:03:57.4315487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.4315612Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:03:57.4316033Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:03:57.4316159Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:03:57.4316285Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:03:57.4316350Z 2025-03-14T05:03:57.4316788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4316955Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:03:57.4317029Z 2025-03-14T05:03:57.4317341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4317524Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:03:57.4317589Z 2025-03-14T05:03:57.4318019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4318175Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:03:57.4318240Z 2025-03-14T05:03:57.4318534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4318674Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:03:57.4318745Z 2025-03-14T05:03:57.4319108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.4319312Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:03:57.4319418Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:03:57.4319554Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:03:57.4319618Z 2025-03-14T05:03:57.4319949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.4320081Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:03:57.4320154Z 2025-03-14T05:03:57.4320475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.4320610Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:03:57.4320677Z 2025-03-14T05:03:57.4321058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.4321291Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:03:57.4321364Z 2025-03-14T05:03:57.4321776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.4321917Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:03:57.4322331Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:03:57.4322470Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:03:57.4322587Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:03:57.4322660Z 2025-03-14T05:03:57.4323085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4323250Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:03:57.4323334Z 2025-03-14T05:03:57.4323623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4323782Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:03:57.4323847Z 2025-03-14T05:03:57.4324263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4324402Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:03:57.4324474Z 2025-03-14T05:03:57.4324753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4324893Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:03:57.4324958Z 2025-03-14T05:03:57.4325321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.4325511Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:03:57.4325617Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:03:57.4325734Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:03:57.4325805Z 2025-03-14T05:03:57.4326118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.4326249Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:03:57.4326315Z 2025-03-14T05:03:57.4326635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.4326757Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:03:57.4326845Z 2025-03-14T05:03:57.4327211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.4327425Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:03:57.4327488Z 2025-03-14T05:03:57.4327897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.4328022Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:03:57.4328433Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:03:57.4328555Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:03:57.4328678Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:03:57.4328741Z 2025-03-14T05:03:57.4329175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4329341Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:03:57.4329415Z 2025-03-14T05:03:57.4329698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4329855Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:03:57.4329918Z 2025-03-14T05:03:57.4330332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4330479Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:03:57.4330542Z 2025-03-14T05:03:57.4330831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4330961Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:03:57.4331033Z 2025-03-14T05:03:57.4331383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.4331577Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:03:57.4331675Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:03:57.4332074Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:03:57.4332153Z 2025-03-14T05:03:57.4332511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.4332640Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:03:57.4332713Z 2025-03-14T05:03:57.4333027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.4333157Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:03:57.4333244Z 2025-03-14T05:03:57.4333622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.4333831Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:03:57.4333902Z 2025-03-14T05:03:57.4334302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.4334436Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:03:57.4334839Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:03:57.4334971Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:03:57.4335082Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:03:57.4335153Z 2025-03-14T05:03:57.4335585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4335791Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:03:57.4335856Z 2025-03-14T05:03:57.4336164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4336307Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:03:57.4336371Z 2025-03-14T05:03:57.4336792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:03:57.4336933Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:03:57.4337004Z 2025-03-14T05:03:57.4337284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4337423Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:03:57.4337488Z 2025-03-14T05:03:57.4337865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:03:57.4338056Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:03:57.4338172Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:03:57.4338287Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:03:57.4338357Z 2025-03-14T05:03:57.4338675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:03:57.4338809Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:03:57.4338872Z 2025-03-14T05:03:57.4339201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:03:57.4339338Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:03:57.4339413Z 2025-03-14T05:03:57.4339790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:03:57.4340004Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:03:57.4340069Z 2025-03-14T05:03:57.4340484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:03:57.4340608Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:03:57.4341031Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:03:57.4341153Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:03:57.4341276Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:03:57.4341339Z 2025-03-14T05:03:57.4341662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:03:57.4341808Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:03:57.4341948Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:03:57.4342089Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:03:57.4342220Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:03:57.4342343Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:03:57.4342418Z 2025-03-14T05:03:57.4343476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4344026Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:03:57.4344109Z 2025-03-14T05:03:57.4344444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.4344662Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:03:57.4344731Z 2025-03-14T05:03:57.4345140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.4345658Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.4345732Z 2025-03-14T05:03:57.4346092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.4346602Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:03:57.4346694Z 2025-03-14T05:03:57.4346954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4347423Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:03:57.4347496Z 2025-03-14T05:03:57.4347775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.4347965Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:03:57.4348039Z 2025-03-14T05:03:57.4348402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.4348931Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.4348996Z 2025-03-14T05:03:57.4349357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.4349867Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:03:57.4349941Z 2025-03-14T05:03:57.4350185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4350658Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:03:57.4350721Z 2025-03-14T05:03:57.4350994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.4351176Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:03:57.4351245Z 2025-03-14T05:03:57.4351608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.4352104Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.4352174Z 2025-03-14T05:03:57.4352513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.4352999Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:03:57.4353079Z 2025-03-14T05:03:57.4353332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4353791Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:03:57.4353864Z 2025-03-14T05:03:57.4354132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.4354314Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:03:57.4354377Z 2025-03-14T05:03:57.4354746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.4355273Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:03:57.4355340Z 2025-03-14T05:03:57.4355696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.4356192Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:03:57.4356263Z 2025-03-14T05:03:57.4356505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:03:57.4357245Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:03:57.4357311Z 2025-03-14T05:03:57.4357584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:03:57.4357752Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:03:57.4357823Z 2025-03-14T05:03:57.4358181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:03:57.4359010Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:03:57.4359097Z 2025-03-14T05:03:57.4359439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:03:57.4360243Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:03:57.4360307Z 2025-03-14T05:03:57.4360640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:03:57.4360803Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:03:57.4360951Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:03:57.4361109Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:03:57.4361274Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:03:57.4361448Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:03:57.4361584Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:03:57.4361751Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:03:57.4361882Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:03:57.4362031Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:03:57.4362161Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:03:57.4362232Z 2025-03-14T05:03:57.4362643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:03:57.4362824Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:03:57.4363001Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:03:57.4363184Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:03:57.4363346Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:03:57.4363520Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:03:57.4363688Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:03:57.4363843Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:03:57.4364004Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:03:57.4364176Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:03:57.4364317Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:03:57.4364495Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:03:57.4364657Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:03:57.4364801Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:03:57.4364956Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:03:57.4365123Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:03:57.4365186Z 2025-03-14T05:03:57.4365591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.4365798Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:03:57.4365864Z 2025-03-14T05:03:57.4366298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.4366465Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:03:57.4366637Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:03:57.4366776Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:03:57.4366864Z 2025-03-14T05:03:57.4367228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.4367403Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:03:57.4367466Z 2025-03-14T05:03:57.4367775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.4367916Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:03:57.4367986Z 2025-03-14T05:03:57.4368291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.4368428Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:03:57.4368554Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4368712Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:03:57.4368776Z 2025-03-14T05:03:57.4369089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.4369212Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:03:57.4369339Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:03:57.4369486Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:03:57.4369556Z 2025-03-14T05:03:57.4369854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.4369983Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4370137Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:03:57.4370270Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:03:57.4370334Z 2025-03-14T05:03:57.4370638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.4370781Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:03:57.4370881Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:03:57.4371009Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:03:57.4371078Z 2025-03-14T05:03:57.4371399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.4371564Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.4371680Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:03:57.4371752Z 2025-03-14T05:03:57.4372041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.4372201Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.4372329Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:03:57.4372415Z 2025-03-14T05:03:57.4372713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.4372878Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.4372997Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:03:57.4373060Z 2025-03-14T05:03:57.4373362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.4373541Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:03:57.4373659Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:03:57.4373721Z 2025-03-14T05:03:57.4374056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.4374196Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:03:57.4374264Z 2025-03-14T05:03:57.4374584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.4374725Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:03:57.4374785Z 2025-03-14T05:03:57.4375122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.4375259Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:03:57.4375390Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:03:57.4375537Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:03:57.4375682Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:03:57.4375771Z 2025-03-14T05:03:57.4376113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.4376250Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:03:57.4376378Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:03:57.4376527Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:03:57.4376669Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:03:57.4376731Z 2025-03-14T05:03:57.4377059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.4377179Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:03:57.4377344Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:03:57.4377473Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:03:57.4377544Z 2025-03-14T05:03:57.4377866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.4378007Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:03:57.4378187Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:03:57.4378331Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:03:57.4378410Z 2025-03-14T05:03:57.4378730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.4378839Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:03:57.4378960Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:03:57.4379026Z 2025-03-14T05:03:57.4379344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.4379450Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:03:57.4379570Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:03:57.4379644Z 2025-03-14T05:03:57.4379950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.4380075Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:03:57.4380209Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:03:57.4380280Z 2025-03-14T05:03:57.4380583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.4380707Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:03:57.4380838Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:03:57.4380914Z 2025-03-14T05:03:57.4381258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.4381586Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:03:57.4381703Z 2025-03-14T05:03:57.4382045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.4382210Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:03:57.4382283Z 2025-03-14T05:03:57.4382669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.4382865Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:03:57.4382932Z 2025-03-14T05:03:57.4383349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.4383580Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:03:57.4383654Z 2025-03-14T05:03:57.4384094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.4384351Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:03:57.4384533Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:03:57.4384688Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:03:57.4384780Z 2025-03-14T05:03:57.4385170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.4385347Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:03:57.4385423Z 2025-03-14T05:03:57.4385740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.4385901Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:03:57.4385965Z 2025-03-14T05:03:57.4386303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.4386438Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:03:57.4386577Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4386730Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:03:57.4386801Z 2025-03-14T05:03:57.4387115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.4387248Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:03:57.4387380Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:03:57.4387534Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:03:57.4387606Z 2025-03-14T05:03:57.4387913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.4388047Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4388160Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:03:57.4388301Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:03:57.4388367Z 2025-03-14T05:03:57.4388681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.4388832Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:03:57.4388935Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:03:57.4389067Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:03:57.4389138Z 2025-03-14T05:03:57.4389437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.4389600Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.4389717Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:03:57.4389790Z 2025-03-14T05:03:57.4390087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.4390264Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.4390379Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:03:57.4390465Z 2025-03-14T05:03:57.4390757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.4390932Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.4391047Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:03:57.4391116Z 2025-03-14T05:03:57.4391413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.4391605Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:03:57.4391717Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:03:57.4391788Z 2025-03-14T05:03:57.4392122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.4392272Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:03:57.4392336Z 2025-03-14T05:03:57.4392673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.4392812Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:03:57.4392884Z 2025-03-14T05:03:57.4393222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.4393369Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:03:57.4393504Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:03:57.4393660Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:03:57.4393811Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:03:57.4393892Z 2025-03-14T05:03:57.4394246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.4394385Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:03:57.4394517Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:03:57.4394672Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:03:57.4394822Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:03:57.4394887Z 2025-03-14T05:03:57.4395225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.4395341Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:03:57.4395509Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:03:57.4395645Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:03:57.4395718Z 2025-03-14T05:03:57.4396076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.4396213Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:03:57.4396382Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:03:57.4396549Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:03:57.4396612Z 2025-03-14T05:03:57.4396927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.4397027Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:03:57.4397153Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:03:57.4397216Z 2025-03-14T05:03:57.4397528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.4397624Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:03:57.4397746Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:03:57.4397811Z 2025-03-14T05:03:57.4398118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.4398238Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:03:57.4398379Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:03:57.4398443Z 2025-03-14T05:03:57.4398751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.4398868Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:03:57.4399009Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:03:57.4399072Z 2025-03-14T05:03:57.4399418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.4399613Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:03:57.4399702Z 2025-03-14T05:03:57.4400038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.4400210Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:03:57.4400274Z 2025-03-14T05:03:57.4400667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.4400852Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:03:57.4400919Z 2025-03-14T05:03:57.4401325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.4401533Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:03:57.4401604Z 2025-03-14T05:03:57.4402053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.4402230Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:03:57.4402382Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:03:57.4402543Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:03:57.4402608Z 2025-03-14T05:03:57.4402995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.4403159Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:03:57.4403230Z 2025-03-14T05:03:57.4403528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.4403675Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:03:57.4403739Z 2025-03-14T05:03:57.4404043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.4404169Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:03:57.4404298Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4404441Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:03:57.4404511Z 2025-03-14T05:03:57.4404811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.4404938Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:03:57.4405056Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:03:57.4405208Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:03:57.4405274Z 2025-03-14T05:03:57.4405577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.4405711Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4405806Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:03:57.4405933Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:03:57.4406001Z 2025-03-14T05:03:57.4406301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.4406453Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:03:57.4406545Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:03:57.4406678Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:03:57.4406743Z 2025-03-14T05:03:57.4407039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.4407190Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.4407309Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:03:57.4407372Z 2025-03-14T05:03:57.4407666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.4407833Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.4407961Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:03:57.4408032Z 2025-03-14T05:03:57.4408330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.4408484Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.4408592Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:03:57.4408664Z 2025-03-14T05:03:57.4408952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.4409140Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:03:57.4409248Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:03:57.4409320Z 2025-03-14T05:03:57.4409648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.4409798Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:03:57.4409863Z 2025-03-14T05:03:57.4410198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.4410336Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:03:57.4410408Z 2025-03-14T05:03:57.4410746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.4410890Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:03:57.4411015Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:03:57.4411178Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:03:57.4411335Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:03:57.4411408Z 2025-03-14T05:03:57.4411765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.4411909Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:03:57.4412029Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:03:57.4412185Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:03:57.4412317Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:03:57.4412391Z 2025-03-14T05:03:57.4412715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.4412838Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:03:57.4412993Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:03:57.4413134Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:03:57.4413196Z 2025-03-14T05:03:57.4413559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.4413678Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:03:57.4413854Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:03:57.4413991Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:03:57.4414056Z 2025-03-14T05:03:57.4414361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.4414458Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:03:57.4414579Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:03:57.4414641Z 2025-03-14T05:03:57.4414947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.4415041Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:03:57.4415160Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:03:57.4415224Z 2025-03-14T05:03:57.4415521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.4415636Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:03:57.4415776Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:03:57.4415840Z 2025-03-14T05:03:57.4416139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.4416250Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:03:57.4416385Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:03:57.4431754Z 2025-03-14T05:03:57.4432400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.4432714Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:03:57.4432780Z 2025-03-14T05:03:57.4433131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.4433310Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:03:57.4433377Z 2025-03-14T05:03:57.4433770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.4433955Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:03:57.4434017Z 2025-03-14T05:03:57.4434424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.4434629Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:03:57.4434697Z 2025-03-14T05:03:57.4435158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.4435350Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:03:57.4435509Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:03:57.4435690Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:03:57.4435760Z 2025-03-14T05:03:57.4436143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.4436316Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:03:57.4436403Z 2025-03-14T05:03:57.4436712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.4436871Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:03:57.4436936Z 2025-03-14T05:03:57.4437253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.4437386Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:03:57.4437521Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4437669Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:03:57.4437741Z 2025-03-14T05:03:57.4438052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.4438186Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:03:57.4438305Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:03:57.4438463Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:03:57.4438526Z 2025-03-14T05:03:57.4438832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.4438982Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4439072Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:03:57.4439209Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:03:57.4439273Z 2025-03-14T05:03:57.4439582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.4439729Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:03:57.4439830Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:03:57.4439959Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:03:57.4440029Z 2025-03-14T05:03:57.4440341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.4440496Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.4440610Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:03:57.4440680Z 2025-03-14T05:03:57.4440991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.4441155Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.4441273Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:03:57.4441353Z 2025-03-14T05:03:57.4441647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.4441795Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.4441911Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:03:57.4441974Z 2025-03-14T05:03:57.4442270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.4442449Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:03:57.4442565Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:03:57.4442628Z 2025-03-14T05:03:57.4442962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.4443100Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:03:57.4443169Z 2025-03-14T05:03:57.4443488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.4443630Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:03:57.4443693Z 2025-03-14T05:03:57.4444037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.4444170Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:03:57.4444305Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:03:57.4444458Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:03:57.4444620Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:03:57.4444684Z 2025-03-14T05:03:57.4445028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.4445163Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:03:57.4445297Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:03:57.4445446Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:03:57.4445591Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:03:57.4445655Z 2025-03-14T05:03:57.4445987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.4446101Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:03:57.4446264Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:03:57.4446406Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:03:57.4446521Z 2025-03-14T05:03:57.4446865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.4446977Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:03:57.4447163Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:03:57.4447293Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:03:57.4447365Z 2025-03-14T05:03:57.4447669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.4447777Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:03:57.4447895Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:03:57.4447968Z 2025-03-14T05:03:57.4448273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.4448372Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:03:57.4448488Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:03:57.4448561Z 2025-03-14T05:03:57.4448863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.4448990Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:03:57.4449129Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:03:57.4449205Z 2025-03-14T05:03:57.4449516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.4449639Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:03:57.4449768Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:03:57.4449844Z 2025-03-14T05:03:57.4450181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.4450389Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:03:57.4450453Z 2025-03-14T05:03:57.4450779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.4450937Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:03:57.4451009Z 2025-03-14T05:03:57.4451378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.4451554Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:03:57.4451620Z 2025-03-14T05:03:57.4452010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:03:57.4452211Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:03:57.4452284Z 2025-03-14T05:03:57.4452730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:03:57.4452886Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:03:57.4453050Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:03:57.4453188Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:03:57.4453252Z 2025-03-14T05:03:57.4453621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:03:57.4453792Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:03:57.4453856Z 2025-03-14T05:03:57.4454168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:03:57.4454309Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:03:57.4454380Z 2025-03-14T05:03:57.4454683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:03:57.4454816Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:03:57.4454936Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4455086Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:03:57.4455150Z 2025-03-14T05:03:57.4455465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:03:57.4455586Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:03:57.4455708Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:03:57.4455852Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:03:57.4455923Z 2025-03-14T05:03:57.4456220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:03:57.4456362Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:03:57.4456450Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:03:57.4456583Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:03:57.4456646Z 2025-03-14T05:03:57.4456954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:03:57.4457094Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:03:57.4457191Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:03:57.4457313Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:03:57.4457387Z 2025-03-14T05:03:57.4457677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:03:57.4457834Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:03:57.4457946Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:03:57.4458018Z 2025-03-14T05:03:57.4458338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:03:57.4458507Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:03:57.4458616Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:03:57.4458704Z 2025-03-14T05:03:57.4458992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:03:57.4459146Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:03:57.4459252Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:03:57.4459324Z 2025-03-14T05:03:57.4459614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:03:57.4459800Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:03:57.4459905Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:03:57.4459978Z 2025-03-14T05:03:57.4460300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:03:57.4460441Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:03:57.4460512Z 2025-03-14T05:03:57.4460830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:03:57.4460967Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:03:57.4461032Z 2025-03-14T05:03:57.4461369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:03:57.4461500Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:03:57.4461628Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:03:57.4461793Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:03:57.4461933Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:03:57.4461996Z 2025-03-14T05:03:57.4462338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:03:57.4462471Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:03:57.4462596Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:03:57.4462740Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:03:57.4462879Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:03:57.4462944Z 2025-03-14T05:03:57.4463268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:03:57.4463381Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:03:57.4463540Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:03:57.4463683Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:03:57.4463755Z 2025-03-14T05:03:57.4464098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:03:57.4464321Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:03:57.4464485Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:03:57.4464629Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:03:57.4464695Z 2025-03-14T05:03:57.4465012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:03:57.4465112Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:03:57.4465238Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:03:57.4465302Z 2025-03-14T05:03:57.4465618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:03:57.4465715Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:03:57.4465838Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:03:57.4465905Z 2025-03-14T05:03:57.4466214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:03:57.4466328Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:03:57.4466467Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:03:57.4466531Z 2025-03-14T05:03:57.4466843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:03:57.4466955Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:03:57.4467087Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:03:57.4467152Z 2025-03-14T05:03:57.4467504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:03:57.4467724Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:03:57.4467790Z 2025-03-14T05:03:57.4468129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:03:57.4468288Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:03:57.4468361Z 2025-03-14T05:03:57.4468742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:03:57.4468924Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:03:57.4468990Z 2025-03-14T05:03:57.4469472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:03:57.4469609Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:03:57.4469681Z 2025-03-14T05:03:57.4469991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4470158Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:03:57.4470224Z 2025-03-14T05:03:57.4470681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.4470794Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:03:57.4470905Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:03:57.4471017Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:03:57.4471088Z 2025-03-14T05:03:57.4471544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.4471685Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.4471917Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:03:57.4471993Z 2025-03-14T05:03:57.4472442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.4472619Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.4472684Z 2025-03-14T05:03:57.4472987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4473107Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:03:57.4473180Z 2025-03-14T05:03:57.4473608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.4473732Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:03:57.4473854Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:03:57.4473977Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:03:57.4474041Z 2025-03-14T05:03:57.4474501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.4474638Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.4474875Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:03:57.4474949Z 2025-03-14T05:03:57.4475396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.4475570Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.4475638Z 2025-03-14T05:03:57.4475940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4476080Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:03:57.4476153Z 2025-03-14T05:03:57.4476597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.4476733Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:03:57.4476839Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:03:57.4476964Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:03:57.4477029Z 2025-03-14T05:03:57.4477485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.4477617Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.4477867Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:03:57.4477930Z 2025-03-14T05:03:57.4478368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.4478530Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.4478602Z 2025-03-14T05:03:57.4478881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4479008Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:03:57.4479072Z 2025-03-14T05:03:57.4479490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.4479600Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:03:57.4479710Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:03:57.4479824Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:03:57.4479919Z 2025-03-14T05:03:57.4480354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.4480489Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:03:57.4480721Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:03:57.4480785Z 2025-03-14T05:03:57.4481223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.4481383Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.4481686Z 2025-03-14T05:03:57.4481976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4482104Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:03:57.4482169Z 2025-03-14T05:03:57.4482672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:03:57.4482783Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:03:57.4482922Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:03:57.4483035Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:03:57.4483107Z 2025-03-14T05:03:57.4483544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:03:57.4483708Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:03:57.4483933Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:03:57.4484004Z 2025-03-14T05:03:57.4484441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:03:57.4484605Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:03:57.4484669Z 2025-03-14T05:03:57.4484960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:03:57.4485079Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:03:57.4485151Z 2025-03-14T05:03:57.4485422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.4485795Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:03:57.4485859Z 2025-03-14T05:03:57.4486138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.4486612Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:03:57.4486676Z 2025-03-14T05:03:57.4486953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:03:57.4487147Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:03:57.4487217Z 2025-03-14T05:03:57.4487586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:03:57.4487736Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:03:57.4487799Z 2025-03-14T05:03:57.4488091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:03:57.4488235Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:03:57.4488306Z 2025-03-14T05:03:57.4488699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:03:57.4488838Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:03:57.4488901Z 2025-03-14T05:03:57.4489386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:03:57.4489521Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:03:57.4489643Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:03:57.4489792Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:03:57.4489929Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:03:57.4489994Z 2025-03-14T05:03:57.4490353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:03:57.4490466Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:03:57.4490538Z 2025-03-14T05:04:09.6738112Z 2025-03-14T05:04:09.6742214Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:09.6745035Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:04:09.6748220Z l_features_p2_ = L_features_p2_ 2025-03-14T05:04:09.6753752Z l_features_p3_ = L_features_p3_ 2025-03-14T05:04:09.6756441Z l_features_p4_ = L_features_p4_ 2025-03-14T05:04:09.6756825Z l_features_p5_ = L_features_p5_ 2025-03-14T05:04:09.6762024Z l_features_p6_ = L_features_p6_ 2025-03-14T05:04:09.6764292Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:04:09.6765040Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:04:09.6771621Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:04:09.6780123Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:04:09.6786744Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:04:09.6787590Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:04:09.6788247Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:04:09.6790541Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:04:09.6791160Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:04:09.6791771Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:04:09.6792343Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:04:09.6792725Z 2025-03-14T05:04:09.6793350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6794063Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:04:09.6794337Z 2025-03-14T05:04:09.6794744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6795266Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:04:09.6795532Z 2025-03-14T05:04:09.6796070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6796725Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:04:09.6797004Z 2025-03-14T05:04:09.6797403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6797928Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:04:09.6798193Z 2025-03-14T05:04:09.6798654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.6799310Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:04:09.6799649Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:04:09.6799929Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:04:09.6800194Z 2025-03-14T05:04:09.6800617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.6801133Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:04:09.6801384Z 2025-03-14T05:04:09.6801799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.6802301Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:04:09.6802546Z 2025-03-14T05:04:09.6803003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.6803667Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:04:09.6803997Z 2025-03-14T05:04:09.6804524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.6805141Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:04:09.6805660Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:04:09.6806178Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:04:09.6806483Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:04:09.6806728Z 2025-03-14T05:04:09.6807282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6807949Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:04:09.6808228Z 2025-03-14T05:04:09.6808628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6809134Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:04:09.6809404Z 2025-03-14T05:04:09.6809945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6810607Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:04:09.6810885Z 2025-03-14T05:04:09.6811287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6811790Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:04:09.6812065Z 2025-03-14T05:04:09.6812552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.6813225Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:04:09.6813595Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:04:09.6813896Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:04:09.6814141Z 2025-03-14T05:04:09.6814563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.6815079Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:04:09.6815335Z 2025-03-14T05:04:09.6815747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.6816264Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:04:09.6816512Z 2025-03-14T05:04:09.6816968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.6817644Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:04:09.6817970Z 2025-03-14T05:04:09.6818483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.6819159Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:04:09.6819660Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:04:09.6820156Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:04:09.6820459Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:04:09.6820688Z 2025-03-14T05:04:09.6821213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6821844Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:04:09.6822113Z 2025-03-14T05:04:09.6822495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6822989Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:04:09.6823248Z 2025-03-14T05:04:09.6823761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6824655Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:04:09.6824959Z 2025-03-14T05:04:09.6825395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6825883Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:04:09.6826144Z 2025-03-14T05:04:09.6826612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.6827259Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:04:09.6827615Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:04:09.6827888Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:04:09.6828127Z 2025-03-14T05:04:09.6828543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.6829048Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:04:09.6829296Z 2025-03-14T05:04:09.6829704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.6830213Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:04:09.6830454Z 2025-03-14T05:04:09.6830922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.6831597Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:04:09.6831946Z 2025-03-14T05:04:09.6832503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.6833116Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:04:09.6833621Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:04:09.6834118Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:04:09.6834427Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:04:09.6834669Z 2025-03-14T05:04:09.6835209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6835860Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:04:09.6836136Z 2025-03-14T05:04:09.6836525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6837028Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:04:09.6837296Z 2025-03-14T05:04:09.6837824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6838468Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:04:09.6838742Z 2025-03-14T05:04:09.6839128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6839625Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:04:09.6839889Z 2025-03-14T05:04:09.6840354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.6841011Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:04:09.6841370Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:04:09.6841654Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:04:09.6841904Z 2025-03-14T05:04:09.6842327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.6842850Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:04:09.6843109Z 2025-03-14T05:04:09.6843535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.6844046Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:04:09.6844294Z 2025-03-14T05:04:09.6844772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.6845437Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:04:09.6845772Z 2025-03-14T05:04:09.6846278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.6846894Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:04:09.6847381Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:04:09.6847859Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:04:09.6848158Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:04:09.6848383Z 2025-03-14T05:04:09.6848900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6849530Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:04:09.6849793Z 2025-03-14T05:04:09.6850175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6850660Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:04:09.6850919Z 2025-03-14T05:04:09.6851431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.6852056Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:04:09.6852325Z 2025-03-14T05:04:09.6852709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.6853195Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:04:09.6853454Z 2025-03-14T05:04:09.6853905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.6854540Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:04:09.6854892Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:04:09.6855170Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:04:09.6855411Z 2025-03-14T05:04:09.6855833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.6856347Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:04:09.6856594Z 2025-03-14T05:04:09.6857002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.6857508Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:04:09.6857752Z 2025-03-14T05:04:09.6858213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.6858871Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:04:09.6859197Z 2025-03-14T05:04:09.6859721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.6860325Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:04:09.6860813Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:04:09.6861295Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:04:09.6861588Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:04:09.6861823Z 2025-03-14T05:04:09.6862209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:04:09.6862681Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:04:09.6862986Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:04:09.6863292Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:04:09.6863583Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:04:09.6863886Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:04:09.6864253Z 2025-03-14T05:04:09.6864668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.6865481Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:04:09.6866040Z 2025-03-14T05:04:09.6866411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.6866952Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:04:09.6867304Z 2025-03-14T05:04:09.6867786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.6868648Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.6869197Z 2025-03-14T05:04:09.6869660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.6870512Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:04:09.6871057Z 2025-03-14T05:04:09.6871415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.6872154Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:04:09.6872715Z 2025-03-14T05:04:09.6873126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.6873662Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:04:09.6873991Z 2025-03-14T05:04:09.6874461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.6875305Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.6875854Z 2025-03-14T05:04:09.6876311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.6877147Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:04:09.6877682Z 2025-03-14T05:04:09.6878035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.6878749Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:04:09.6879278Z 2025-03-14T05:04:09.6879637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.6880142Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:04:09.6880447Z 2025-03-14T05:04:09.6880890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.6882265Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.6882795Z 2025-03-14T05:04:09.6883244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.6884054Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:04:09.6884570Z 2025-03-14T05:04:09.6884912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.6885617Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:04:09.6886128Z 2025-03-14T05:04:09.6886480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.6887058Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:04:09.6887364Z 2025-03-14T05:04:09.6887851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.6888701Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.6889217Z 2025-03-14T05:04:09.6889667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.6890472Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:04:09.6890981Z 2025-03-14T05:04:09.6891322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.6892233Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:04:09.6892944Z 2025-03-14T05:04:09.6893323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.6893848Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:04:09.6894149Z 2025-03-14T05:04:09.6894619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.6895687Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:04:09.6896461Z 2025-03-14T05:04:09.6896903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.6897896Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:04:09.6898601Z 2025-03-14T05:04:09.6899017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:04:09.6899586Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:04:09.6899945Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:04:09.6900303Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:04:09.6900692Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:04:09.6901063Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:04:09.6901415Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:04:09.6901775Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:04:09.6902120Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:04:09.6902456Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:04:09.6902788Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:04:09.6903046Z 2025-03-14T05:04:09.6903570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:04:09.6904315Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:04:09.6904791Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:04:09.6905258Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:04:09.6905689Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:04:09.6906079Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:04:09.6906481Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:04:09.6906854Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:04:09.6907214Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:04:09.6907598Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:04:09.6907990Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:04:09.6908351Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:04:09.6908730Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:04:09.6909098Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:04:09.6909450Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:04:09.6909827Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:04:09.6910113Z 2025-03-14T05:04:09.6910616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.6911273Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:04:09.6911605Z 2025-03-14T05:04:09.6912126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.6912790Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:04:09.6913170Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:04:09.6913519Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:04:09.6913805Z 2025-03-14T05:04:09.6914269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.6914877Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:04:09.6915168Z 2025-03-14T05:04:09.6915576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.6916090Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:04:09.6916357Z 2025-03-14T05:04:09.6916759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.6917272Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:09.6917591Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:09.6917932Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:09.6918203Z 2025-03-14T05:04:09.6918616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.6919121Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:09.6919432Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:09.6919770Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:04:09.6920047Z 2025-03-14T05:04:09.6920456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.6920962Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:09.6921265Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:04:09.6921535Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:04:09.6921785Z 2025-03-14T05:04:09.6922180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.6922693Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:09.6922990Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:04:09.6923271Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:04:09.6923527Z 2025-03-14T05:04:09.6923947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.6924511Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.6924834Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:04:09.6925073Z 2025-03-14T05:04:09.6925457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.6925996Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.6926340Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:04:09.6926583Z 2025-03-14T05:04:09.6926964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.6927468Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.6927786Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:04:09.6928017Z 2025-03-14T05:04:09.6928398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.6928920Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:09.6929264Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:04:09.6929499Z 2025-03-14T05:04:09.6929918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.6930454Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:09.6930714Z 2025-03-14T05:04:09.6931129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.6931653Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:09.6931908Z 2025-03-14T05:04:09.6932340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.6932878Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:09.6933199Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:04:09.6933535Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:09.6933882Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:04:09.6934170Z 2025-03-14T05:04:09.6934617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.6935147Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:09.6935470Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:04:09.6935809Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:09.6936160Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:04:09.6936422Z 2025-03-14T05:04:09.6936847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.6937358Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:09.6937695Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:09.6938046Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:04:09.6938310Z 2025-03-14T05:04:09.6938751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.6939274Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:09.6939616Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:09.6939995Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:04:09.6940257Z 2025-03-14T05:04:09.6940660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.6941133Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:09.6941402Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:09.6941639Z 2025-03-14T05:04:09.6942041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.6942513Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:09.6942780Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:09.6943020Z 2025-03-14T05:04:09.6943414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.6943918Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:09.6944301Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:09.6944566Z 2025-03-14T05:04:09.6944967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.6945477Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:09.6945795Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:09.6946063Z 2025-03-14T05:04:09.6946523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.6947108Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:09.6947434Z 2025-03-14T05:04:09.6947864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.6948418Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:04:09.6948707Z 2025-03-14T05:04:09.6949180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.6949813Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:04:09.6950115Z 2025-03-14T05:04:09.6950621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.6951289Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:04:09.6951624Z 2025-03-14T05:04:09.6952142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.6952801Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:04:09.6953181Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:04:09.6953533Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:04:09.6953811Z 2025-03-14T05:04:09.6954273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.6954865Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:04:09.6955153Z 2025-03-14T05:04:09.6955550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.6956060Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:04:09.6956330Z 2025-03-14T05:04:09.6956734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.6957236Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:04:09.6957550Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:04:09.6957890Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:04:09.6958158Z 2025-03-14T05:04:09.6958564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.6959060Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:04:09.6959372Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:04:09.6959707Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:04:09.6959982Z 2025-03-14T05:04:09.6960383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.6960882Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:04:09.6961181Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:04:09.6961463Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:04:09.6961718Z 2025-03-14T05:04:09.6962115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.6962638Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:04:09.6962940Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:04:09.6963221Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:04:09.6963477Z 2025-03-14T05:04:09.6963868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.6964391Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.6964710Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:04:09.6964951Z 2025-03-14T05:04:09.6965341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.6965862Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.6966209Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:04:09.6966451Z 2025-03-14T05:04:09.6966836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.6967356Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.6967680Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:04:09.6967917Z 2025-03-14T05:04:09.6968311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.6968860Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:04:09.6969214Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:04:09.6969455Z 2025-03-14T05:04:09.6969887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.6970428Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:04:09.6970692Z 2025-03-14T05:04:09.6971117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.6971644Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:04:09.6971903Z 2025-03-14T05:04:09.6972336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.6972877Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:04:09.6973200Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:04:09.6973544Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:04:09.6973935Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:04:09.6974197Z 2025-03-14T05:04:09.6974635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.6975173Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:04:09.6975499Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:04:09.6975838Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:04:09.6976189Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:04:09.6976453Z 2025-03-14T05:04:09.6976884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.6977394Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:04:09.6977731Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:04:09.6978086Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:04:09.6978346Z 2025-03-14T05:04:09.6978813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.6979323Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:04:09.6979663Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:04:09.6980043Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:04:09.6980305Z 2025-03-14T05:04:09.6980703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.6981168Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:04:09.6982236Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:04:09.6982680Z 2025-03-14T05:04:09.6983125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.6983615Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:04:09.6983893Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:04:09.6984179Z 2025-03-14T05:04:09.6984718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.6986165Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:04:09.6986526Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:04:09.6986819Z 2025-03-14T05:04:09.6987263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.6987777Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:04:09.6989046Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:04:09.6989348Z 2025-03-14T05:04:09.6989834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.6990569Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:04:09.6990899Z 2025-03-14T05:04:09.6991352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.6992538Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:04:09.6993927Z 2025-03-14T05:04:09.6994449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.6995816Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:04:09.6996172Z 2025-03-14T05:04:09.6996887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.6998379Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:04:09.6998841Z 2025-03-14T05:04:09.6999675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7000369Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:04:09.7000744Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:04:09.7001152Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:04:09.7001424Z 2025-03-14T05:04:09.7001899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7003003Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:04:09.7003307Z 2025-03-14T05:04:09.7003731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7004275Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:04:09.7004554Z 2025-03-14T05:04:09.7004973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7005489Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7005814Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7006156Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:04:09.7006436Z 2025-03-14T05:04:09.7006853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7007368Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7007683Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7008026Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:04:09.7008313Z 2025-03-14T05:04:09.7008727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7009259Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7009534Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:04:09.7009807Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:04:09.7010061Z 2025-03-14T05:04:09.7010460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7010972Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:04:09.7011275Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:04:09.7011549Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:04:09.7011798Z 2025-03-14T05:04:09.7012202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7012704Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7013035Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:04:09.7013269Z 2025-03-14T05:04:09.7013839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7014378Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7014717Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:04:09.7014993Z 2025-03-14T05:04:09.7015384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7015890Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7016215Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:04:09.7016453Z 2025-03-14T05:04:09.7016845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7017396Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:04:09.7017765Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:04:09.7018003Z 2025-03-14T05:04:09.7018430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7018961Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:04:09.7019225Z 2025-03-14T05:04:09.7019647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7020182Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:04:09.7020447Z 2025-03-14T05:04:09.7020901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7021448Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:04:09.7021780Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:04:09.7022121Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:04:09.7022510Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:04:09.7022779Z 2025-03-14T05:04:09.7023229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7023788Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:04:09.7024193Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:04:09.7024555Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:04:09.7024916Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:04:09.7025193Z 2025-03-14T05:04:09.7025637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7026171Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:04:09.7026531Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:04:09.7026900Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:04:09.7027194Z 2025-03-14T05:04:09.7027646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7028166Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:04:09.7028544Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:04:09.7028909Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:04:09.7029173Z 2025-03-14T05:04:09.7029600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7030082Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:04:09.7030364Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:04:09.7030612Z 2025-03-14T05:04:09.7031017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7031488Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:04:09.7031763Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:04:09.7032009Z 2025-03-14T05:04:09.7032406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7032893Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:04:09.7033212Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:04:09.7033479Z 2025-03-14T05:04:09.7033888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7034369Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:04:09.7034675Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:04:09.7034940Z 2025-03-14T05:04:09.7035383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7036020Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:04:09.7036333Z 2025-03-14T05:04:09.7036765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7037329Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:04:09.7037622Z 2025-03-14T05:04:09.7038103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7038727Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:04:09.7039032Z 2025-03-14T05:04:09.7039528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7040453Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:04:09.7040791Z 2025-03-14T05:04:09.7041359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7042023Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:04:09.7042399Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:04:09.7042743Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:04:09.7043005Z 2025-03-14T05:04:09.7043464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7044050Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:04:09.7044337Z 2025-03-14T05:04:09.7044734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7045250Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:04:09.7045522Z 2025-03-14T05:04:09.7045919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7046421Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7046730Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7047060Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:04:09.7047330Z 2025-03-14T05:04:09.7047733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7048234Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7048542Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7048875Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:04:09.7049150Z 2025-03-14T05:04:09.7049550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7050070Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7050344Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:04:09.7050623Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:04:09.7050882Z 2025-03-14T05:04:09.7051283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7051799Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:04:09.7052100Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:04:09.7052379Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:04:09.7052633Z 2025-03-14T05:04:09.7053032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7053545Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7053870Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:04:09.7054102Z 2025-03-14T05:04:09.7054521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7055021Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7055362Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:04:09.7055596Z 2025-03-14T05:04:09.7055974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7056473Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7056792Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:04:09.7057028Z 2025-03-14T05:04:09.7057418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7057956Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:04:09.7058305Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:04:09.7058542Z 2025-03-14T05:04:09.7058962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7059490Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:04:09.7059751Z 2025-03-14T05:04:09.7060164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7060688Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:04:09.7060947Z 2025-03-14T05:04:09.7061372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7061905Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:04:09.7062223Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:04:09.7062585Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:04:09.7062936Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:04:09.7063198Z 2025-03-14T05:04:09.7063630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7064276Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:04:09.7064621Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:04:09.7064963Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:04:09.7065327Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:04:09.7065598Z 2025-03-14T05:04:09.7066037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7066559Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:04:09.7066901Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:04:09.7067290Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:04:09.7067563Z 2025-03-14T05:04:09.7068012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7068545Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:04:09.7068886Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:04:09.7069256Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:04:09.7069523Z 2025-03-14T05:04:09.7069929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7070404Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:04:09.7070679Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:04:09.7070924Z 2025-03-14T05:04:09.7071326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7071797Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:04:09.7072069Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:04:09.7072314Z 2025-03-14T05:04:09.7072706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7073201Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:04:09.7073521Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:04:09.7073787Z 2025-03-14T05:04:09.7074187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7074673Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:04:09.7074988Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:04:09.7075248Z 2025-03-14T05:04:09.7075690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7076326Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:04:09.7076634Z 2025-03-14T05:04:09.7077058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7077621Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:04:09.7077912Z 2025-03-14T05:04:09.7078382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7079009Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:04:09.7079299Z 2025-03-14T05:04:09.7079775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7080424Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:04:09.7080744Z 2025-03-14T05:04:09.7081311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7082469Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:04:09.7082899Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:04:09.7083252Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:04:09.7083519Z 2025-03-14T05:04:09.7083996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7084601Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:04:09.7084897Z 2025-03-14T05:04:09.7085309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7085831Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:04:09.7086097Z 2025-03-14T05:04:09.7086499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7086995Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7087302Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7087627Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:04:09.7087893Z 2025-03-14T05:04:09.7088307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7088796Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7089092Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7089418Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:04:09.7089719Z 2025-03-14T05:04:09.7090116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7090601Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7090872Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:04:09.7091149Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:04:09.7091405Z 2025-03-14T05:04:09.7091814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7092344Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:04:09.7092649Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:04:09.7092932Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:04:09.7093190Z 2025-03-14T05:04:09.7093594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7094103Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7094417Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:04:09.7094686Z 2025-03-14T05:04:09.7095102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7095604Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7095951Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:04:09.7096187Z 2025-03-14T05:04:09.7096575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7097074Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7097388Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:04:09.7097625Z 2025-03-14T05:04:09.7098018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7098551Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:04:09.7098896Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:04:09.7099128Z 2025-03-14T05:04:09.7099554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7100085Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:04:09.7100344Z 2025-03-14T05:04:09.7100762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7101280Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:04:09.7101537Z 2025-03-14T05:04:09.7101965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7102502Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:04:09.7102817Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:04:09.7103181Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:04:09.7103529Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:04:09.7103796Z 2025-03-14T05:04:09.7104336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7104914Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:04:09.7105244Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:04:09.7105599Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:04:09.7105944Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:04:09.7106219Z 2025-03-14T05:04:09.7106668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7107197Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:04:09.7107543Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:04:09.7107940Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:04:09.7108230Z 2025-03-14T05:04:09.7108672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7109217Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:04:09.7109566Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:04:09.7109938Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:04:09.7110203Z 2025-03-14T05:04:09.7110622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7111110Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:04:09.7111396Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:04:09.7111645Z 2025-03-14T05:04:09.7112059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7112543Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:04:09.7112817Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:04:09.7113061Z 2025-03-14T05:04:09.7113471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7113974Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:04:09.7114274Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:04:09.7114528Z 2025-03-14T05:04:09.7114924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7115402Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:04:09.7115701Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:04:09.7115954Z 2025-03-14T05:04:09.7116423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7117013Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:04:09.7117314Z 2025-03-14T05:04:09.7117733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7118279Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:04:09.7118563Z 2025-03-14T05:04:09.7119029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7119628Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:04:09.7119919Z 2025-03-14T05:04:09.7120488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:04:09.7121189Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:04:09.7121466Z 2025-03-14T05:04:09.7121877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7122378Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:04:09.7122666Z 2025-03-14T05:04:09.7123186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7123785Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:04:09.7124056Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:04:09.7124326Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:04:09.7124561Z 2025-03-14T05:04:09.7125105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7125745Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7126165Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:04:09.7126513Z 2025-03-14T05:04:09.7127052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7127725Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7128007Z 2025-03-14T05:04:09.7128390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7128862Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:04:09.7129105Z 2025-03-14T05:04:09.7129615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7130238Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:04:09.7130517Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:04:09.7130797Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:04:09.7131035Z 2025-03-14T05:04:09.7131573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7132208Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7132625Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:04:09.7132975Z 2025-03-14T05:04:09.7133510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7134174Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7134457Z 2025-03-14T05:04:09.7134830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7135344Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:04:09.7135616Z 2025-03-14T05:04:09.7136149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7136792Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:04:09.7137073Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:04:09.7137356Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:04:09.7137597Z 2025-03-14T05:04:09.7138133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7138795Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7139236Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:04:09.7139601Z 2025-03-14T05:04:09.7140138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7140826Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7141119Z 2025-03-14T05:04:09.7141503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7141990Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:04:09.7142245Z 2025-03-14T05:04:09.7142779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7143391Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:04:09.7143676Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:04:09.7143998Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:04:09.7144352Z 2025-03-14T05:04:09.7144931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7145604Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7146047Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:04:09.7146413Z 2025-03-14T05:04:09.7146971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7147663Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7147957Z 2025-03-14T05:04:09.7148347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7148835Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:04:09.7149089Z 2025-03-14T05:04:09.7149672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7150281Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:04:09.7150583Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:04:09.7150866Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:04:09.7151117Z 2025-03-14T05:04:09.7151668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7152354Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:04:09.7152822Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:04:09.7153184Z 2025-03-14T05:04:09.7153737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7154412Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7154695Z 2025-03-14T05:04:09.7155072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7155550Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:04:09.7155800Z 2025-03-14T05:04:09.7156164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:09.7156881Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:04:09.7157368Z 2025-03-14T05:04:09.7157734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:09.7158541Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:04:09.7159118Z 2025-03-14T05:04:09.7159493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:09.7160029Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:04:09.7160347Z 2025-03-14T05:04:09.7160819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:04:09.7161398Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:04:09.7161663Z 2025-03-14T05:04:09.7162047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:04:09.7162548Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:04:09.7162817Z 2025-03-14T05:04:09.7163323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:04:09.7163883Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:04:09.7165228Z 2025-03-14T05:04:09.7165795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:04:09.7166474Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:04:09.7166787Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:09.7167114Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:04:09.7167452Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:04:09.7167706Z 2025-03-14T05:04:09.7168160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:04:09.7168698Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:04:09.7168937Z 2025-03-14T05:04:09.7169031Z 2025-03-14T05:04:09.7169132Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:09.7171309Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:04:09.7173666Z l_features_p2_ = L_features_p2_ 2025-03-14T05:04:09.7173907Z l_features_p3_ = L_features_p3_ 2025-03-14T05:04:09.7174130Z l_features_p4_ = L_features_p4_ 2025-03-14T05:04:09.7174339Z l_features_p5_ = L_features_p5_ 2025-03-14T05:04:09.7174548Z l_features_p6_ = L_features_p6_ 2025-03-14T05:04:09.7174935Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:04:09.7175487Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:04:09.7176030Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:04:09.7176573Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:04:09.7177137Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:04:09.7177682Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:04:09.7178157Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:04:09.7178700Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:04:09.7179278Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:04:09.7179832Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:04:09.7180372Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:04:09.7180725Z 2025-03-14T05:04:09.7181259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7182406Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:04:09.7182675Z 2025-03-14T05:04:09.7183065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7183560Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:04:09.7183818Z 2025-03-14T05:04:09.7184397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7185095Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:04:09.7185403Z 2025-03-14T05:04:09.7185837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7186397Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:04:09.7186782Z 2025-03-14T05:04:09.7187304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.7187963Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:04:09.7188319Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:04:09.7188624Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:04:09.7188892Z 2025-03-14T05:04:09.7189382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.7189970Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:04:09.7190247Z 2025-03-14T05:04:09.7190685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.7191225Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:04:09.7191495Z 2025-03-14T05:04:09.7192033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.7192815Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:04:09.7193210Z 2025-03-14T05:04:09.7193788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.7194487Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:04:09.7195068Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:04:09.7195623Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:04:09.7195951Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:04:09.7196207Z 2025-03-14T05:04:09.7196798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7197513Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:04:09.7197784Z 2025-03-14T05:04:09.7198154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7198636Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:04:09.7198889Z 2025-03-14T05:04:09.7199396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7200018Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:04:09.7200299Z 2025-03-14T05:04:09.7200667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7201136Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:04:09.7201389Z 2025-03-14T05:04:09.7201866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.7202470Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:04:09.7202821Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:04:09.7203109Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:04:09.7203356Z 2025-03-14T05:04:09.7203772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.7204280Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:04:09.7204538Z 2025-03-14T05:04:09.7204952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.7205469Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:04:09.7205707Z 2025-03-14T05:04:09.7206169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.7206920Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:04:09.7207256Z 2025-03-14T05:04:09.7207742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.7208355Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:04:09.7208839Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:04:09.7209313Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:04:09.7209603Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:04:09.7209831Z 2025-03-14T05:04:09.7210357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7210962Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:04:09.7211225Z 2025-03-14T05:04:09.7211595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7212069Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:04:09.7212322Z 2025-03-14T05:04:09.7212822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7213431Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:04:09.7213692Z 2025-03-14T05:04:09.7214059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7214530Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:04:09.7214818Z 2025-03-14T05:04:09.7215277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.7215882Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:04:09.7216231Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:04:09.7216512Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:04:09.7216754Z 2025-03-14T05:04:09.7217174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.7217680Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:04:09.7217926Z 2025-03-14T05:04:09.7218334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.7218835Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:04:09.7219076Z 2025-03-14T05:04:09.7219539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.7220203Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:04:09.7220562Z 2025-03-14T05:04:09.7221064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.7221666Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:04:09.7222155Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:04:09.7222637Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:04:09.7222935Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:04:09.7223168Z 2025-03-14T05:04:09.7223687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7224467Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:04:09.7224775Z 2025-03-14T05:04:09.7225210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7225701Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:04:09.7225963Z 2025-03-14T05:04:09.7226486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7227121Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:04:09.7227392Z 2025-03-14T05:04:09.7227770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7228258Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:04:09.7228707Z 2025-03-14T05:04:09.7229075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.7229276Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:04:09.7229378Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:04:09.7229511Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:04:09.7229576Z 2025-03-14T05:04:09.7229909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.7230034Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:04:09.7230109Z 2025-03-14T05:04:09.7230429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.7230560Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:04:09.7230625Z 2025-03-14T05:04:09.7231016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.7231240Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:04:09.7231332Z 2025-03-14T05:04:09.7231729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.7231898Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:04:09.7232203Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:04:09.7232323Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:04:09.7232441Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:04:09.7232504Z 2025-03-14T05:04:09.7232924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7233064Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:04:09.7233135Z 2025-03-14T05:04:09.7233414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7233554Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:04:09.7233617Z 2025-03-14T05:04:09.7234037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:04:09.7234177Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:04:09.7234250Z 2025-03-14T05:04:09.7234532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7234673Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:04:09.7234757Z 2025-03-14T05:04:09.7235124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:04:09.7235308Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:04:09.7235412Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:04:09.7235528Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:04:09.7235600Z 2025-03-14T05:04:09.7235916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:04:09.7236044Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:04:09.7236108Z 2025-03-14T05:04:09.7236431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:04:09.7236550Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:04:09.7236620Z 2025-03-14T05:04:09.7236983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:04:09.7237227Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:04:09.7237316Z 2025-03-14T05:04:09.7237713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:04:09.7237860Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:04:09.7238155Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:04:09.7238281Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:04:09.7238393Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:04:09.7238466Z 2025-03-14T05:04:09.7238759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:04:09.7238889Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:04:09.7239018Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:04:09.7239149Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:04:09.7239271Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:04:09.7239397Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:04:09.7239463Z 2025-03-14T05:04:09.7239732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.7240159Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:04:09.7240232Z 2025-03-14T05:04:09.7240519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.7240714Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:04:09.7240806Z 2025-03-14T05:04:09.7241189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.7241607Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.7241673Z 2025-03-14T05:04:09.7242044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.7242452Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:04:09.7242527Z 2025-03-14T05:04:09.7242788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.7243218Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:04:09.7243284Z 2025-03-14T05:04:09.7243581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.7243785Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:04:09.7243857Z 2025-03-14T05:04:09.7244228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.7244644Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.7244716Z 2025-03-14T05:04:09.7245075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.7245480Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:04:09.7245547Z 2025-03-14T05:04:09.7245808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.7246202Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:04:09.7246272Z 2025-03-14T05:04:09.7246543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.7246726Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:04:09.7246793Z 2025-03-14T05:04:09.7247169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.7247580Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.7247655Z 2025-03-14T05:04:09.7248013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.7248414Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:04:09.7248490Z 2025-03-14T05:04:09.7248743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.7249142Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:04:09.7249209Z 2025-03-14T05:04:09.7249488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.7249705Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:04:09.7249778Z 2025-03-14T05:04:09.7250146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.7250555Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:04:09.7250623Z 2025-03-14T05:04:09.7250986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.7251371Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:04:09.7251445Z 2025-03-14T05:04:09.7251695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:04:09.7252268Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:04:09.7252343Z 2025-03-14T05:04:09.7252609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:04:09.7252784Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:04:09.7252851Z 2025-03-14T05:04:09.7253228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:04:09.7253847Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:04:09.7253939Z 2025-03-14T05:04:09.7254295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:04:09.7254888Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:04:09.7254957Z 2025-03-14T05:04:09.7255305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:04:09.7255470Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:04:09.7255621Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:04:09.7255801Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:04:09.7255983Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:04:09.7256146Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:04:09.7256303Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:04:09.7256455Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:04:09.7256593Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:04:09.7256744Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:04:09.7256876Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:04:09.7256947Z 2025-03-14T05:04:09.7257381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:04:09.7257559Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:04:09.7257737Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:04:09.7257919Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:04:09.7258077Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:04:09.7258254Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:04:09.7258424Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:04:09.7258574Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:04:09.7258734Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:04:09.7258907Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:04:09.7259064Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:04:09.7259226Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:04:09.7259386Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:04:09.7259539Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:04:09.7259696Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:04:09.7259863Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:04:09.7259928Z 2025-03-14T05:04:09.7260339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7260553Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:04:09.7260618Z 2025-03-14T05:04:09.7261077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7261252Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:04:09.7261411Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:04:09.7261591Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:04:09.7261663Z 2025-03-14T05:04:09.7262036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7262216Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:04:09.7262281Z 2025-03-14T05:04:09.7262602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7262745Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:04:09.7262817Z 2025-03-14T05:04:09.7263127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7263266Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7263397Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7263555Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:09.7263621Z 2025-03-14T05:04:09.7263952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7264085Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7264292Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7264459Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:04:09.7264538Z 2025-03-14T05:04:09.7264864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7265035Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7265142Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:04:09.7265279Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:04:09.7265344Z 2025-03-14T05:04:09.7265663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7265815Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:09.7265913Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:04:09.7266043Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:04:09.7266118Z 2025-03-14T05:04:09.7266438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7266609Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7266726Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:04:09.7266804Z 2025-03-14T05:04:09.7267102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7267285Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7267430Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:04:09.7267497Z 2025-03-14T05:04:09.7267817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7267970Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7268090Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:04:09.7268155Z 2025-03-14T05:04:09.7268471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7268660Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:09.7268782Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:04:09.7268847Z 2025-03-14T05:04:09.7269201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7269349Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:09.7269424Z 2025-03-14T05:04:09.7269761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7269909Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:09.7269974Z 2025-03-14T05:04:09.7270335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7270478Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:09.7270611Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:04:09.7270768Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:09.7270938Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:04:09.7271004Z 2025-03-14T05:04:09.7271355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7271498Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:09.7271633Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:04:09.7271784Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:09.7271933Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:04:09.7271999Z 2025-03-14T05:04:09.7272342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7272463Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:09.7272633Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:09.7272766Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:04:09.7272838Z 2025-03-14T05:04:09.7273211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7273338Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:09.7273507Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:09.7273668Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:04:09.7273734Z 2025-03-14T05:04:09.7274050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7274155Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:09.7274273Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:09.7274337Z 2025-03-14T05:04:09.7274645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7274749Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:09.7274866Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:09.7274938Z 2025-03-14T05:04:09.7275237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7275364Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:09.7275494Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:09.7275567Z 2025-03-14T05:04:09.7275862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7275982Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:09.7276111Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:09.7276185Z 2025-03-14T05:04:09.7276523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7276712Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:09.7276796Z 2025-03-14T05:04:09.7277133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7277296Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:04:09.7277367Z 2025-03-14T05:04:09.7277745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7277929Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:04:09.7277995Z 2025-03-14T05:04:09.7278393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7278602Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:04:09.7278672Z 2025-03-14T05:04:09.7279127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7279312Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:04:09.7279463Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:04:09.7279629Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:04:09.7279693Z 2025-03-14T05:04:09.7280069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7280238Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:04:09.7280308Z 2025-03-14T05:04:09.7280614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7280767Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:04:09.7280830Z 2025-03-14T05:04:09.7281147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7281281Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7282068Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7282268Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:04:09.7282344Z 2025-03-14T05:04:09.7282661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7282802Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7282938Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7283093Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:04:09.7283168Z 2025-03-14T05:04:09.7283477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7283666Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7283761Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:04:09.7283902Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:04:09.7283967Z 2025-03-14T05:04:09.7284283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7284437Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:04:09.7284542Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:04:09.7284675Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:04:09.7284749Z 2025-03-14T05:04:09.7285051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7285217Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7285333Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:04:09.7285406Z 2025-03-14T05:04:09.7285736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7285923Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7286040Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:04:09.7286137Z 2025-03-14T05:04:09.7286436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7286595Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7286708Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:04:09.7286782Z 2025-03-14T05:04:09.7287081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7287277Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:04:09.7287392Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:04:09.7287467Z 2025-03-14T05:04:09.7287799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7287949Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:04:09.7288017Z 2025-03-14T05:04:09.7288352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7288492Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:04:09.7288564Z 2025-03-14T05:04:09.7288907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7289054Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:04:09.7289193Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:04:09.7289350Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:04:09.7289520Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:04:09.7289587Z 2025-03-14T05:04:09.7289937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7290079Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:04:09.7290212Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:04:09.7290366Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:04:09.7290513Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:04:09.7290579Z 2025-03-14T05:04:09.7290912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7291029Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:04:09.7291197Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:04:09.7291334Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:04:09.7291408Z 2025-03-14T05:04:09.7291774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7291898Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:04:09.7292084Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:04:09.7292228Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:04:09.7292292Z 2025-03-14T05:04:09.7292613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7292715Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:04:09.7292842Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:04:09.7292910Z 2025-03-14T05:04:09.7293229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7293331Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:04:09.7293459Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:04:09.7293524Z 2025-03-14T05:04:09.7293837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7293958Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:04:09.7294105Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:04:09.7294171Z 2025-03-14T05:04:09.7294490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7294606Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:04:09.7294746Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:04:09.7294811Z 2025-03-14T05:04:09.7295158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7295372Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:04:09.7295447Z 2025-03-14T05:04:09.7295783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7295960Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:04:09.7296029Z 2025-03-14T05:04:09.7296426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7296613Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:04:09.7296680Z 2025-03-14T05:04:09.7297093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7297304Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:04:09.7297379Z 2025-03-14T05:04:09.7297858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7298026Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:04:09.7298201Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:04:09.7298352Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:04:09.7298422Z 2025-03-14T05:04:09.7298812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7298985Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:04:09.7299059Z 2025-03-14T05:04:09.7299383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7299541Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:04:09.7299609Z 2025-03-14T05:04:09.7299939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7300075Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7300213Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7300365Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:04:09.7300438Z 2025-03-14T05:04:09.7300763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7300899Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7301023Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7301186Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:04:09.7301253Z 2025-03-14T05:04:09.7301577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7301735Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7301856Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:04:09.7301992Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:04:09.7302067Z 2025-03-14T05:04:09.7302386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7302545Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:04:09.7302643Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:04:09.7302782Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:04:09.7302851Z 2025-03-14T05:04:09.7303165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7303322Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7303448Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:04:09.7303514Z 2025-03-14T05:04:09.7303848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7304034Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7304255Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:04:09.7304336Z 2025-03-14T05:04:09.7304645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7304813Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7304926Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:04:09.7305002Z 2025-03-14T05:04:09.7305309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7305508Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:04:09.7305621Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:04:09.7305696Z 2025-03-14T05:04:09.7306034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7306188Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:04:09.7306257Z 2025-03-14T05:04:09.7306602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7306743Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:04:09.7306822Z 2025-03-14T05:04:09.7307175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7307315Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:04:09.7307441Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:04:09.7307634Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:04:09.7307775Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:04:09.7307849Z 2025-03-14T05:04:09.7308187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7308333Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:04:09.7308457Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:04:09.7308615Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:04:09.7308754Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:04:09.7308828Z 2025-03-14T05:04:09.7309151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7309275Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:04:09.7309435Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:04:09.7309607Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:04:09.7309675Z 2025-03-14T05:04:09.7310026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7310171Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:04:09.7310336Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:04:09.7310479Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:04:09.7310544Z 2025-03-14T05:04:09.7310862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7310961Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:04:09.7311090Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:04:09.7311155Z 2025-03-14T05:04:09.7311473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7311571Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:04:09.7311696Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:04:09.7311765Z 2025-03-14T05:04:09.7312080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7312198Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:04:09.7312339Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:04:09.7312405Z 2025-03-14T05:04:09.7312720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7312838Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:04:09.7312976Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:04:09.7313043Z 2025-03-14T05:04:09.7313404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7313629Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:04:09.7313703Z 2025-03-14T05:04:09.7314040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7314207Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:04:09.7314272Z 2025-03-14T05:04:09.7314666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7314844Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:04:09.7314919Z 2025-03-14T05:04:09.7315323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7315536Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:04:09.7315602Z 2025-03-14T05:04:09.7316085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7316237Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:04:09.7316414Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:04:09.7316553Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:04:09.7316628Z 2025-03-14T05:04:09.7316998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7317174Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:04:09.7317239Z 2025-03-14T05:04:09.7317555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7317708Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:04:09.7317773Z 2025-03-14T05:04:09.7318088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7318218Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7318350Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7318497Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:04:09.7318570Z 2025-03-14T05:04:09.7318883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7319015Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7319136Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7319295Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:04:09.7319382Z 2025-03-14T05:04:09.7319702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7319826Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7319926Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:04:09.7320057Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:04:09.7320133Z 2025-03-14T05:04:09.7320443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7320598Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:04:09.7320692Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:04:09.7320827Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:04:09.7320893Z 2025-03-14T05:04:09.7321200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7321353Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7321474Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:04:09.7321559Z 2025-03-14T05:04:09.7321888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7322036Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7322341Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:04:09.7322407Z 2025-03-14T05:04:09.7322709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7322855Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7322971Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:04:09.7323036Z 2025-03-14T05:04:09.7323337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7323518Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:04:09.7323635Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:04:09.7323699Z 2025-03-14T05:04:09.7324032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7324179Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:04:09.7324244Z 2025-03-14T05:04:09.7324569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7324705Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:04:09.7324777Z 2025-03-14T05:04:09.7325106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7325246Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:04:09.7325394Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:04:09.7325551Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:04:09.7325690Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:04:09.7325761Z 2025-03-14T05:04:09.7326104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7326250Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:04:09.7326373Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:04:09.7326541Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:04:09.7326675Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:04:09.7326747Z 2025-03-14T05:04:09.7327062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7327183Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:04:09.7327337Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:04:09.7327495Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:04:09.7327578Z 2025-03-14T05:04:09.7327914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7328048Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:04:09.7328224Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:04:09.7328368Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:04:09.7328442Z 2025-03-14T05:04:09.7328743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7328848Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:04:09.7328964Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:04:09.7329038Z 2025-03-14T05:04:09.7329335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7329436Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:04:09.7329550Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:04:09.7329625Z 2025-03-14T05:04:09.7329922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7330046Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:04:09.7330175Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:04:09.7330249Z 2025-03-14T05:04:09.7330546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7330665Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:04:09.7330796Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:04:09.7330889Z 2025-03-14T05:04:09.7331222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7331415Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:04:09.7331478Z 2025-03-14T05:04:09.7331806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7331973Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:04:09.7332039Z 2025-03-14T05:04:09.7332417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7332590Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:04:09.7332661Z 2025-03-14T05:04:09.7333045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:09.7333273Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:04:09.7333338Z 2025-03-14T05:04:09.7333788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:09.7333951Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:04:09.7334108Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:04:09.7334243Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:04:09.7334316Z 2025-03-14T05:04:09.7334685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:09.7334856Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:04:09.7334920Z 2025-03-14T05:04:09.7335241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:09.7335385Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:04:09.7335458Z 2025-03-14T05:04:09.7335768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:09.7335902Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:04:09.7336024Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7336181Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:04:09.7336244Z 2025-03-14T05:04:09.7336573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:09.7336694Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:04:09.7336820Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:04:09.7336965Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:04:09.7337054Z 2025-03-14T05:04:09.7337352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:09.7337476Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:04:09.7337564Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:04:09.7337700Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:04:09.7337762Z 2025-03-14T05:04:09.7338077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:09.7338224Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:04:09.7338325Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:04:09.7338452Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:04:09.7338528Z 2025-03-14T05:04:09.7338826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:09.7338987Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:09.7339127Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:04:09.7339193Z 2025-03-14T05:04:09.7339511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:09.7339678Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:09.7339799Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:04:09.7339866Z 2025-03-14T05:04:09.7340171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:09.7340318Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:09.7340436Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:04:09.7340502Z 2025-03-14T05:04:09.7340812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:09.7340995Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:04:09.7341112Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:04:09.7341178Z 2025-03-14T05:04:09.7341522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:09.7341659Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:04:09.7341732Z 2025-03-14T05:04:09.7342065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:09.7342207Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:04:09.7342274Z 2025-03-14T05:04:09.7342624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:09.7342762Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:04:09.7342920Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:04:09.7343073Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:04:09.7343220Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:04:09.7343286Z 2025-03-14T05:04:09.7343636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:09.7343771Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:04:09.7343905Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:04:09.7344058Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:04:09.7344279Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:04:09.7344352Z 2025-03-14T05:04:09.7344695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:09.7344816Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:04:09.7345019Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:04:09.7345190Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:04:09.7345258Z 2025-03-14T05:04:09.7345598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:09.7345731Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:04:09.7345905Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:04:09.7346034Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:04:09.7346107Z 2025-03-14T05:04:09.7346415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:09.7346519Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:04:09.7346634Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:04:09.7346704Z 2025-03-14T05:04:09.7347009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:09.7347113Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:04:09.7347226Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:04:09.7347298Z 2025-03-14T05:04:09.7347599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:09.7347721Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:04:09.7347853Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:04:09.7347924Z 2025-03-14T05:04:09.7348224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:09.7348343Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:04:09.7348472Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:04:09.7348568Z 2025-03-14T05:04:09.7348910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:09.7349104Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:04:09.7349168Z 2025-03-14T05:04:09.7349516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:09.7349676Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:04:09.7349747Z 2025-03-14T05:04:09.7350127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:09.7350305Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:04:09.7350371Z 2025-03-14T05:04:09.7350854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:04:09.7351009Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:04:09.7351086Z 2025-03-14T05:04:09.7351399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7351552Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:04:09.7351639Z 2025-03-14T05:04:09.7352079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7352199Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:04:09.7352312Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:04:09.7352426Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:04:09.7352501Z 2025-03-14T05:04:09.7352967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7353107Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7353348Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:04:09.7353413Z 2025-03-14T05:04:09.7353876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7354045Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7354118Z 2025-03-14T05:04:09.7354423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7354553Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:04:09.7354619Z 2025-03-14T05:04:09.7355056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7355193Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:04:09.7355306Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:04:09.7355424Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:04:09.7355494Z 2025-03-14T05:04:09.7355937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7356074Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7356302Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:04:09.7356377Z 2025-03-14T05:04:09.7356813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7356983Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7357048Z 2025-03-14T05:04:09.7357363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7357504Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:04:09.7357578Z 2025-03-14T05:04:09.7357989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7358128Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:04:09.7358231Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:04:09.7358355Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:04:09.7358422Z 2025-03-14T05:04:09.7358872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7359003Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7359241Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:04:09.7359306Z 2025-03-14T05:04:09.7359751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7359919Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7359982Z 2025-03-14T05:04:09.7360274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7360395Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:04:09.7360467Z 2025-03-14T05:04:09.7360879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7360998Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:04:09.7361120Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:04:09.7361250Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:04:09.7361313Z 2025-03-14T05:04:09.7361756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7361886Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:09.7362122Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:04:09.7362186Z 2025-03-14T05:04:09.7362624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7362783Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7362856Z 2025-03-14T05:04:09.7363138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7363265Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:04:09.7363346Z 2025-03-14T05:04:09.7363785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:09.7363912Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:04:09.7364021Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:04:09.7364135Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:04:09.7364207Z 2025-03-14T05:04:09.7364635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:09.7364802Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:04:09.7365027Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:04:09.7365100Z 2025-03-14T05:04:09.7365536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:09.7365696Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:09.7365769Z 2025-03-14T05:04:09.7366052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:09.7366178Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:04:09.7366242Z 2025-03-14T05:04:09.7366518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:09.7366879Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:04:09.7366954Z 2025-03-14T05:04:09.7367244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:09.7367693Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:04:09.7367758Z 2025-03-14T05:04:09.7368031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:09.7368224Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:04:09.7368297Z 2025-03-14T05:04:09.7368666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:04:09.7368813Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:04:09.7368875Z 2025-03-14T05:04:09.7369171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:04:09.7369339Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:04:09.7369414Z 2025-03-14T05:04:09.7369796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:04:09.7369956Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:04:09.7370020Z 2025-03-14T05:04:09.7370490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:04:09.7370632Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:04:09.7370749Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:09.7370909Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:04:09.7371036Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:04:09.7371107Z 2025-03-14T05:04:09.7371459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:04:09.7371582Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:04:09.7371646Z 2025-03-14T05:04:10.9228890Z 2025-03-14T05:04:10.9235498Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:10.9238333Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 269952, 4][1079808, 4, 1]cpu", L_anchors_0_tensor: "f32[269952, 4][4, 1]cpu", L_pred_anchor_deltas_1_: "f32[4, 67488, 4][269952, 4, 1]cpu", L_anchors_1_tensor: "f32[67488, 4][4, 1]cpu", L_pred_anchor_deltas_2_: "f32[4, 16872, 4][67488, 4, 1]cpu", L_anchors_2_tensor: "f32[16872, 4][4, 1]cpu", L_pred_anchor_deltas_3_: "f32[4, 4218, 4][16872, 4, 1]cpu", L_anchors_3_tensor: "f32[4218, 4][4, 1]cpu", L_pred_anchor_deltas_4_: "f32[4, 1083, 4][4332, 4, 1]cpu", L_anchors_4_tensor: "f32[1083, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 269952][269952, 1]cpu", L_pred_objectness_logits_1_: "f32[4, 67488][67488, 1]cpu", L_pred_objectness_logits_2_: "f32[4, 16872][16872, 1]cpu", L_pred_objectness_logits_3_: "f32[4, 4218][4218, 1]cpu", L_pred_objectness_logits_4_: "f32[4, 1083][1083, 1]cpu"): 2025-03-14T05:04:10.9240094Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:04:10.9242172Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:04:10.9247855Z l_pred_anchor_deltas_1_ = L_pred_anchor_deltas_1_ 2025-03-14T05:04:10.9251589Z l_anchors_1_tensor = L_anchors_1_tensor 2025-03-14T05:04:10.9256162Z l_pred_anchor_deltas_2_ = L_pred_anchor_deltas_2_ 2025-03-14T05:04:10.9258401Z l_anchors_2_tensor = L_anchors_2_tensor 2025-03-14T05:04:10.9258819Z l_pred_anchor_deltas_3_ = L_pred_anchor_deltas_3_ 2025-03-14T05:04:10.9262102Z l_anchors_3_tensor = L_anchors_3_tensor 2025-03-14T05:04:10.9266839Z l_pred_anchor_deltas_4_ = L_pred_anchor_deltas_4_ 2025-03-14T05:04:10.9267243Z l_anchors_4_tensor = L_anchors_4_tensor 2025-03-14T05:04:10.9271910Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:04:10.9276878Z l_pred_objectness_logits_1_ = L_pred_objectness_logits_1_ 2025-03-14T05:04:10.9277332Z l_pred_objectness_logits_2_ = L_pred_objectness_logits_2_ 2025-03-14T05:04:10.9283389Z l_pred_objectness_logits_3_ = L_pred_objectness_logits_3_ 2025-03-14T05:04:10.9287170Z l_pred_objectness_logits_4_ = L_pred_objectness_logits_4_ 2025-03-14T05:04:10.9291060Z 2025-03-14T05:04:10.9295177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:10.9296585Z pred_anchor_deltas_i: "f32[1079808, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:04:10.9296949Z 2025-03-14T05:04:10.9303271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:10.9304493Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:04:10.9305507Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:04:10.9306007Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:04:10.9310845Z 2025-03-14T05:04:10.9315940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:10.9318576Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:04:10.9322801Z 2025-03-14T05:04:10.9325271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:10.9326715Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:04:10.9327949Z 2025-03-14T05:04:10.9331242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:10.9331766Z getitem: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:10.9332087Z getitem_1: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9332431Z widths: "f32[1079808][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:04:10.9332713Z 2025-03-14T05:04:10.9333123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:10.9333621Z getitem_2: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:10.9333926Z getitem_3: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:10.9334446Z heights: "f32[1079808][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:04:10.9334730Z 2025-03-14T05:04:10.9336439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:10.9336944Z getitem_4: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9337222Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:04:10.9337494Z ctr_x: "f32[1079808][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:04:10.9337739Z 2025-03-14T05:04:10.9338140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:10.9338663Z getitem_5: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:10.9338960Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:04:10.9339234Z ctr_y: "f32[1079808][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:04:10.9339483Z 2025-03-14T05:04:10.9339898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:10.9340457Z getitem_6: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:10.9340825Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:04:10.9341070Z 2025-03-14T05:04:10.9341464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:10.9342008Z getitem_7: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:10.9342341Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:04:10.9342578Z 2025-03-14T05:04:10.9342968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:10.9343473Z getitem_8: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:10.9343799Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:04:10.9344044Z 2025-03-14T05:04:10.9344570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:10.9345126Z getitem_9: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:10.9345491Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:04:10.9345733Z 2025-03-14T05:04:10.9346161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:10.9346689Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:10.9346951Z 2025-03-14T05:04:10.9347369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:10.9347892Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:10.9348150Z 2025-03-14T05:04:10.9348588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:10.9349143Z getitem_10: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:10.9349459Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:04:10.9349790Z getitem_11: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:10.9350136Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:04:10.9350394Z 2025-03-14T05:04:10.9350806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:10.9351340Z getitem_12: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:10.9351648Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:04:10.9351978Z getitem_13: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:10.9352315Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:04:10.9352571Z 2025-03-14T05:04:10.9352976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:10.9353494Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:10.9353842Z getitem_14: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:10.9354186Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:04:10.9354462Z 2025-03-14T05:04:10.9354884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:10.9355392Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:10.9355724Z getitem_15: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:10.9356072Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:04:10.9356328Z 2025-03-14T05:04:10.9356723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:10.9357181Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:10.9357447Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:10.9357684Z 2025-03-14T05:04:10.9358097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:10.9358547Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:10.9358812Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:10.9359059Z 2025-03-14T05:04:10.9359440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:10.9359908Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:10.9360204Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:10.9360451Z 2025-03-14T05:04:10.9360837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:10.9361302Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:10.9361616Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:10.9361866Z 2025-03-14T05:04:10.9362289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:10.9362857Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:10.9363148Z 2025-03-14T05:04:10.9363559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:10.9364099Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:04:10.9364380Z 2025-03-14T05:04:10.9364839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:10.9365435Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:04:10.9365729Z 2025-03-14T05:04:10.9366192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:10.9366870Z pred_anchor_deltas_i_1: "f32[269952, 4][4, 1]cpu" = l_pred_anchor_deltas_1_.reshape(-1, 4); l_pred_anchor_deltas_1_ = None 2025-03-14T05:04:10.9367212Z 2025-03-14T05:04:10.9367717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:10.9368438Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = l_anchors_1_tensor.unsqueeze(0); l_anchors_1_tensor = None 2025-03-14T05:04:10.9368830Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:04:10.9369170Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:04:10.9369423Z 2025-03-14T05:04:10.9369879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:10.9370469Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:04:10.9370754Z 2025-03-14T05:04:10.9371147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:10.9371654Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:04:10.9371922Z 2025-03-14T05:04:10.9372318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:10.9372813Z getitem_16: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:04:10.9373124Z getitem_17: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9373455Z widths_1: "f32[269952][1]cpu" = getitem_16 - getitem_17; getitem_16 = getitem_17 = None 2025-03-14T05:04:10.9373723Z 2025-03-14T05:04:10.9374124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:10.9374612Z getitem_18: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:04:10.9374915Z getitem_19: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:04:10.9375261Z heights_1: "f32[269952][1]cpu" = getitem_18 - getitem_19; getitem_18 = getitem_19 = None 2025-03-14T05:04:10.9375528Z 2025-03-14T05:04:10.9375915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:10.9376389Z getitem_20: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9376657Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:04:10.9376933Z ctr_x_1: "f32[269952][1]cpu" = getitem_20 + mul_10; getitem_20 = mul_10 = None 2025-03-14T05:04:10.9377184Z 2025-03-14T05:04:10.9377572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:10.9378075Z getitem_21: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:04:10.9378371Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:04:10.9378644Z ctr_y_1: "f32[269952][1]cpu" = getitem_21 + mul_11; getitem_21 = mul_11 = None 2025-03-14T05:04:10.9378894Z 2025-03-14T05:04:10.9379280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:10.9379806Z getitem_22: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:10.9380156Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_22 / 1.0; getitem_22 = None 2025-03-14T05:04:10.9380398Z 2025-03-14T05:04:10.9380786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:10.9381316Z getitem_23: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:10.9382351Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_23 / 1.0; getitem_23 = None 2025-03-14T05:04:10.9382599Z 2025-03-14T05:04:10.9382997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:10.9383506Z getitem_24: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:10.9383842Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_24 / 1.0; getitem_24 = None 2025-03-14T05:04:10.9384084Z 2025-03-14T05:04:10.9384550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:10.9385101Z getitem_25: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:04:10.9385457Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_25 / 1.0; getitem_25 = None 2025-03-14T05:04:10.9385698Z 2025-03-14T05:04:10.9386135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:10.9386681Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:04:10.9386950Z 2025-03-14T05:04:10.9387394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:10.9387932Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:04:10.9388203Z 2025-03-14T05:04:10.9388639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:10.9389295Z getitem_26: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:04:10.9389615Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_26; dx_1 = getitem_26 = None 2025-03-14T05:04:10.9389962Z getitem_27: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:04:10.9390321Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_27; mul_12 = getitem_27 = None 2025-03-14T05:04:10.9390593Z 2025-03-14T05:04:10.9391027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:10.9391574Z getitem_28: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:04:10.9391896Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_28; dy_1 = getitem_28 = None 2025-03-14T05:04:10.9392232Z getitem_29: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:04:10.9392582Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_29; mul_13 = getitem_29 = None 2025-03-14T05:04:10.9392844Z 2025-03-14T05:04:10.9393262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:10.9393807Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:04:10.9394176Z getitem_30: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:04:10.9394537Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_30; exp_2 = getitem_30 = None 2025-03-14T05:04:10.9394826Z 2025-03-14T05:04:10.9395251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:10.9395756Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:04:10.9396097Z getitem_31: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:04:10.9396461Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_31; exp_3 = getitem_31 = None 2025-03-14T05:04:10.9396724Z 2025-03-14T05:04:10.9397133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:10.9397609Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:04:10.9397889Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:04:10.9398135Z 2025-03-14T05:04:10.9398536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:10.9399004Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:04:10.9399278Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:04:10.9399527Z 2025-03-14T05:04:10.9399927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:10.9400421Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:04:10.9400749Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:04:10.9401009Z 2025-03-14T05:04:10.9401415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:10.9401915Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:04:10.9402220Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:04:10.9402475Z 2025-03-14T05:04:10.9402907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:10.9403509Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:04:10.9403813Z 2025-03-14T05:04:10.9404228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:10.9404766Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:04:10.9405053Z 2025-03-14T05:04:10.9405516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:10.9406113Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:04:10.9406407Z 2025-03-14T05:04:10.9406905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:10.9407580Z pred_anchor_deltas_i_2: "f32[67488, 4][4, 1]cpu" = l_pred_anchor_deltas_2_.reshape(-1, 4); l_pred_anchor_deltas_2_ = None 2025-03-14T05:04:10.9407927Z 2025-03-14T05:04:10.9408433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:10.9409092Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = l_anchors_2_tensor.unsqueeze(0); l_anchors_2_tensor = None 2025-03-14T05:04:10.9409476Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:04:10.9409815Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:04:10.9410060Z 2025-03-14T05:04:10.9410532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:10.9411121Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_2.float(); pred_anchor_deltas_i_2 = None 2025-03-14T05:04:10.9411411Z 2025-03-14T05:04:10.9411800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:10.9412304Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:04:10.9412571Z 2025-03-14T05:04:10.9412965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:10.9413454Z getitem_32: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:04:10.9413766Z getitem_33: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9414098Z widths_2: "f32[67488][1]cpu" = getitem_32 - getitem_33; getitem_32 = getitem_33 = None 2025-03-14T05:04:10.9414365Z 2025-03-14T05:04:10.9414772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:10.9415292Z getitem_34: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:04:10.9415589Z getitem_35: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:04:10.9415912Z heights_2: "f32[67488][1]cpu" = getitem_34 - getitem_35; getitem_34 = getitem_35 = None 2025-03-14T05:04:10.9416181Z 2025-03-14T05:04:10.9416572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:10.9417051Z getitem_36: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9417322Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:04:10.9417593Z ctr_x_2: "f32[67488][1]cpu" = getitem_36 + mul_20; getitem_36 = mul_20 = None 2025-03-14T05:04:10.9417846Z 2025-03-14T05:04:10.9418240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:10.9418747Z getitem_37: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:04:10.9419043Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:04:10.9419321Z ctr_y_2: "f32[67488][1]cpu" = getitem_37 + mul_21; getitem_37 = mul_21 = None 2025-03-14T05:04:10.9419573Z 2025-03-14T05:04:10.9420003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:10.9420554Z getitem_38: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:10.9420892Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_38 / 1.0; getitem_38 = None 2025-03-14T05:04:10.9421155Z 2025-03-14T05:04:10.9421551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:10.9422056Z getitem_39: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:10.9422383Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_39 / 1.0; getitem_39 = None 2025-03-14T05:04:10.9422628Z 2025-03-14T05:04:10.9423019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:10.9423524Z getitem_40: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:10.9423846Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_40 / 1.0; getitem_40 = None 2025-03-14T05:04:10.9424087Z 2025-03-14T05:04:10.9424574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:10.9425162Z getitem_41: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:04:10.9425520Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_41 / 1.0; getitem_41 = None 2025-03-14T05:04:10.9425767Z 2025-03-14T05:04:10.9426189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:10.9426725Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:04:10.9426993Z 2025-03-14T05:04:10.9427418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:10.9427946Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:04:10.9428214Z 2025-03-14T05:04:10.9428679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:10.9429225Z getitem_42: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:04:10.9429542Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_42; dx_2 = getitem_42 = None 2025-03-14T05:04:10.9429887Z getitem_43: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:04:10.9430242Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_43; mul_22 = getitem_43 = None 2025-03-14T05:04:10.9430506Z 2025-03-14T05:04:10.9430948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:10.9431495Z getitem_44: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:04:10.9431818Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_44; dy_2 = getitem_44 = None 2025-03-14T05:04:10.9432158Z getitem_45: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:04:10.9432506Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_45; mul_23 = getitem_45 = None 2025-03-14T05:04:10.9432763Z 2025-03-14T05:04:10.9433369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:10.9433896Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:04:10.9434238Z getitem_46: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:04:10.9434618Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_46; exp_4 = getitem_46 = None 2025-03-14T05:04:10.9434881Z 2025-03-14T05:04:10.9435299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:10.9435801Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:04:10.9436140Z getitem_47: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:04:10.9436505Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_47; exp_5 = getitem_47 = None 2025-03-14T05:04:10.9436768Z 2025-03-14T05:04:10.9437170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:10.9437642Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:04:10.9437918Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:04:10.9438162Z 2025-03-14T05:04:10.9438562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:10.9439025Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:04:10.9439295Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:04:10.9439543Z 2025-03-14T05:04:10.9439939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:10.9440424Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:04:10.9440734Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:04:10.9440990Z 2025-03-14T05:04:10.9441384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:10.9441898Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:04:10.9442209Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:04:10.9442467Z 2025-03-14T05:04:10.9442906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:10.9443506Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:04:10.9443823Z 2025-03-14T05:04:10.9444228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:10.9444775Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:04:10.9445059Z 2025-03-14T05:04:10.9445516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:10.9446105Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:04:10.9446396Z 2025-03-14T05:04:10.9446906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:10.9447562Z pred_anchor_deltas_i_3: "f32[16872, 4][4, 1]cpu" = l_pred_anchor_deltas_3_.reshape(-1, 4); l_pred_anchor_deltas_3_ = None 2025-03-14T05:04:10.9447917Z 2025-03-14T05:04:10.9448423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:10.9449084Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = l_anchors_3_tensor.unsqueeze(0); l_anchors_3_tensor = None 2025-03-14T05:04:10.9449470Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:04:10.9449813Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:04:10.9450096Z 2025-03-14T05:04:10.9450564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:10.9451162Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:04:10.9451455Z 2025-03-14T05:04:10.9451864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:10.9452373Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:04:10.9452641Z 2025-03-14T05:04:10.9453036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:10.9453533Z getitem_48: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:04:10.9453839Z getitem_49: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9454170Z widths_3: "f32[16872][1]cpu" = getitem_48 - getitem_49; getitem_48 = getitem_49 = None 2025-03-14T05:04:10.9454440Z 2025-03-14T05:04:10.9454844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:10.9455375Z getitem_50: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:04:10.9455680Z getitem_51: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:04:10.9456007Z heights_3: "f32[16872][1]cpu" = getitem_50 - getitem_51; getitem_50 = getitem_51 = None 2025-03-14T05:04:10.9456280Z 2025-03-14T05:04:10.9456682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:10.9457175Z getitem_52: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9457455Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:04:10.9457733Z ctr_x_3: "f32[16872][1]cpu" = getitem_52 + mul_30; getitem_52 = mul_30 = None 2025-03-14T05:04:10.9457987Z 2025-03-14T05:04:10.9458393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:10.9458911Z getitem_53: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:04:10.9459212Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:04:10.9459487Z ctr_y_3: "f32[16872][1]cpu" = getitem_53 + mul_31; getitem_53 = mul_31 = None 2025-03-14T05:04:10.9459745Z 2025-03-14T05:04:10.9460183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:10.9460701Z getitem_54: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:10.9461051Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_54 / 1.0; getitem_54 = None 2025-03-14T05:04:10.9461295Z 2025-03-14T05:04:10.9461685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:10.9462195Z getitem_55: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:10.9462524Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_55 / 1.0; getitem_55 = None 2025-03-14T05:04:10.9462765Z 2025-03-14T05:04:10.9463158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:10.9463660Z getitem_56: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:10.9463981Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_56 / 1.0; getitem_56 = None 2025-03-14T05:04:10.9464300Z 2025-03-14T05:04:10.9464699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:10.9465241Z getitem_57: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:04:10.9465590Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_57 / 1.0; getitem_57 = None 2025-03-14T05:04:10.9465828Z 2025-03-14T05:04:10.9466250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:10.9466778Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:04:10.9467040Z 2025-03-14T05:04:10.9467453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:10.9467974Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:04:10.9468275Z 2025-03-14T05:04:10.9468699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:10.9469237Z getitem_58: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:04:10.9469548Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_58; dx_3 = getitem_58 = None 2025-03-14T05:04:10.9469888Z getitem_59: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:04:10.9470246Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_59; mul_32 = getitem_59 = None 2025-03-14T05:04:10.9470516Z 2025-03-14T05:04:10.9470950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:10.9471494Z getitem_60: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:04:10.9471815Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_60; dy_3 = getitem_60 = None 2025-03-14T05:04:10.9472154Z getitem_61: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:04:10.9472510Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_61; mul_33 = getitem_61 = None 2025-03-14T05:04:10.9473830Z 2025-03-14T05:04:10.9474288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:10.9474792Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:04:10.9475146Z getitem_62: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:04:10.9475496Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_62; exp_6 = getitem_62 = None 2025-03-14T05:04:10.9475755Z 2025-03-14T05:04:10.9476171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:10.9476669Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:04:10.9477009Z getitem_63: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:04:10.9477371Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_63; exp_7 = getitem_63 = None 2025-03-14T05:04:10.9477628Z 2025-03-14T05:04:10.9478016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:10.9478470Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:04:10.9478738Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:04:10.9478972Z 2025-03-14T05:04:10.9479361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:10.9479808Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:04:10.9480068Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:04:10.9480303Z 2025-03-14T05:04:10.9480689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:10.9481156Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:04:10.9482174Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:04:10.9482527Z 2025-03-14T05:04:10.9483039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:10.9483512Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:04:10.9483810Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:04:10.9484055Z 2025-03-14T05:04:10.9484480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:10.9485066Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:04:10.9485366Z 2025-03-14T05:04:10.9485774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:10.9486312Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:04:10.9486588Z 2025-03-14T05:04:10.9487046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:10.9487678Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:04:10.9487967Z 2025-03-14T05:04:10.9488465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:04:10.9489166Z pred_anchor_deltas_i_4: "f32[4332, 4][4, 1]cpu" = l_pred_anchor_deltas_4_.reshape(-1, 4); l_pred_anchor_deltas_4_ = None 2025-03-14T05:04:10.9489491Z 2025-03-14T05:04:10.9489988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:04:10.9490670Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = l_anchors_4_tensor.unsqueeze(0); l_anchors_4_tensor = None 2025-03-14T05:04:10.9491051Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:04:10.9491388Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:04:10.9491639Z 2025-03-14T05:04:10.9492084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:10.9492661Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_4.float(); pred_anchor_deltas_i_4 = None 2025-03-14T05:04:10.9492947Z 2025-03-14T05:04:10.9493336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:10.9493850Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:04:10.9494108Z 2025-03-14T05:04:10.9494499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:10.9494984Z getitem_64: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:04:10.9495282Z getitem_65: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9495604Z widths_4: "f32[4332][1]cpu" = getitem_64 - getitem_65; getitem_64 = getitem_65 = None 2025-03-14T05:04:10.9495864Z 2025-03-14T05:04:10.9496291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:10.9496772Z getitem_66: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:04:10.9497068Z getitem_67: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:04:10.9497390Z heights_4: "f32[4332][1]cpu" = getitem_66 - getitem_67; getitem_66 = getitem_67 = None 2025-03-14T05:04:10.9497658Z 2025-03-14T05:04:10.9498053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:10.9498529Z getitem_68: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:04:10.9498798Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:04:10.9499068Z ctr_x_4: "f32[4332][1]cpu" = getitem_68 + mul_40; getitem_68 = mul_40 = None 2025-03-14T05:04:10.9499317Z 2025-03-14T05:04:10.9499706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:10.9500206Z getitem_69: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:04:10.9500497Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:04:10.9500787Z ctr_y_4: "f32[4332][1]cpu" = getitem_69 + mul_41; getitem_69 = mul_41 = None 2025-03-14T05:04:10.9501036Z 2025-03-14T05:04:10.9501463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:10.9501987Z getitem_70: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:10.9502314Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_70 / 1.0; getitem_70 = None 2025-03-14T05:04:10.9502549Z 2025-03-14T05:04:10.9502934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:10.9503438Z getitem_71: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:10.9503761Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_71 / 1.0; getitem_71 = None 2025-03-14T05:04:10.9503998Z 2025-03-14T05:04:10.9504483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:10.9504996Z getitem_72: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:10.9505322Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_72 / 1.0; getitem_72 = None 2025-03-14T05:04:10.9505563Z 2025-03-14T05:04:10.9505962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:10.9506511Z getitem_73: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:04:10.9506862Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_73 / 1.0; getitem_73 = None 2025-03-14T05:04:10.9507096Z 2025-03-14T05:04:10.9507521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:10.9508053Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:04:10.9508318Z 2025-03-14T05:04:10.9508731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:10.9509293Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:04:10.9509548Z 2025-03-14T05:04:10.9509975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:10.9510506Z getitem_74: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:04:10.9510827Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_74; dx_4 = getitem_74 = None 2025-03-14T05:04:10.9511163Z getitem_75: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:04:10.9511512Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_75; mul_42 = getitem_75 = None 2025-03-14T05:04:10.9511775Z 2025-03-14T05:04:10.9512214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:10.9512751Z getitem_76: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:04:10.9513070Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_76; dy_4 = getitem_76 = None 2025-03-14T05:04:10.9513396Z getitem_77: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:04:10.9513761Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_77; mul_43 = getitem_77 = None 2025-03-14T05:04:10.9514023Z 2025-03-14T05:04:10.9514466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:10.9514980Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:04:10.9515308Z getitem_78: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:04:10.9515661Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_78; exp_8 = getitem_78 = None 2025-03-14T05:04:10.9515921Z 2025-03-14T05:04:10.9516343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:10.9516848Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:04:10.9517181Z getitem_79: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:04:10.9517538Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_79; exp_9 = getitem_79 = None 2025-03-14T05:04:10.9517793Z 2025-03-14T05:04:10.9518193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:10.9518662Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:04:10.9518934Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:04:10.9519174Z 2025-03-14T05:04:10.9519569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:10.9520041Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:04:10.9520309Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:04:10.9520548Z 2025-03-14T05:04:10.9520945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:10.9521431Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:04:10.9521741Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:04:10.9522044Z 2025-03-14T05:04:10.9522438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:10.9522916Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:04:10.9523221Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:04:10.9523472Z 2025-03-14T05:04:10.9523913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:10.9524508Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:04:10.9524814Z 2025-03-14T05:04:10.9525235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:10.9525782Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:04:10.9526066Z 2025-03-14T05:04:10.9526525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:04:10.9527163Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:04:10.9527449Z 2025-03-14T05:04:10.9528043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:04:10.9528765Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:04:10.9529019Z 2025-03-14T05:04:10.9529407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:10.9529895Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:04:10.9530152Z 2025-03-14T05:04:10.9542975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:10.9543813Z topk = l_pred_objectness_logits_0_.topk(1000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:04:10.9544255Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:04:10.9544561Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:04:10.9544807Z 2025-03-14T05:04:10.9545390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:10.9546059Z getitem_82: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:10.9546484Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_82, topk_idx)]; proposals_i_5 = getitem_82 = topk_idx = None 2025-03-14T05:04:10.9546833Z 2025-03-14T05:04:10.9547393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:10.9548074Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:10.9548361Z 2025-03-14T05:04:10.9548874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:10.9549365Z to_6: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:04:10.9549615Z 2025-03-14T05:04:10.9550153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:10.9550818Z topk_1 = l_pred_objectness_logits_1_.topk(1000, dim = 1); l_pred_objectness_logits_1_ = None 2025-03-14T05:04:10.9551168Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:04:10.9551461Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:04:10.9551710Z 2025-03-14T05:04:10.9552260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:10.9552913Z getitem_86: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:10.9553348Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_86, topk_idx_1)]; proposals_i_6 = getitem_86 = topk_idx_1 = None 2025-03-14T05:04:10.9553708Z 2025-03-14T05:04:10.9554292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:10.9554942Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:10.9555255Z 2025-03-14T05:04:10.9555632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:10.9556097Z to_7: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:04:10.9556340Z 2025-03-14T05:04:10.9556835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:10.9557480Z topk_2 = l_pred_objectness_logits_2_.topk(1000, dim = 1); l_pred_objectness_logits_2_ = None 2025-03-14T05:04:10.9557808Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:04:10.9558074Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:04:10.9558310Z 2025-03-14T05:04:10.9558837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:10.9559457Z getitem_90: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:10.9559869Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_90, topk_idx_2)]; proposals_i_7 = getitem_90 = topk_idx_2 = None 2025-03-14T05:04:10.9560210Z 2025-03-14T05:04:10.9560728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:10.9561375Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:10.9561650Z 2025-03-14T05:04:10.9562018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:10.9562507Z to_8: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:04:10.9562749Z 2025-03-14T05:04:10.9563251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:10.9563887Z topk_3 = l_pred_objectness_logits_3_.topk(1000, dim = 1); l_pred_objectness_logits_3_ = None 2025-03-14T05:04:10.9564217Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:04:10.9564490Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:04:10.9564723Z 2025-03-14T05:04:10.9565250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:10.9565870Z getitem_94: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:04:10.9566285Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_94, topk_idx_3)]; proposals_i_8 = getitem_94 = topk_idx_3 = None 2025-03-14T05:04:10.9566626Z 2025-03-14T05:04:10.9567165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:10.9567836Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:10.9568138Z 2025-03-14T05:04:10.9568518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:10.9568990Z to_9: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:04:10.9569235Z 2025-03-14T05:04:10.9569752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:04:10.9570398Z topk_4 = l_pred_objectness_logits_4_.topk(1000, dim = 1); l_pred_objectness_logits_4_ = None 2025-03-14T05:04:10.9570739Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:04:10.9571021Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:04:10.9571259Z 2025-03-14T05:04:10.9571798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:04:10.9572469Z getitem_98: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:04:10.9572918Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_98, topk_idx_4)]; proposals_i_9 = getitem_98 = topk_idx_4 = None 2025-03-14T05:04:10.9573271Z 2025-03-14T05:04:10.9573806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:04:10.9574479Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:04:10.9574766Z 2025-03-14T05:04:10.9575145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:04:10.9575645Z to_10: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:04:10.9575897Z 2025-03-14T05:04:10.9576268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:10.9576981Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:04:10.9577459Z 2025-03-14T05:04:10.9577822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:10.9578603Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:04:10.9579171Z 2025-03-14T05:04:10.9579530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:10.9580055Z level_ids: "i64[5000][1]cpu" = torch.cat([to_6, to_7, to_8, to_9, to_10], 0); to_6 = to_7 = to_8 = to_9 = to_10 = level_ids = None 2025-03-14T05:04:10.9580363Z 2025-03-14T05:04:10.9580881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:04:10.9582179Z getitem_100: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:04:10.9582601Z 2025-03-14T05:04:10.9582988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:04:10.9583493Z tensor: "f32[5000, 4][4, 1]cpu" = getitem_100.to(torch.float32); getitem_100 = None 2025-03-14T05:04:10.9583759Z 2025-03-14T05:04:10.9584344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:04:10.9584916Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:04:10.9585169Z 2025-03-14T05:04:10.9585745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:04:10.9586400Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:04:10.9586693Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:10.9587021Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:04:10.9587365Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:04:10.9587623Z 2025-03-14T05:04:10.9588079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:04:10.9588616Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:04:10.9588854Z 2025-03-14T05:04:17.3527043Z 2025-03-14T05:04:17.3532795Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.3536389Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.3538857Z l_stack0_ = L_stack0_ 2025-03-14T05:04:17.3539235Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:04:17.3539752Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:04:17.3540262Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:04:17.3540740Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:04:17.3541341Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:04:17.3541967Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:04:17.3542547Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:04:17.3543191Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:04:17.3543698Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3544245Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3544680Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3545096Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3545416Z 2025-03-14T05:04:17.3545834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:04:17.3546342Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:04:17.3547060Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:04:17.3547796Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:04:17.3548532Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:04:17.3549346Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:04:17.3549640Z 2025-03-14T05:04:17.3550062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:04:17.3551054Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:04:17.3551758Z 2025-03-14T05:04:17.3552189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:04:17.3553158Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:04:17.3553875Z 2025-03-14T05:04:17.3554251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3554708Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3554959Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.3555215Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.3555504Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3555753Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.3556010Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.3556278Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3556574Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.3556805Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.3557067Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3557311Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.3557536Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.3557753Z 2025-03-14T05:04:17.3558121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.3558870Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.3559413Z 2025-03-14T05:04:17.3559879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.3560439Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:04:17.3560712Z 2025-03-14T05:04:17.3561100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.3561623Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.3561899Z 2025-03-14T05:04:17.3562290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.3562782Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.3563092Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3563418Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.3563698Z 2025-03-14T05:04:17.3564096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.3564581Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.3564884Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.3565217Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.3565485Z 2025-03-14T05:04:17.3565869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.3566347Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3566625Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.3566901Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.3567145Z 2025-03-14T05:04:17.3567537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.3568036Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.3568355Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.3568657Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.3568910Z 2025-03-14T05:04:17.3569314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.3569828Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.3570145Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.3570377Z 2025-03-14T05:04:17.3570756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.3571245Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.3571562Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.3571795Z 2025-03-14T05:04:17.3572175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.3572663Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.3572981Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.3573212Z 2025-03-14T05:04:17.3573592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.3574114Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.3574448Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.3574677Z 2025-03-14T05:04:17.3575098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.3575625Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.3575882Z 2025-03-14T05:04:17.3576298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.3576829Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.3577083Z 2025-03-14T05:04:17.3577512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.3578055Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.3578381Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.3578716Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.3579062Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.3579322Z 2025-03-14T05:04:17.3579755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.3580299Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.3580619Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.3580964Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.3581320Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.3583058Z 2025-03-14T05:04:17.3583670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.3584269Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.3584611Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.3584973Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.3585238Z 2025-03-14T05:04:17.3585681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.3586213Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.3586576Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.3586932Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.3587187Z 2025-03-14T05:04:17.3587592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.3588071Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.3588341Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.3588581Z 2025-03-14T05:04:17.3588985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.3589459Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.3589728Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.3589965Z 2025-03-14T05:04:17.3590368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.3590910Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.3591200Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.3591447Z 2025-03-14T05:04:17.3591832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.3592297Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.3592586Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.3592829Z 2025-03-14T05:04:17.3593257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.3593843Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.3594137Z 2025-03-14T05:04:17.3594556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.3595117Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.3595405Z 2025-03-14T05:04:17.3595885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.3596597Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.3597039Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.3597328Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.3597628Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.3597935Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.3598188Z 2025-03-14T05:04:17.3598567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3599122Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3600981Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.3601247Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.3601621Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3601971Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.3602218Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.3602585Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3602927Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.3603896Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.3604515Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3604862Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.3605100Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.3605947Z 2025-03-14T05:04:17.3606445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.3607034Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:04:17.3607382Z 2025-03-14T05:04:17.3607866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.3608537Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.3608953Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.3609242Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.3609541Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.3609844Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.3610099Z 2025-03-14T05:04:17.3610654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.3611356Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.3611692Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.3612048Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.3612406Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.3612706Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.3612942Z 2025-03-14T05:04:17.3613369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.3613900Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.3614128Z 2025-03-14T05:04:17.3614254Z 2025-03-14T05:04:17.3614350Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.3616187Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.3618156Z l_stack0_ = L_stack0_ 2025-03-14T05:04:17.3618498Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:04:17.3618971Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:04:17.3619438Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:04:17.3620066Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:04:17.3620580Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:04:17.3621158Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:04:17.3621712Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:04:17.3622265Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:04:17.3622739Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3623143Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3623541Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3623941Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3624327Z 2025-03-14T05:04:17.3624727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:04:17.3625245Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:04:17.3626030Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:04:17.3626752Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:04:17.3627551Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:04:17.3628258Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:04:17.3628543Z 2025-03-14T05:04:17.3628948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:04:17.3629892Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:04:17.3630601Z 2025-03-14T05:04:17.3631014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:04:17.3632002Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:04:17.3632727Z 2025-03-14T05:04:17.3633111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3633579Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3633841Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.3634082Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.3634361Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3634635Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.3634877Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.3635151Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3635396Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.3635634Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.3635900Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3636151Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.3636383Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.3636599Z 2025-03-14T05:04:17.3636974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.3637746Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.3638297Z 2025-03-14T05:04:17.3638753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.3639329Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:04:17.3639621Z 2025-03-14T05:04:17.3640042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.3640573Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.3640876Z 2025-03-14T05:04:17.3641278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.3641787Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.3642107Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3642439Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.3642707Z 2025-03-14T05:04:17.3643116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.3643617Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.3643931Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.3644268Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.3644543Z 2025-03-14T05:04:17.3644938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.3645429Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3645709Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.3645981Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.3646228Z 2025-03-14T05:04:17.3646627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.3647147Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.3647452Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.3647906Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.3648163Z 2025-03-14T05:04:17.3648583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.3649108Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.3649443Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.3649686Z 2025-03-14T05:04:17.3650079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.3650600Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.3650931Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.3651167Z 2025-03-14T05:04:17.3651556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.3652060Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.3652385Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.3652640Z 2025-03-14T05:04:17.3653058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.3653599Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.3653964Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.3654196Z 2025-03-14T05:04:17.3654626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.3655159Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.3655410Z 2025-03-14T05:04:17.3655826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.3656352Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.3656606Z 2025-03-14T05:04:17.3657040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.3657581Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.3657909Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.3658247Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.3658595Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.3658855Z 2025-03-14T05:04:17.3659294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.3659840Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.3660180Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.3660527Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.3660912Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.3661181Z 2025-03-14T05:04:17.3661625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.3662151Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.3662502Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.3662866Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.3663133Z 2025-03-14T05:04:17.3663582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.3664200Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.3664572Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.3664944Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.3665211Z 2025-03-14T05:04:17.3665660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.3666150Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.3666413Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.3666637Z 2025-03-14T05:04:17.3667048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.3667498Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.3667758Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.3667985Z 2025-03-14T05:04:17.3668376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.3668844Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.3669138Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.3669384Z 2025-03-14T05:04:17.3669770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.3670244Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.3670542Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.3670786Z 2025-03-14T05:04:17.3671215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.3671786Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.3672073Z 2025-03-14T05:04:17.3672491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.3673049Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.3673352Z 2025-03-14T05:04:17.3673792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.3674479Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.3674897Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.3675181Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.3675474Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.3676788Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.3677045Z 2025-03-14T05:04:17.3677426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3677994Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3678340Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.3678587Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.3678951Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3679295Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.3679534Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.3680331Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3680730Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.3680970Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.3681326Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3682532Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.3682830Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.3683071Z 2025-03-14T05:04:17.3683517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.3684092Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:04:17.3684387Z 2025-03-14T05:04:17.3684843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.3685525Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.3685948Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.3686238Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.3686538Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.3686843Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.3687095Z 2025-03-14T05:04:17.3687646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.3688336Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.3688670Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.3688992Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.3689317Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.3689678Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.3689910Z 2025-03-14T05:04:17.3690339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.3690851Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.3691087Z 2025-03-14T05:04:17.3691231Z 2025-03-14T05:04:17.3691332Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.3693220Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.3695171Z l_stack0_ = L_stack0_ 2025-03-14T05:04:17.3695514Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:04:17.3696018Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:04:17.3696484Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:04:17.3696943Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:04:17.3697455Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:04:17.3698010Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:04:17.3698574Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:04:17.3699127Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:04:17.3699602Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3700003Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3700393Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3700782Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3701071Z 2025-03-14T05:04:17.3701440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:04:17.3701908Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:04:17.3702603Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:04:17.3703342Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:04:17.3704165Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:04:17.3704969Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:04:17.3705280Z 2025-03-14T05:04:17.3705708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:04:17.3706729Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:04:17.3707521Z 2025-03-14T05:04:17.3707982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:04:17.3709126Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:04:17.3709965Z 2025-03-14T05:04:17.3710381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3710894Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3711176Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.3711436Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.3711738Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3712015Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.3712262Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.3712530Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3712771Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.3712999Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.3713267Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3713508Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.3713736Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.3713950Z 2025-03-14T05:04:17.3714312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.3715059Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.3715589Z 2025-03-14T05:04:17.3716037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.3716596Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:04:17.3716859Z 2025-03-14T05:04:17.3717269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.3717781Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.3718056Z 2025-03-14T05:04:17.3718442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.3718928Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.3719238Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3719556Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.3719818Z 2025-03-14T05:04:17.3720211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.3720699Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.3721005Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.3721333Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.3721597Z 2025-03-14T05:04:17.3722014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.3722496Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3722796Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.3723069Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.3723318Z 2025-03-14T05:04:17.3723706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.3724211Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.3724511Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.3724791Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.3725040Z 2025-03-14T05:04:17.3725439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.3725938Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.3726257Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.3726488Z 2025-03-14T05:04:17.3726863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.3727350Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.3727666Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.3727898Z 2025-03-14T05:04:17.3728278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.3728777Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.3729101Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.3729338Z 2025-03-14T05:04:17.3729756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.3730276Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.3730619Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.3730847Z 2025-03-14T05:04:17.3731268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.3731790Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.3732042Z 2025-03-14T05:04:17.3732454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.3732963Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.3733211Z 2025-03-14T05:04:17.3733631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.3734166Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.3734520Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.3734864Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.3735206Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.3735481Z 2025-03-14T05:04:17.3735907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.3736440Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.3736753Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.3737074Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.3737408Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.3737656Z 2025-03-14T05:04:17.3738063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.3738550Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.3738871Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.3739203Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.3739448Z 2025-03-14T05:04:17.3739852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.3740339Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.3740662Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.3741000Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.3741247Z 2025-03-14T05:04:17.3741625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.3742092Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.3742349Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.3742577Z 2025-03-14T05:04:17.3742961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.3743402Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.3743655Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.3743893Z 2025-03-14T05:04:17.3744391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.3744903Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.3745218Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.3745481Z 2025-03-14T05:04:17.3745900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.3746403Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.3746712Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.3746973Z 2025-03-14T05:04:17.3747475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.3748089Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.3748424Z 2025-03-14T05:04:17.3748872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.3749463Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.3749764Z 2025-03-14T05:04:17.3750240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.3751999Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.3752509Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.3752818Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.3753137Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.3753469Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.3753728Z 2025-03-14T05:04:17.3754121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3754691Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3755053Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.3755300Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.3755667Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3756654Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.3756924Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.3757304Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3757704Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.3757956Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.3758305Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3758639Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.3758873Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.3759092Z 2025-03-14T05:04:17.3759534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.3760103Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:04:17.3760689Z 2025-03-14T05:04:17.3761215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.3761920Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.3762354Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.3762649Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.3762982Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.3763322Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.3763581Z 2025-03-14T05:04:17.3764148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.3764878Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.3765533Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.3765887Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.3766228Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.3766522Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.3766763Z 2025-03-14T05:04:17.3767206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.3767729Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.3767968Z 2025-03-14T05:04:17.3768123Z 2025-03-14T05:04:17.3768216Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.3770375Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.3772449Z l_stack0_ = L_stack0_ 2025-03-14T05:04:17.3772805Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:04:17.3773627Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:04:17.3774141Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:04:17.3774633Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:04:17.3775177Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:04:17.3775764Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:04:17.3776364Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:04:17.3776951Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:04:17.3777455Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3777904Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3778332Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3778733Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.3779059Z 2025-03-14T05:04:17.3779447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:04:17.3779935Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:04:17.3780649Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:04:17.3781381Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:04:17.3782271Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:04:17.3782983Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:04:17.3783270Z 2025-03-14T05:04:17.3783676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:04:17.3784714Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:04:17.3785424Z 2025-03-14T05:04:17.3785848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:04:17.3786811Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:04:17.3787604Z 2025-03-14T05:04:17.3787986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3788456Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3788725Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.3788971Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.3789259Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3789522Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.3789768Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.3790049Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3790306Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.3790547Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.3790823Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.3791073Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.3791308Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.3791560Z 2025-03-14T05:04:17.3791964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.3792736Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.3793316Z 2025-03-14T05:04:17.3793770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.3794338Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:04:17.3794594Z 2025-03-14T05:04:17.3794979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.3795494Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.3795769Z 2025-03-14T05:04:17.3796159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.3796657Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.3796967Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3797285Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.3797543Z 2025-03-14T05:04:17.3797941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.3798429Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.3798733Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.3799057Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.3799323Z 2025-03-14T05:04:17.3799711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.3800219Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.3800490Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.3800759Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.3801001Z 2025-03-14T05:04:17.3801390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.3801894Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.3802195Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.3802476Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.3802725Z 2025-03-14T05:04:17.3803121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.3803620Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.3803938Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.3804171Z 2025-03-14T05:04:17.3804620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.3805117Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.3805461Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.3805689Z 2025-03-14T05:04:17.3806072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.3806559Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.3806870Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.3807099Z 2025-03-14T05:04:17.3807476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.3807991Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.3808322Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.3808549Z 2025-03-14T05:04:17.3808963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.3809480Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.3809730Z 2025-03-14T05:04:17.3810134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.3810644Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.3810890Z 2025-03-14T05:04:17.3811311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.3811840Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.3812150Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.3812493Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.3812828Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.3813079Z 2025-03-14T05:04:17.3813494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.3814026Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.3814326Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.3814645Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.3814977Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.3815227Z 2025-03-14T05:04:17.3815633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.3816116Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.3816437Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.3816787Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.3817052Z 2025-03-14T05:04:17.3817468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.3817971Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.3818332Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.3818675Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.3818921Z 2025-03-14T05:04:17.3819304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.3819755Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.3820019Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.3820258Z 2025-03-14T05:04:17.3820643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.3821090Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.3821346Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.3821574Z 2025-03-14T05:04:17.3821958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.3822418Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.3822698Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.3822936Z 2025-03-14T05:04:17.3823318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.3823776Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.3824084Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.3824428Z 2025-03-14T05:04:17.3824929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.3825550Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.3825881Z 2025-03-14T05:04:17.3826332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.3826927Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.3827230Z 2025-03-14T05:04:17.3827707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.3828425Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.3828878Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.3829182Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.3829497Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.3829821Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.3830105Z 2025-03-14T05:04:17.3830529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.3831114Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3831522Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.3831779Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.3832159Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3832517Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.3832767Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.3833142Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3833499Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.3833744Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.3834110Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.3834473Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.3834706Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.3834927Z 2025-03-14T05:04:17.3835351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.3835906Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:04:17.3836193Z 2025-03-14T05:04:17.3836645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.3837303Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.3837716Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.3838006Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.3838298Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.3838623Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.3838876Z 2025-03-14T05:04:17.3839432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.3840111Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.3840444Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.3840772Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.3841106Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.3841396Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.3841636Z 2025-03-14T05:04:17.3842070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.3842589Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.3842826Z 2025-03-14T05:04:17.8286072Z 2025-03-14T05:04:17.8290847Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.8294485Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.8295438Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:04:17.8297205Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:04:17.8297680Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8298120Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8298534Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8298981Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8299292Z 2025-03-14T05:04:17.8299748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.8300238Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8300523Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.8300768Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.8301069Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8301336Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.8301583Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.8301868Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8302121Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.8302360Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.8302639Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8302897Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.8303137Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.8303364Z 2025-03-14T05:04:17.8303754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.8304715Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.8305666Z 2025-03-14T05:04:17.8306178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.8306776Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:04:17.8307056Z 2025-03-14T05:04:17.8307469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.8308034Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.8308328Z 2025-03-14T05:04:17.8308740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.8309255Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.8309576Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.8309962Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.8310240Z 2025-03-14T05:04:17.8310675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.8311209Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.8311529Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.8311872Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.8312145Z 2025-03-14T05:04:17.8312551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.8313045Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.8313344Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.8313627Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.8313883Z 2025-03-14T05:04:17.8314288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.8314809Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.8315130Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.8315414Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.8315673Z 2025-03-14T05:04:17.8316100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.8316627Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.8316972Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.8317222Z 2025-03-14T05:04:17.8317632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.8318162Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.8318526Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.8318772Z 2025-03-14T05:04:17.8319169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.8319692Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.8320025Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.8320273Z 2025-03-14T05:04:17.8320672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.8321210Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.8321563Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.8321795Z 2025-03-14T05:04:17.8322219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.8322763Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.8323022Z 2025-03-14T05:04:17.8323523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.8324059Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.8324335Z 2025-03-14T05:04:17.8324772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.8325326Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.8325651Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.8326000Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.8326351Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.8326613Z 2025-03-14T05:04:17.8327052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.8327601Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.8327924Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.8328255Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.8328602Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.8328868Z 2025-03-14T05:04:17.8329293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.8329798Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.8330137Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.8330490Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.8330746Z 2025-03-14T05:04:17.8331168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.8331704Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.8332046Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.8332396Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.8332653Z 2025-03-14T05:04:17.8333056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.8333537Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.8333804Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.8334049Z 2025-03-14T05:04:17.8334451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.8334920Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.8335176Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.8335412Z 2025-03-14T05:04:17.8335807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.8336311Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.8336623Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.8336875Z 2025-03-14T05:04:17.8337268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.8337773Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.8338071Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.8338319Z 2025-03-14T05:04:17.8338766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.8339366Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.8339658Z 2025-03-14T05:04:17.8340090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.8340657Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.8340943Z 2025-03-14T05:04:17.8341392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.8342071Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.8342498Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.8342791Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.8343096Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.8343408Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.8343663Z 2025-03-14T05:04:17.8344051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.8344729Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8345122Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.8345381Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.8345757Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8346113Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.8346372Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.8346742Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8347094Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.8347339Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.8347709Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8348067Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.8348307Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.8348536Z 2025-03-14T05:04:17.8348967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.8349613Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:04:17.8349944Z 2025-03-14T05:04:17.8350457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.8351202Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.8351641Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.8351936Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.8352248Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.8352558Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.8352823Z 2025-03-14T05:04:17.8353404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.8354115Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.8354476Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.8354833Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.8355191Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.8355498Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.8355751Z 2025-03-14T05:04:17.8356212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.8356766Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.8357015Z 2025-03-14T05:04:17.8368774Z 2025-03-14T05:04:17.8370811Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.8371845Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.8374026Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:04:17.8374358Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:04:17.8374760Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8375247Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8378099Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8378494Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8378802Z 2025-03-14T05:04:17.8379240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.8379737Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8380028Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.8380276Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.8380570Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8380833Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.8381078Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.8381695Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8382081Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.8382329Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.8382606Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8382920Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.8383156Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.8383381Z 2025-03-14T05:04:17.8383769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.8384643Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.8385210Z 2025-03-14T05:04:17.8385706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.8386289Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:04:17.8386570Z 2025-03-14T05:04:17.8386974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.8387510Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.8387797Z 2025-03-14T05:04:17.8388199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.8388708Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.8389031Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.8389370Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.8389648Z 2025-03-14T05:04:17.8390062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.8390622Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.8390942Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.8391289Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.8391573Z 2025-03-14T05:04:17.8391981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.8392483Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.8392776Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.8393055Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.8393309Z 2025-03-14T05:04:17.8393722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.8394257Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.8394572Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.8394865Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.8395160Z 2025-03-14T05:04:17.8395702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.8396236Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.8396600Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.8396847Z 2025-03-14T05:04:17.8397255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.8397786Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.8398122Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.8398369Z 2025-03-14T05:04:17.8398773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.8399299Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.8399632Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.8399881Z 2025-03-14T05:04:17.8400284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.8400870Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.8401231Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.8401475Z 2025-03-14T05:04:17.8401919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.8402469Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.8402740Z 2025-03-14T05:04:17.8403178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.8403724Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.8404016Z 2025-03-14T05:04:17.8404445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.8404987Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.8405319Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.8405669Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.8406026Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.8406294Z 2025-03-14T05:04:17.8406740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.8407298Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.8407628Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.8407966Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.8408345Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.8408610Z 2025-03-14T05:04:17.8409055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.8409564Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.8409921Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.8410277Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.8410544Z 2025-03-14T05:04:17.8410965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.8411468Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.8411808Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.8412164Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.8412419Z 2025-03-14T05:04:17.8412821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.8413288Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.8413554Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.8413793Z 2025-03-14T05:04:17.8414192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.8414652Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.8414923Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.8415160Z 2025-03-14T05:04:17.8415552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.8416030Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.8416334Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.8416612Z 2025-03-14T05:04:17.8416999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.8417487Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.8417780Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.8418032Z 2025-03-14T05:04:17.8418475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.8419071Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.8419368Z 2025-03-14T05:04:17.8419797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.8420370Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.8420659Z 2025-03-14T05:04:17.8421112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.8421840Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.8422283Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.8422577Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.8422895Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.8423199Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.8423454Z 2025-03-14T05:04:17.8423835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.8424533Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8424908Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.8425171Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.8425568Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8425932Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.8426184Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.8426571Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8426928Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.8427172Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.8427545Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8427897Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.8428138Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.8428367Z 2025-03-14T05:04:17.8428807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.8429431Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:04:17.8429773Z 2025-03-14T05:04:17.8430239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.8430950Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.8431380Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.8431674Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.8431976Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.8432288Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.8432549Z 2025-03-14T05:04:17.8433109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.8433831Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.8434181Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.8434560Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.8434901Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.8435203Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.8435446Z 2025-03-14T05:04:17.8435943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.8436482Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.8436748Z 2025-03-14T05:04:17.8443684Z 2025-03-14T05:04:17.8449041Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:17.8453759Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:04:17.8455229Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:04:17.8455555Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:04:17.8455890Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8456304Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8456710Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8457106Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:04:17.8457455Z 2025-03-14T05:04:17.8457883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.8458360Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8458618Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:04:17.8458853Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:04:17.8459139Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8459396Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:04:17.8459635Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:04:17.8459916Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8460164Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:04:17.8460400Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:04:17.8460816Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:04:17.8461069Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:04:17.8461304Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:04:17.8461527Z 2025-03-14T05:04:17.8461923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:04:17.8462707Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:04:17.8463400Z 2025-03-14T05:04:17.8463875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:04:17.8464613Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:04:17.8464904Z 2025-03-14T05:04:17.8465332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:04:17.8465960Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:04:17.8466274Z 2025-03-14T05:04:17.8466779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:04:17.8467305Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:04:17.8467669Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.8468005Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:04:17.8468282Z 2025-03-14T05:04:17.8468701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:04:17.8469225Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:04:17.8469548Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:04:17.8469897Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:04:17.8470196Z 2025-03-14T05:04:17.8470600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:04:17.8471108Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:04:17.8471399Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:04:17.8471680Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:04:17.8471930Z 2025-03-14T05:04:17.8472335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:04:17.8472881Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:04:17.8473189Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:04:17.8473483Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:04:17.8473752Z 2025-03-14T05:04:17.8474180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:04:17.8474787Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:04:17.8475124Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:04:17.8475375Z 2025-03-14T05:04:17.8475771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:04:17.8476288Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:04:17.8476616Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:04:17.8476858Z 2025-03-14T05:04:17.8477255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:04:17.8477763Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:04:17.8478096Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:04:17.8478337Z 2025-03-14T05:04:17.8478729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:04:17.8479269Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:04:17.8479637Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:04:17.8479871Z 2025-03-14T05:04:17.8480316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:04:17.8480876Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:04:17.8481147Z 2025-03-14T05:04:17.8481818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:04:17.8482350Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:04:17.8482613Z 2025-03-14T05:04:17.8483051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:04:17.8483607Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:04:17.8483941Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:04:17.8484285Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:04:17.8484642Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:04:17.8484907Z 2025-03-14T05:04:17.8485350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:04:17.8485895Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:04:17.8486223Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:04:17.8486564Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:04:17.8486913Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:04:17.8487182Z 2025-03-14T05:04:17.8487608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:04:17.8488213Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:04:17.8488549Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:04:17.8488906Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:04:17.8489167Z 2025-03-14T05:04:17.8489596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:04:17.8490098Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:04:17.8490436Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:04:17.8490789Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:04:17.8491048Z 2025-03-14T05:04:17.8491450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:04:17.8491910Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:04:17.8492184Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:04:17.8492422Z 2025-03-14T05:04:17.8492865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:04:17.8493354Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:04:17.8493614Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:04:17.8493892Z 2025-03-14T05:04:17.8494291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:04:17.8494770Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:04:17.8495065Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:04:17.8495315Z 2025-03-14T05:04:17.8495716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:04:17.8496197Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:04:17.8496495Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:04:17.8496742Z 2025-03-14T05:04:17.8497181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:04:17.8497764Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:04:17.8498062Z 2025-03-14T05:04:17.8498488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:04:17.8499048Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:04:17.8499339Z 2025-03-14T05:04:17.8499794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:04:17.8500478Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:04:17.8500911Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:04:17.8501200Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:04:17.8501546Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:04:17.8501852Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:04:17.8502105Z 2025-03-14T05:04:17.8502489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:04:17.8503057Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8503415Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:04:17.8503664Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:04:17.8504035Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8504514Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:04:17.8504805Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:04:17.8505219Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8505587Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:04:17.8505852Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:04:17.8506217Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:04:17.8506610Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:04:17.8506896Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:04:17.8507142Z 2025-03-14T05:04:17.8507623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:04:17.8508317Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:04:17.8508682Z 2025-03-14T05:04:17.8509181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:04:17.8509940Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:04:17.8510408Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:04:17.8510729Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:04:17.8511064Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:04:17.8511406Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:04:17.8511698Z 2025-03-14T05:04:17.8512283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:17.8512979Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:04:17.8513321Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:17.8513659Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:04:17.8513998Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:17.8514290Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:17.8514535Z 2025-03-14T05:04:17.8514976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:17.8515517Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:17.8515758Z 2025-03-14T05:04:18.2063665Z 2025-03-14T05:04:18.2068262Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:18.2069782Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:04:18.2070165Z l_scores_0_ = L_scores_0_ 2025-03-14T05:04:18.2070397Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:04:18.2070653Z 2025-03-14T05:04:18.2071350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:18.2072134Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:04:18.2072488Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:18.2072827Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:04:18.2073159Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:18.2073466Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:18.2073720Z 2025-03-14T05:04:18.2074576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:18.2075230Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:18.2075499Z 2025-03-14T05:04:18.2075605Z 2025-03-14T05:04:18.2075718Z class GraphModule(torch.nn.Module): 2025-03-14T05:04:18.2076139Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:04:18.2076452Z l_scores_0_ = L_scores_0_ 2025-03-14T05:04:18.2076654Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:04:18.2076846Z 2025-03-14T05:04:18.2077382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:04:18.2078038Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:04:18.2078354Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:04:18.2078670Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:04:18.2078972Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:04:18.2079253Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:04:18.2079486Z 2025-03-14T05:04:18.2079919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:04:18.2080432Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:04:18.2080666Z 2025-03-14T05:04:32.0960206Z Compilation time (from dynamo_timed): 34.87895761 2025-03-14T05:04:32.0963027Z pass 2025-03-14T05:04:32.0965122Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:04:32.0968789Z TIMING: entire_frame_compile:34.87896 gc:0.04413 _recursive_pre_grad_passes:0.03414 async_compile.wait:3.78731 backend_compile:20.09434 _recursive_joint_graph_passes:0.17148 _recursive_post_grad_passes:0.08548 code_gen:7.35657 inductor_compile:8.71407 total_wall_time:34.87896 2025-03-14T05:04:32.0973544Z STATS: call_* op count: 990 | FakeTensorMode.__torch_dispatch__:22926 | FakeTensor.__torch_dispatch__:1797 | ProxyTorchDispatchMode.__torch_dispatch__:5692 | attempt fast:112 | slow no contiguity match:36 | fast is_contiguous:76 2025-03-14T05:04:32.0975333Z Dynamo produced 61 graphs covering 990 ops with 46 graph breaks (6 unique) 2025-03-14T05:04:37.8132426Z 2025-03-14T05:04:46.2595424Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:04:46.2595924Z loading model: 0it [00:08, ?it/s] 2025-03-14T05:04:46.2609634Z cpu eval detectron2_fcos_r_50_fpn 2025-03-14T05:05:05.4211468Z WARNING:common:fp64 golden ref were not generated for detectron2_fcos_r_50_fpn. Setting accuracy check to cosine 2025-03-14T05:05:05.4274454Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:05:16.2277403Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:05:22.5700557Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:06:21.1445478Z Compilation time (from dynamo_timed): 51.94651737 2025-03-14T05:06:21.1450628Z pass 2025-03-14T05:06:21.1453137Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:06:21.1454069Z TIMING: entire_frame_compile:51.94652 gc:0.02826 _recursive_pre_grad_passes:0.02577 async_compile.wait:15.56742 backend_compile:40.0234 _recursive_joint_graph_passes:0.29503 _recursive_post_grad_passes:0.19654 code_gen:23.55719 inductor_compile:27.01608 total_wall_time:51.94652 2025-03-14T05:06:21.1460301Z STATS: call_* op count: 944 | FakeTensorMode.__torch_dispatch__:29063 | FakeTensor.__torch_dispatch__:3334 | ProxyTorchDispatchMode.__torch_dispatch__:10972 2025-03-14T05:06:21.1462256Z Dynamo produced 29 graphs covering 944 ops with 22 graph breaks (4 unique) 2025-03-14T05:06:26.9790257Z 2025-03-14T05:06:43.5446045Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:06:43.5446878Z loading model: 0it [00:16, ?it/s] 2025-03-14T05:06:43.5458373Z cpu eval detectron2_maskrcnn_r_101_c4 2025-03-14T05:06:53.3760785Z WARNING:common:fp64 golden ref were not generated for detectron2_maskrcnn_r_101_c4. Setting accuracy check to cosine 2025-03-14T05:06:53.3763598Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:07:15.5931687Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:07:35.4763242Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:07:46.7993733Z 2025-03-14T05:07:46.7994351Z class GraphModule(torch.nn.Module): 2025-03-14T05:07:46.8112047Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:07:46.8200578Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:07:46.8201077Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8201855Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8202570Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8203241Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8203879Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8204502Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8205174Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8205903Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8206611Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8207355Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8207999Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8208701Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8209435Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8210147Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8210826Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8211466Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8212136Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8212910Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8213608Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8214279Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8214929Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:46.8215622Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8216361Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8217083Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8217782Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8218427Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8219087Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8219803Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8220493Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8221189Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8221897Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8222607Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8223471Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8224383Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8225210Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8225935Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8226737Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8227608Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8228484Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8229755Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8230509Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8231310Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8232123Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8232905Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8233658Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8234368Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8235118Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8235897Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8236628Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8237308Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8237979Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8238645Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8239364Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8240422Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8241088Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8241755Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8242433Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8243165Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8243869Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8244541Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8245180Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8245853Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8246847Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8247546Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8248218Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8248856Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8249523Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8250236Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8250993Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8251686Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8252340Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:46.8253028Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8253775Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8254511Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8255217Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8255898Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8256567Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8257281Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8257970Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8258637Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8259278Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8259959Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8260688Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8261397Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8262084Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8262735Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8263421Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8264235Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8264976Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8265732Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8266387Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8267314Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8268071Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8268792Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8269518Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8270196Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8270876Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8271607Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8272314Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8272995Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8273657Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8274336Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8275074Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8275790Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8276478Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8277122Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8278141Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8278889Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8279844Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8280538Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8281193Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8282349Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8283101Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8283828Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8284588Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8285233Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8285906Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8286645Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8287351Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8288030Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8288669Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8289339Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8290391Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8291106Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8291827Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8292769Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8293525Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8294239Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8294969Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8295641Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8296274Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8296939Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8297655Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8298363Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8299056Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8299708Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:46.8300402Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8301145Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8301900Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8302622Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8303288Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8303965Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8304762Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8305488Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8306189Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8306900Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8307645Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8308485Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8309302Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8310044Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8310749Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8311509Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8312344Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8313137Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8313868Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8314563Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8315266Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8316018Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8316747Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8317453Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8318125Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8318842Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8319567Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8320263Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8320929Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8321591Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8322279Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8322991Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8323681Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8324344Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8324983Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8325646Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8326389Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8327088Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8327756Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8328388Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8329051Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8329767Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8330464Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8331144Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8331778Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8332443Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8333155Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8333850Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8334542Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8335177Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8335854Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8336569Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8337259Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8337927Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8338558Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8339237Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8339980Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8340679Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8341354Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8341995Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8342669Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8343397Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8344102Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8344904Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8345561Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8346265Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8347011Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8347798Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8348552Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8349274Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8350040Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8350853Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8351651Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8352383Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8353070Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8353863Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8354675Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8355481Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8356225Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8356899Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8357598Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8358342Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8359058Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8359763Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8360399Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8361059Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8361778Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8362509Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8363189Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8363846Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8364513Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8365238Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8365929Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8366599Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8367278Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8367977Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8368722Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8369442Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8370124Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8371717Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8372400Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8373351Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8374057Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8374734Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8375377Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8376048Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8376793Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8377492Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8378178Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8378822Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8379486Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8380209Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8380903Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8382046Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8382786Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8383475Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8384485Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8385205Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8385900Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8386543Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8387209Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8387932Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8388631Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8389310Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8389952Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8390618Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8391369Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8392061Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8392750Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8393396Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8394065Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8395072Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8395778Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8396737Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8397396Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8398070Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8398786Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8399482Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8400156Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8400798Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8401474Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8402188Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8402886Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8403570Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8404216Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8404931Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8405673Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8406433Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8407318Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8407982Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8408677Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8409427Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8410175Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8410892Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8411555Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8412247Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8413022Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8413745Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8414438Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8415092Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8415782Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8416523Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8417512Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8418222Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8418911Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8419613Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8420369Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8421108Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8421789Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8422453Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8423126Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8424303Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8425077Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8425774Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8426432Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8427116Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8427864Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8428590Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8429281Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8429937Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8430626Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8431370Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8432088Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8432783Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8433452Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8434134Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8434892Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8435621Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8436327Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8436993Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8437682Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8438450Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8439163Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8439861Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8440521Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8443284Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8444057Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8444783Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8445494Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8446162Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8446861Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8447616Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8448341Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8449065Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8449728Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8450583Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8451338Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8452060Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8452756Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8453413Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8454131Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8454894Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8455608Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8456301Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8457097Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8457799Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8458539Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8459251Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8459941Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8460600Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8461293Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8462025Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8462776Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8463470Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8464211Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8464931Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8465685Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8466421Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8467439Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8468124Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8468874Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8469642Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8470390Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8471098Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8471772Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8472473Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8473230Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8473968Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8474683Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8475360Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8476065Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8476832Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8477620Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8478351Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8479028Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8479735Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8480480Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8481193Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8482230Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8482966Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8483657Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8484397Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8485114Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8485810Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8486474Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8487166Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8487904Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8488621Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8489314Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8489976Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8490662Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8491436Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8492763Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8493476Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8494144Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8494835Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8495578Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8496298Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8497013Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8497694Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8498375Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8499114Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8499826Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8500514Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8501165Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8501843Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8502575Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8503293Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8503979Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8504701Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8505417Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8506160Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8506897Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8507595Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8508266Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8508955Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8509699Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8510432Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8511155Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8511813Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8512502Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8513249Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8513967Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8514658Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8515316Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8516033Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8516779Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8517506Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8518200Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8518874Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8519561Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8520313Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8521036Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8521727Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8522388Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8523091Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8523835Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8524564Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8525243Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8525903Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8526599Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8527323Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8528027Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8528697Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8529336Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8530003Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8530721Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8531413Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8532083Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8532748Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.8533448Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8534176Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8534873Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8535545Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8536185Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.8536854Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8537596Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8538304Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8538978Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8539618Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.8540292Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.8541013Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.8541711Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.8542388Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.8543094Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:07:46.8543812Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:07:46.8544600Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:07:46.8545342Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:07:46.8546159Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:07:46.8546943Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:07:46.8547693Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:07:46.8548171Z 2025-03-14T05:07:46.8548580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8549392Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8550000Z 2025-03-14T05:07:46.8550374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8552197Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8553788Z 2025-03-14T05:07:46.8554183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:07:46.8554682Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:07:46.8554957Z 2025-03-14T05:07:46.8555419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:07:46.8556087Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:07:46.8556453Z 2025-03-14T05:07:46.8556808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8557554Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8558586Z 2025-03-14T05:07:46.8558946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8560745Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8562370Z 2025-03-14T05:07:46.8562746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8563222Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:07:46.8563476Z 2025-03-14T05:07:46.8563815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8564532Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8565069Z 2025-03-14T05:07:46.8565450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8567287Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8569840Z 2025-03-14T05:07:46.8570239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8570997Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:07:46.8571274Z 2025-03-14T05:07:46.8571621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8572373Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8572942Z 2025-03-14T05:07:46.8573304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8575150Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8576836Z 2025-03-14T05:07:46.8577174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8577914Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:46.8578465Z 2025-03-14T05:07:46.8579047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8580983Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8582905Z 2025-03-14T05:07:46.8583285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8583768Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:07:46.8584035Z 2025-03-14T05:07:46.8584457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8584957Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:07:46.8585231Z 2025-03-14T05:07:46.8585572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8586306Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8586848Z 2025-03-14T05:07:46.8587202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8589058Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8590739Z 2025-03-14T05:07:46.8591111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8591598Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:07:46.8591853Z 2025-03-14T05:07:46.8592761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8593481Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8594022Z 2025-03-14T05:07:46.8594371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8596230Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8597814Z 2025-03-14T05:07:46.8598186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8598661Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:07:46.8598915Z 2025-03-14T05:07:46.8599246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8599967Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8600507Z 2025-03-14T05:07:46.8600852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8602643Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8604241Z 2025-03-14T05:07:46.8604603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8605106Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:07:46.8605377Z 2025-03-14T05:07:46.8605744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8606228Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:07:46.8606494Z 2025-03-14T05:07:46.8606827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8607543Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8608067Z 2025-03-14T05:07:46.8608409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8610239Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8611817Z 2025-03-14T05:07:46.8612182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8612654Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:07:46.8612911Z 2025-03-14T05:07:46.8613242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8613954Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8614485Z 2025-03-14T05:07:46.8614825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8616614Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8618263Z 2025-03-14T05:07:46.8618627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8619098Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:07:46.8619355Z 2025-03-14T05:07:46.8619688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8620411Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8620950Z 2025-03-14T05:07:46.8621293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8623102Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8624752Z 2025-03-14T05:07:46.8625118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8625613Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:07:46.8625888Z 2025-03-14T05:07:46.8626259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8626759Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:07:46.8627034Z 2025-03-14T05:07:46.8627376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8628113Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8628657Z 2025-03-14T05:07:46.8629013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8630862Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8632526Z 2025-03-14T05:07:46.8632901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8633390Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:07:46.8633654Z 2025-03-14T05:07:46.8633989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8634732Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8635285Z 2025-03-14T05:07:46.8635655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8637529Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8639146Z 2025-03-14T05:07:46.8639521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8640008Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:07:46.8640287Z 2025-03-14T05:07:46.8640617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8641337Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8643425Z 2025-03-14T05:07:46.8644684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8650208Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8654929Z 2025-03-14T05:07:46.8656097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8657034Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:46.8660800Z 2025-03-14T05:07:46.8661271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8663533Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8665574Z 2025-03-14T05:07:46.8665993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8666540Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:07:46.8666841Z 2025-03-14T05:07:46.8667259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8667811Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:07:46.8668117Z 2025-03-14T05:07:46.8668496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8669309Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8669916Z 2025-03-14T05:07:46.8670307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8672214Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8673861Z 2025-03-14T05:07:46.8674236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8695514Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:07:46.8695832Z 2025-03-14T05:07:46.8696270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8697078Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8697667Z 2025-03-14T05:07:46.8698039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8700143Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8701836Z 2025-03-14T05:07:46.8702244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8702765Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:07:46.8703044Z 2025-03-14T05:07:46.8703409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8704281Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8704865Z 2025-03-14T05:07:46.8705243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8707207Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8708952Z 2025-03-14T05:07:46.8709341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8709887Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:07:46.8710177Z 2025-03-14T05:07:46.8710569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8711091Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:07:46.8711390Z 2025-03-14T05:07:46.8711731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8712461Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8712994Z 2025-03-14T05:07:46.8713348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8715173Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8716771Z 2025-03-14T05:07:46.8717141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8717626Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:07:46.8717886Z 2025-03-14T05:07:46.8718220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8718946Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8719484Z 2025-03-14T05:07:46.8719830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8721616Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8723235Z 2025-03-14T05:07:46.8723598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8724543Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:07:46.8724806Z 2025-03-14T05:07:46.8725141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8725867Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8726406Z 2025-03-14T05:07:46.8726753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8728585Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8730207Z 2025-03-14T05:07:46.8730586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8731128Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:07:46.8731397Z 2025-03-14T05:07:46.8731762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8732245Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:07:46.8732511Z 2025-03-14T05:07:46.8732849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8733566Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8734091Z 2025-03-14T05:07:46.8734434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8736212Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8737849Z 2025-03-14T05:07:46.8738214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8738686Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:07:46.8738950Z 2025-03-14T05:07:46.8739288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8740027Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8740573Z 2025-03-14T05:07:46.8740926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8742806Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8744503Z 2025-03-14T05:07:46.8744901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8745416Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:07:46.8745693Z 2025-03-14T05:07:46.8746045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8746792Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8747347Z 2025-03-14T05:07:46.8747702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8749561Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8751219Z 2025-03-14T05:07:46.8751592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8752085Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:07:46.8752361Z 2025-03-14T05:07:46.8752733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8753226Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:07:46.8753499Z 2025-03-14T05:07:46.8753837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8754575Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8755118Z 2025-03-14T05:07:46.8755491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8757338Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8758962Z 2025-03-14T05:07:46.8759333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8759814Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:07:46.8760076Z 2025-03-14T05:07:46.8760415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8761146Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8761698Z 2025-03-14T05:07:46.8762039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8763880Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8765521Z 2025-03-14T05:07:46.8765898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8766377Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:07:46.8766636Z 2025-03-14T05:07:46.8766976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8767714Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8768256Z 2025-03-14T05:07:46.8768609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8770492Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8772107Z 2025-03-14T05:07:46.8772440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8773188Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:46.8773738Z 2025-03-14T05:07:46.8774089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8775948Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8777621Z 2025-03-14T05:07:46.8777979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8778443Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:07:46.8778712Z 2025-03-14T05:07:46.8779076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8779553Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:07:46.8779812Z 2025-03-14T05:07:46.8780136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8780842Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8781360Z 2025-03-14T05:07:46.8781889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8783777Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8785663Z 2025-03-14T05:07:46.8786062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8786551Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:07:46.8786813Z 2025-03-14T05:07:46.8787158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8787897Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8788450Z 2025-03-14T05:07:46.8788808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8790670Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8792756Z 2025-03-14T05:07:46.8793162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8794352Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:07:46.8794611Z 2025-03-14T05:07:46.8794945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8795660Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8796195Z 2025-03-14T05:07:46.8796544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8798368Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8799956Z 2025-03-14T05:07:46.8800317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8800797Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:07:46.8801066Z 2025-03-14T05:07:46.8801436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8801918Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:07:46.8802180Z 2025-03-14T05:07:46.8802516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8803234Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8803767Z 2025-03-14T05:07:46.8804115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8805932Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8807579Z 2025-03-14T05:07:46.8807951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8808433Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:07:46.8808693Z 2025-03-14T05:07:46.8809030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8809751Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8810287Z 2025-03-14T05:07:46.8810637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8812487Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8814054Z 2025-03-14T05:07:46.8814413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8814875Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:07:46.8815127Z 2025-03-14T05:07:46.8815458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8816169Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8816693Z 2025-03-14T05:07:46.8817033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8818809Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8820396Z 2025-03-14T05:07:46.8820756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8821243Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:07:46.8821504Z 2025-03-14T05:07:46.8821869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8822340Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:07:46.8822589Z 2025-03-14T05:07:46.8822921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8823629Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8824225Z 2025-03-14T05:07:46.8824974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8826928Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8828531Z 2025-03-14T05:07:46.8828905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8829382Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:07:46.8829640Z 2025-03-14T05:07:46.8829976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8830705Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8831757Z 2025-03-14T05:07:46.8832118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8833966Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8835946Z 2025-03-14T05:07:46.8836327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8836820Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:07:46.8837079Z 2025-03-14T05:07:46.8837423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8838488Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8839050Z 2025-03-14T05:07:46.8839408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8845325Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8847000Z 2025-03-14T05:07:46.8847394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8847893Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:07:46.8848165Z 2025-03-14T05:07:46.8848546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8849040Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:07:46.8849309Z 2025-03-14T05:07:46.8849646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8850990Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8851854Z 2025-03-14T05:07:46.8852224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8856120Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8862122Z 2025-03-14T05:07:46.8862754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8863954Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:07:46.8864561Z 2025-03-14T05:07:46.8865651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8869724Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8870339Z 2025-03-14T05:07:46.8870745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8872862Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8874589Z 2025-03-14T05:07:46.8874988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8875497Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:07:46.8875775Z 2025-03-14T05:07:46.8876131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8876913Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8877495Z 2025-03-14T05:07:46.8877868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8879804Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8881653Z 2025-03-14T05:07:46.8882047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8882564Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:07:46.8882848Z 2025-03-14T05:07:46.8883241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8883756Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:07:46.8884040Z 2025-03-14T05:07:46.8884397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8885168Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8885733Z 2025-03-14T05:07:46.8886121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8888174Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8889847Z 2025-03-14T05:07:46.8890240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8890741Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:07:46.8891015Z 2025-03-14T05:07:46.8892307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8893152Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8893738Z 2025-03-14T05:07:46.8894121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8896092Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8897902Z 2025-03-14T05:07:46.8898311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8898831Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:07:46.8899107Z 2025-03-14T05:07:46.8899465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8900270Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8900861Z 2025-03-14T05:07:46.8901238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8903772Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8905908Z 2025-03-14T05:07:46.8906335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8906891Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:07:46.8907169Z 2025-03-14T05:07:46.8907559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8908070Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:07:46.8908343Z 2025-03-14T05:07:46.8908708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8909470Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8910002Z 2025-03-14T05:07:46.8910353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8912180Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8913831Z 2025-03-14T05:07:46.8914199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8914672Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:07:46.8914932Z 2025-03-14T05:07:46.8915270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8916000Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8916547Z 2025-03-14T05:07:46.8916896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8918765Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8920395Z 2025-03-14T05:07:46.8920765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8921239Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:07:46.8921495Z 2025-03-14T05:07:46.8921827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8922560Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8923105Z 2025-03-14T05:07:46.8923455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8925307Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8926968Z 2025-03-14T05:07:46.8927342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8927831Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T05:07:46.8928102Z 2025-03-14T05:07:46.8928477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8928966Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:07:46.8929231Z 2025-03-14T05:07:46.8929571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8930300Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8930833Z 2025-03-14T05:07:46.8931184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8933074Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8934683Z 2025-03-14T05:07:46.8935050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8935521Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T05:07:46.8935774Z 2025-03-14T05:07:46.8936111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8936834Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8937367Z 2025-03-14T05:07:46.8937715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8939532Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8941184Z 2025-03-14T05:07:46.8941552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8942026Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:07:46.8942286Z 2025-03-14T05:07:46.8942622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8943360Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8943905Z 2025-03-14T05:07:46.8944367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8946299Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8947919Z 2025-03-14T05:07:46.8948290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8948769Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T05:07:46.8949039Z 2025-03-14T05:07:46.8949405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8949883Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:07:46.8950139Z 2025-03-14T05:07:46.8950469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8951193Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8951744Z 2025-03-14T05:07:46.8952083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8953956Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8955592Z 2025-03-14T05:07:46.8955967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8956453Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T05:07:46.8956716Z 2025-03-14T05:07:46.8957057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8957788Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8958327Z 2025-03-14T05:07:46.8958682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8960553Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8962164Z 2025-03-14T05:07:46.8962536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8963017Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:07:46.8963275Z 2025-03-14T05:07:46.8963618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8964343Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8964882Z 2025-03-14T05:07:46.8965232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8967059Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8969218Z 2025-03-14T05:07:46.8969604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8970086Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T05:07:46.8970354Z 2025-03-14T05:07:46.8970716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8971187Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:07:46.8971447Z 2025-03-14T05:07:46.8971772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8972477Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8972992Z 2025-03-14T05:07:46.8973332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8975179Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8976814Z 2025-03-14T05:07:46.8977184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8977664Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T05:07:46.8977928Z 2025-03-14T05:07:46.8978262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8978989Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8979531Z 2025-03-14T05:07:46.8979880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8982247Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8983956Z 2025-03-14T05:07:46.8984469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8985015Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T05:07:46.8985303Z 2025-03-14T05:07:46.8985686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8986483Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.8987091Z 2025-03-14T05:07:46.8987486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8989599Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8991391Z 2025-03-14T05:07:46.8992320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.8992913Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T05:07:46.8993215Z 2025-03-14T05:07:46.8993636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8994190Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T05:07:46.8994465Z 2025-03-14T05:07:46.8994821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8995587Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.8996193Z 2025-03-14T05:07:46.8996560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.8998191Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.8998283Z 2025-03-14T05:07:46.8998595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.8998755Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T05:07:46.8998825Z 2025-03-14T05:07:46.8999101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.8999550Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.8999630Z 2025-03-14T05:07:46.8999909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9001580Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9001663Z 2025-03-14T05:07:46.9001962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9002120Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T05:07:46.9002190Z 2025-03-14T05:07:46.9002459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9002909Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9002986Z 2025-03-14T05:07:46.9003264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9004808Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9004900Z 2025-03-14T05:07:46.9005174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9005333Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T05:07:46.9005398Z 2025-03-14T05:07:46.9005681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9005820Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T05:07:46.9005890Z 2025-03-14T05:07:46.9006133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9006549Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9006614Z 2025-03-14T05:07:46.9006911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9008395Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9008470Z 2025-03-14T05:07:46.9008763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9008903Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T05:07:46.9008991Z 2025-03-14T05:07:46.9009253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9009672Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9009759Z 2025-03-14T05:07:46.9010019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9011488Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9011583Z 2025-03-14T05:07:46.9011876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9012017Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T05:07:46.9012089Z 2025-03-14T05:07:46.9012336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9012771Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9012841Z 2025-03-14T05:07:46.9013111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9014682Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9014752Z 2025-03-14T05:07:46.9015044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9015195Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T05:07:46.9015269Z 2025-03-14T05:07:46.9015554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9015699Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T05:07:46.9015766Z 2025-03-14T05:07:46.9016015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9016447Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9016520Z 2025-03-14T05:07:46.9016793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9018286Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9018359Z 2025-03-14T05:07:46.9018643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9018785Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T05:07:46.9018850Z 2025-03-14T05:07:46.9019104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9019522Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9019596Z 2025-03-14T05:07:46.9019888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9021415Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9021490Z 2025-03-14T05:07:46.9021770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9021914Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T05:07:46.9021979Z 2025-03-14T05:07:46.9022235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9022655Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9022742Z 2025-03-14T05:07:46.9023009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9024655Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9024742Z 2025-03-14T05:07:46.9025043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9025217Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T05:07:46.9025281Z 2025-03-14T05:07:46.9025568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9025708Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T05:07:46.9025785Z 2025-03-14T05:07:46.9026033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9026490Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9026559Z 2025-03-14T05:07:46.9026829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9028367Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9028435Z 2025-03-14T05:07:46.9028724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9028860Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T05:07:46.9028932Z 2025-03-14T05:07:46.9029179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9029630Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9029722Z 2025-03-14T05:07:46.9029983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9031520Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9031588Z 2025-03-14T05:07:46.9031882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9032018Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T05:07:46.9032090Z 2025-03-14T05:07:46.9032336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9032767Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9032874Z 2025-03-14T05:07:46.9033143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9034684Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9034751Z 2025-03-14T05:07:46.9035037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9035183Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T05:07:46.9035255Z 2025-03-14T05:07:46.9035532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9035678Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T05:07:46.9035769Z 2025-03-14T05:07:46.9036017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9036437Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9036519Z 2025-03-14T05:07:46.9036787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9038309Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9038388Z 2025-03-14T05:07:46.9038678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9038813Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T05:07:46.9038885Z 2025-03-14T05:07:46.9039133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9039603Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9039672Z 2025-03-14T05:07:46.9039943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9041473Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9041550Z 2025-03-14T05:07:46.9041840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9041976Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T05:07:46.9042049Z 2025-03-14T05:07:46.9042297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9042744Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9042825Z 2025-03-14T05:07:46.9043106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9044607Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9044680Z 2025-03-14T05:07:46.9044963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9045109Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T05:07:46.9045182Z 2025-03-14T05:07:46.9045456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9045604Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T05:07:46.9045666Z 2025-03-14T05:07:46.9045995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9046399Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9046471Z 2025-03-14T05:07:46.9046725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9048198Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9048273Z 2025-03-14T05:07:46.9048548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9048705Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T05:07:46.9048769Z 2025-03-14T05:07:46.9049019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9049483Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9049554Z 2025-03-14T05:07:46.9049806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9051314Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9051388Z 2025-03-14T05:07:46.9051668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9051809Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T05:07:46.9051874Z 2025-03-14T05:07:46.9052129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9052582Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9052658Z 2025-03-14T05:07:46.9052924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9054486Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9054561Z 2025-03-14T05:07:46.9054851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9055004Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T05:07:46.9055083Z 2025-03-14T05:07:46.9055370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9055511Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T05:07:46.9055598Z 2025-03-14T05:07:46.9055839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9056247Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9056311Z 2025-03-14T05:07:46.9056573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9058102Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9058172Z 2025-03-14T05:07:46.9058463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9058600Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T05:07:46.9058673Z 2025-03-14T05:07:46.9058949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9059379Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9059445Z 2025-03-14T05:07:46.9059713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9061240Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9061308Z 2025-03-14T05:07:46.9061596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9061745Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T05:07:46.9061821Z 2025-03-14T05:07:46.9062071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9062513Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9062578Z 2025-03-14T05:07:46.9062851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9064515Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9064597Z 2025-03-14T05:07:46.9064906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9065064Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T05:07:46.9065153Z 2025-03-14T05:07:46.9065938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9066099Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T05:07:46.9066168Z 2025-03-14T05:07:46.9066442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9066854Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9066928Z 2025-03-14T05:07:46.9067197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9068717Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9068814Z 2025-03-14T05:07:46.9069103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9069252Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T05:07:46.9069333Z 2025-03-14T05:07:46.9070007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9070449Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9070517Z 2025-03-14T05:07:46.9070790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9072318Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9072397Z 2025-03-14T05:07:46.9072682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9072826Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T05:07:46.9072932Z 2025-03-14T05:07:46.9073187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9073614Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9073679Z 2025-03-14T05:07:46.9073948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9075471Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9075544Z 2025-03-14T05:07:46.9075827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9076366Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T05:07:46.9076450Z 2025-03-14T05:07:46.9076743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9076918Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T05:07:46.9076985Z 2025-03-14T05:07:46.9077243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9077660Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9077734Z 2025-03-14T05:07:46.9078196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9079717Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9079795Z 2025-03-14T05:07:46.9080106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9080255Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T05:07:46.9080319Z 2025-03-14T05:07:46.9080569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9080987Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9081060Z 2025-03-14T05:07:46.9081316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9082964Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9083089Z 2025-03-14T05:07:46.9083377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9083549Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T05:07:46.9083614Z 2025-03-14T05:07:46.9083870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9084295Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9084369Z 2025-03-14T05:07:46.9084631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9086150Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9086226Z 2025-03-14T05:07:46.9086506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9086716Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T05:07:46.9086786Z 2025-03-14T05:07:46.9087078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9087226Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T05:07:46.9087302Z 2025-03-14T05:07:46.9087548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9087967Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9088033Z 2025-03-14T05:07:46.9088305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9089838Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9089952Z 2025-03-14T05:07:46.9090242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9090382Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T05:07:46.9090453Z 2025-03-14T05:07:46.9090703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9091131Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9091197Z 2025-03-14T05:07:46.9091469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9093439Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9093532Z 2025-03-14T05:07:46.9093912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9094063Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T05:07:46.9094143Z 2025-03-14T05:07:46.9094407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9094857Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9094932Z 2025-03-14T05:07:46.9095235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9096946Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9097042Z 2025-03-14T05:07:46.9097366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9097565Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T05:07:46.9097647Z 2025-03-14T05:07:46.9097965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9098137Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T05:07:46.9098210Z 2025-03-14T05:07:46.9098499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9098969Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9099054Z 2025-03-14T05:07:46.9099338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9100855Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9100932Z 2025-03-14T05:07:46.9101212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9101358Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T05:07:46.9101421Z 2025-03-14T05:07:46.9101671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9102091Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9102168Z 2025-03-14T05:07:46.9102424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9103916Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9104023Z 2025-03-14T05:07:46.9104362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9104511Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T05:07:46.9104579Z 2025-03-14T05:07:46.9104832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9105271Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9105353Z 2025-03-14T05:07:46.9105637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9107231Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9107310Z 2025-03-14T05:07:46.9107589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9107754Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T05:07:46.9107819Z 2025-03-14T05:07:46.9108111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9108254Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T05:07:46.9108327Z 2025-03-14T05:07:46.9108573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9108998Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9109071Z 2025-03-14T05:07:46.9109332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9110852Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9110960Z 2025-03-14T05:07:46.9111250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9111393Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T05:07:46.9111457Z 2025-03-14T05:07:46.9111712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9112139Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9112212Z 2025-03-14T05:07:46.9112471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9114015Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9114092Z 2025-03-14T05:07:46.9114378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9114521Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T05:07:46.9114588Z 2025-03-14T05:07:46.9114844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9115279Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9115353Z 2025-03-14T05:07:46.9115610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9117096Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9117217Z 2025-03-14T05:07:46.9117490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9117649Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T05:07:46.9117713Z 2025-03-14T05:07:46.9117998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9118140Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T05:07:46.9118213Z 2025-03-14T05:07:46.9118457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9118869Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9118933Z 2025-03-14T05:07:46.9119195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9120681Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9120758Z 2025-03-14T05:07:46.9121050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9121185Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T05:07:46.9121256Z 2025-03-14T05:07:46.9121495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9121920Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9121986Z 2025-03-14T05:07:46.9122246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9123739Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9123853Z 2025-03-14T05:07:46.9124137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9124271Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T05:07:46.9124345Z 2025-03-14T05:07:46.9124586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9125009Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9125074Z 2025-03-14T05:07:46.9125336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9126880Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9126950Z 2025-03-14T05:07:46.9127232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9127389Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T05:07:46.9127465Z 2025-03-14T05:07:46.9127747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9127896Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T05:07:46.9127968Z 2025-03-14T05:07:46.9128409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:46.9128567Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:07:46.9128642Z 2025-03-14T05:07:46.9128934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9129082Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:07:46.9129165Z 2025-03-14T05:07:46.9129606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:46.9129773Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:07:46.9129844Z 2025-03-14T05:07:46.9130136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9130283Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:07:46.9130346Z 2025-03-14T05:07:46.9130725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:07:46.9130907Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:07:46.9131012Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:07:46.9131136Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:07:46.9131209Z 2025-03-14T05:07:46.9131537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:07:46.9131672Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:07:46.9131737Z 2025-03-14T05:07:46.9132068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:07:46.9132197Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:07:46.9132263Z 2025-03-14T05:07:46.9132651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:07:46.9132896Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:07:46.9132969Z 2025-03-14T05:07:46.9133385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:07:46.9133518Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:07:46.9133938Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:07:46.9134070Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:07:46.9134190Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:07:46.9134264Z 2025-03-14T05:07:46.9134564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:46.9134696Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T05:07:46.9134762Z 2025-03-14T05:07:46.9135020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9135788Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:07:46.9135896Z 2025-03-14T05:07:46.9136171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:07:46.9136371Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T05:07:46.9136438Z 2025-03-14T05:07:46.9136824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:07:46.9137676Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:07:46.9137746Z 2025-03-14T05:07:46.9138112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:07:46.9138913Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:07:46.9138990Z 2025-03-14T05:07:46.9139364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:07:46.9139526Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:07:46.9139674Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:07:46.9139739Z 2025-03-14T05:07:46.9140164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:07:46.9140319Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T05:07:46.9140493Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:07:46.9140667Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:07:46.9140741Z 2025-03-14T05:07:46.9141130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:07:46.9141343Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:07:46.9141408Z 2025-03-14T05:07:46.9141840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:07:46.9142007Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:07:46.9142166Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:07:46.9142323Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:07:46.9142396Z 2025-03-14T05:07:46.9142772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:07:46.9142947Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:07:46.9143013Z 2025-03-14T05:07:46.9143328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:07:46.9143468Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:07:46.9143543Z 2025-03-14T05:07:46.9143856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:07:46.9143995Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:07:46.9144175Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:46.9144343Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:07:46.9144409Z 2025-03-14T05:07:46.9144739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:07:46.9144867Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:07:46.9144997Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:07:46.9145144Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:07:46.9145264Z 2025-03-14T05:07:46.9145575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:07:46.9145709Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:46.9145799Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:07:46.9145930Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:07:46.9145995Z 2025-03-14T05:07:46.9146313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:07:46.9146459Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:07:46.9146560Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:07:46.9146689Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:07:46.9146763Z 2025-03-14T05:07:46.9147097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:07:46.9147258Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:07:46.9147381Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:07:46.9147446Z 2025-03-14T05:07:46.9147753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:07:46.9147923Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:07:46.9148042Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:07:46.9148108Z 2025-03-14T05:07:46.9148412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:07:46.9148578Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:07:46.9148698Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:07:46.9148763Z 2025-03-14T05:07:46.9149066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:07:46.9149248Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:07:46.9149366Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:07:46.9149430Z 2025-03-14T05:07:46.9149778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:07:46.9149915Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:07:46.9149987Z 2025-03-14T05:07:46.9150304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:07:46.9150442Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:07:46.9150505Z 2025-03-14T05:07:46.9150844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:07:46.9150979Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:07:46.9151145Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:07:46.9151294Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:07:46.9151436Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:07:46.9151499Z 2025-03-14T05:07:46.9151837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:07:46.9151970Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:07:46.9152098Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:07:46.9152242Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:07:46.9152381Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:07:46.9152448Z 2025-03-14T05:07:46.9152773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:07:46.9152898Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:07:46.9153052Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:07:46.9153189Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:07:46.9153253Z 2025-03-14T05:07:46.9153582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:07:46.9153748Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:07:46.9153918Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:07:46.9154065Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:07:46.9154137Z 2025-03-14T05:07:46.9154441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:07:46.9154543Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:07:46.9154656Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:07:46.9154728Z 2025-03-14T05:07:46.9155026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:07:46.9155127Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:07:46.9155239Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:07:46.9155312Z 2025-03-14T05:07:46.9155611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:07:46.9155729Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:07:46.9155852Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:07:46.9155922Z 2025-03-14T05:07:46.9156213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:07:46.9156330Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:07:46.9156453Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:07:46.9156524Z 2025-03-14T05:07:46.9156884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:07:46.9157069Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:07:46.9157133Z 2025-03-14T05:07:46.9157468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:07:46.9157622Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:07:46.9157693Z 2025-03-14T05:07:46.9158066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:07:46.9158244Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:07:46.9158310Z 2025-03-14T05:07:46.9158793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:07:46.9158926Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:07:46.9158998Z 2025-03-14T05:07:46.9159288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9159434Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:07:46.9159514Z 2025-03-14T05:07:46.9159950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:07:46.9160082Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:07:46.9160194Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:07:46.9160305Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:07:46.9160377Z 2025-03-14T05:07:46.9160828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:07:46.9160996Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:07:46.9161234Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:07:46.9161299Z 2025-03-14T05:07:46.9161760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:07:46.9161923Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:07:46.9161994Z 2025-03-14T05:07:46.9162282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9162438Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:07:46.9162501Z 2025-03-14T05:07:46.9162883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:07:46.9163701Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:07:46.9163782Z 2025-03-14T05:07:46.9164073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:46.9164221Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:07:46.9164288Z 2025-03-14T05:07:46.9164658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:07:46.9164795Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:07:46.9164870Z 2025-03-14T05:07:46.9165339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:07:46.9165480Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:07:46.9165599Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:07:46.9165760Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:07:46.9165890Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:07:46.9165960Z 2025-03-14T05:07:46.9166316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:07:46.9166457Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:07:46.9166520Z 2025-03-14T05:07:46.9167043Z 2025-03-14T05:07:46.9167144Z class GraphModule(torch.nn.Module): 2025-03-14T05:07:46.9257766Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:07:46.9258448Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:07:46.9258728Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9259059Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9259390Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9259712Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9260005Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9260288Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9260633Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9260966Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9261289Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9261591Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9261878Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9262216Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9262698Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9263099Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9263486Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9263808Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9264287Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9264690Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9265080Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9265435Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9265809Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:46.9266276Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9266703Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9267125Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9267527Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9267842Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9268261Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9268642Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9269058Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9269437Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9269759Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9270180Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9270629Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9270983Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9271285Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9271570Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9271904Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9272244Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9272554Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9272867Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9273153Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9273499Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9273853Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9274162Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9274469Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9274746Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9275085Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9275459Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9275812Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9276164Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9276461Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9276827Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9277154Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9277496Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9277842Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9278166Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9278537Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9278912Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9279271Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9279618Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9279949Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9280321Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9280709Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9281056Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9281402Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9281838Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9282227Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9282601Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9282950Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9283276Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9283566Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:46.9283967Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9284311Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9284650Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9284966Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9285258Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9285598Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9285929Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9286250Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9286568Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9286855Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9287212Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9287548Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9287855Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9288166Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9288454Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9288785Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9289120Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9289430Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9289740Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9290043Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9290385Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9290707Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9291025Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9291338Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9292068Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9292556Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9292951Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9293314Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9293653Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9293960Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9294322Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9294662Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9294991Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9295299Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9295589Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9295925Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9296262Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9296578Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9296918Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9297196Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9297533Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9297865Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9298174Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9298489Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9298766Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9299100Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9299428Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9299762Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9300066Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9300369Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9300713Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9301043Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9301365Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9301673Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9301962Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9302295Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9302631Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9302945Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9303293Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9303578Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9303906Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9304274Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9304594Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9304912Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9305231Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:46.9305613Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9305983Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9306366Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9306715Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9306995Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9307340Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9307674Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9308002Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9308311Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9308603Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9308953Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9309287Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9309642Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9309956Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9310246Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9310581Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9310922Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9311239Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9311556Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9311847Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9312183Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9312546Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9312866Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9313215Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9313491Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9313828Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9314155Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9314474Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9314783Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9315057Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9315395Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9315724Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9316077Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9316382Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9316668Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9316998Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9317337Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9317651Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9317952Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9318235Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9318561Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9318920Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9319246Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9319555Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9319831Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9320170Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9320504Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9320813Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9321120Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9321395Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9321730Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9322083Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9322403Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9322707Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9322990Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9323329Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9323654Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9323970Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9324272Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9324556Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9324901Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9325242Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9325565Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9325871Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9326159Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9326490Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9326826Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9327138Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9327444Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9327719Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9328087Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9328415Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9328735Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9329043Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9329320Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9329662Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9329989Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9330309Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9330614Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9330915Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9331249Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9331604Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9331925Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9332235Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9332523Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9332861Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9333201Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9333512Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9333821Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9334101Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9334476Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9334812Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9335122Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9335436Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9335711Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9336055Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9336383Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9336698Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9337004Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9337311Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9337667Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9338012Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9338331Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9338634Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9338922Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9339251Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9339589Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9339899Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9340208Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9340528Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9340865Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9341199Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9341507Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9341817Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9342098Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9342440Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9342765Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9343085Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9343413Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9343691Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9344054Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9344455Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9344792Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9345106Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9345405Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9345757Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9346110Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9346442Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9346759Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9347090Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9347436Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9347785Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9348109Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9348437Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9348731Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9349111Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9349497Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9349866Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9350213Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9350515Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9350904Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9351277Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9351616Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9351977Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9352283Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9352678Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9353052Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9353432Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9353812Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9354121Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9354507Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9354885Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9355250Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9355621Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9355930Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9356279Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9356638Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9356974Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9357293Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9357594Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9357942Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9358274Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9358603Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9358924Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9359213Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9359563Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9359900Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9360264Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9360577Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9360869Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9361236Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9361579Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9361909Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9362222Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9362515Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9362855Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9363216Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9363539Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9363875Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9364158Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9364508Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9364854Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9365176Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9365497Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9365785Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9366133Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9366471Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9366907Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9367223Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9367520Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9367869Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9368211Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9368546Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9368860Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9369158Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9369503Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9369870Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9370210Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9370535Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9370838Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9371178Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9371516Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9371833Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9372143Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9372423Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9372773Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9373136Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9373468Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9373798Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9374076Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9374416Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9374748Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9375071Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9375374Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9375669Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9376025Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9376371Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9376719Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9377031Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9377334Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9377669Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9378007Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9378321Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9378637Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9378917Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9379285Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9379628Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9379950Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9380269Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9380556Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9380908Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9381245Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9382204Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9382524Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9382867Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9383221Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9383575Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9383906Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9384274Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9384586Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9384938Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9385295Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9385632Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9385947Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9386243Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9386629Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9386977Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9387296Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9387613Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9387900Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9388248Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9388583Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9388921Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9389257Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9389546Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9389914Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9390252Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9390578Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9390891Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9391187Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9391525Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9392506Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9392881Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9393216Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9393557Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9393901Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9394249Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9394571Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9394894Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9395186Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9395536Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9395875Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9396197Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9396538Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9396844Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9397194Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9397531Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9397860Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9398174Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9398470Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9398818Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9399150Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9399478Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9399818Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9400440Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9400793Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9401143Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9401468Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9401798Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9402094Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9402437Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9402788Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9403139Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9403454Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9403752Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9404096Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9404431Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9404745Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9405056Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9405332Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9405673Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9405999Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9406348Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9406654Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9406939Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9407277Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9407608Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9407929Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9408232Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9408517Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9408845Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9409198Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9409514Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9409844Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9410134Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9410466Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9411314Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9411649Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9411966Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9412249Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T05:07:46.9412593Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9412928Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9413292Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9413607Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9413889Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T05:07:46.9414233Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9414572Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9414892Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9415194Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9415482Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T05:07:46.9415822Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:46.9416215Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:46.9416568Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:46.9416871Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:46.9417221Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:07:46.9417535Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:07:46.9417848Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:07:46.9418210Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:07:46.9418570Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:07:46.9418913Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:07:46.9419257Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:07:46.9419368Z 2025-03-14T05:07:46.9419655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9420130Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9420198Z 2025-03-14T05:07:46.9420481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9421895Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9421973Z 2025-03-14T05:07:46.9422260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:07:46.9422429Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:07:46.9422503Z 2025-03-14T05:07:46.9422867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:07:46.9423466Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:07:46.9423532Z 2025-03-14T05:07:46.9423798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9424261Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9424344Z 2025-03-14T05:07:46.9424616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9426166Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9426245Z 2025-03-14T05:07:46.9426579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9426732Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:07:46.9426799Z 2025-03-14T05:07:46.9427073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9427519Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9427596Z 2025-03-14T05:07:46.9427867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9429404Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9429492Z 2025-03-14T05:07:46.9429801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9429954Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:07:46.9430037Z 2025-03-14T05:07:46.9430303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9430789Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9430863Z 2025-03-14T05:07:46.9431134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9432693Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9432770Z 2025-03-14T05:07:46.9433028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9433520Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:46.9433589Z 2025-03-14T05:07:46.9433861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9435460Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9435536Z 2025-03-14T05:07:46.9435829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9435978Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:07:46.9436052Z 2025-03-14T05:07:46.9436363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9436530Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:07:46.9436599Z 2025-03-14T05:07:46.9436882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9437318Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9437395Z 2025-03-14T05:07:46.9437663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9439220Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9439292Z 2025-03-14T05:07:46.9439569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9439717Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:07:46.9439780Z 2025-03-14T05:07:46.9440077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9440495Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9440569Z 2025-03-14T05:07:46.9440827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9442306Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9442381Z 2025-03-14T05:07:46.9442659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9442821Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:07:46.9442884Z 2025-03-14T05:07:46.9443133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9443566Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9443639Z 2025-03-14T05:07:46.9443896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9445395Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9445468Z 2025-03-14T05:07:46.9445743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9445903Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:07:46.9445969Z 2025-03-14T05:07:46.9446253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9446425Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:07:46.9446501Z 2025-03-14T05:07:46.9446742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9447161Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9447226Z 2025-03-14T05:07:46.9447487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9448968Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9449048Z 2025-03-14T05:07:46.9449338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9449474Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:07:46.9449550Z 2025-03-14T05:07:46.9449807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9450230Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9450293Z 2025-03-14T05:07:46.9450556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9452061Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9452127Z 2025-03-14T05:07:46.9452412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9452545Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:07:46.9452618Z 2025-03-14T05:07:46.9452885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9453318Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9453383Z 2025-03-14T05:07:46.9453648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9455129Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9455198Z 2025-03-14T05:07:46.9455479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9455652Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:07:46.9455724Z 2025-03-14T05:07:46.9456004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9456176Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:07:46.9456240Z 2025-03-14T05:07:46.9456494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9456985Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9457052Z 2025-03-14T05:07:46.9457320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9458819Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9458897Z 2025-03-14T05:07:46.9459188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9459370Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:07:46.9459437Z 2025-03-14T05:07:46.9459693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9460122Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9460187Z 2025-03-14T05:07:46.9460457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9461959Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9462051Z 2025-03-14T05:07:46.9462339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9462493Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:07:46.9462584Z 2025-03-14T05:07:46.9462830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9463267Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9463334Z 2025-03-14T05:07:46.9463603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9465174Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9465256Z 2025-03-14T05:07:46.9465515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9465993Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:46.9466066Z 2025-03-14T05:07:46.9466330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9467881Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9467959Z 2025-03-14T05:07:46.9468242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9468401Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:07:46.9468466Z 2025-03-14T05:07:46.9468756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9468923Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:07:46.9468997Z 2025-03-14T05:07:46.9469246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9469720Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9469784Z 2025-03-14T05:07:46.9470051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9471557Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9471634Z 2025-03-14T05:07:46.9471926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9472066Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:07:46.9472138Z 2025-03-14T05:07:46.9472418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9472851Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9472915Z 2025-03-14T05:07:46.9473185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9474675Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9474752Z 2025-03-14T05:07:46.9475046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9475184Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:07:46.9475275Z 2025-03-14T05:07:46.9475526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9475964Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9476044Z 2025-03-14T05:07:46.9476316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9478478Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9478564Z 2025-03-14T05:07:46.9478848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9479000Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:07:46.9479075Z 2025-03-14T05:07:46.9479348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9479538Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:07:46.9479604Z 2025-03-14T05:07:46.9479853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9480260Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9480335Z 2025-03-14T05:07:46.9480589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9482238Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9482319Z 2025-03-14T05:07:46.9482659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9482811Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:07:46.9482878Z 2025-03-14T05:07:46.9483157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9483580Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9483655Z 2025-03-14T05:07:46.9483916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9485450Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9485526Z 2025-03-14T05:07:46.9485804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9485951Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:07:46.9486014Z 2025-03-14T05:07:46.9486310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9486721Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9486795Z 2025-03-14T05:07:46.9487048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9488518Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9488589Z 2025-03-14T05:07:46.9488861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9489033Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:07:46.9489096Z 2025-03-14T05:07:46.9489381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9489551Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:07:46.9489624Z 2025-03-14T05:07:46.9489870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9490284Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9490349Z 2025-03-14T05:07:46.9490612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9492944Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9493038Z 2025-03-14T05:07:46.9493358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9493557Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:07:46.9493636Z 2025-03-14T05:07:46.9493893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9494317Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9494381Z 2025-03-14T05:07:46.9494644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9496125Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9496207Z 2025-03-14T05:07:46.9496490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9496628Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:07:46.9496715Z 2025-03-14T05:07:46.9496955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9497374Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9497445Z 2025-03-14T05:07:46.9497700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9499172Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9499239Z 2025-03-14T05:07:46.9499515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9499664Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:07:46.9499737Z 2025-03-14T05:07:46.9500034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9500188Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:07:46.9500250Z 2025-03-14T05:07:46.9500500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9500910Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9500975Z 2025-03-14T05:07:46.9501236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9502702Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9502790Z 2025-03-14T05:07:46.9503069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9503225Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:07:46.9503288Z 2025-03-14T05:07:46.9503537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9503949Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9504016Z 2025-03-14T05:07:46.9504343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9505920Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9505996Z 2025-03-14T05:07:46.9506285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9506453Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:07:46.9506528Z 2025-03-14T05:07:46.9506778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9507204Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9507271Z 2025-03-14T05:07:46.9507540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9509052Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9510762Z 2025-03-14T05:07:46.9511114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9511864Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:46.9512463Z 2025-03-14T05:07:46.9512822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9514712Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9516443Z 2025-03-14T05:07:46.9516840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9517324Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:07:46.9517587Z 2025-03-14T05:07:46.9517967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9518454Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:07:46.9518745Z 2025-03-14T05:07:46.9519084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9519804Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9520337Z 2025-03-14T05:07:46.9520685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9522569Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9525473Z 2025-03-14T05:07:46.9525851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9526366Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:07:46.9526622Z 2025-03-14T05:07:46.9526958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9527698Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9528230Z 2025-03-14T05:07:46.9528577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9530379Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9531951Z 2025-03-14T05:07:46.9532316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9532783Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:07:46.9533036Z 2025-03-14T05:07:46.9533366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9534133Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9534661Z 2025-03-14T05:07:46.9535214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9537804Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9539424Z 2025-03-14T05:07:46.9539789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9540265Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:07:46.9540552Z 2025-03-14T05:07:46.9540916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9541396Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:07:46.9541680Z 2025-03-14T05:07:46.9542002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9542721Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9543243Z 2025-03-14T05:07:46.9543590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9545584Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9547213Z 2025-03-14T05:07:46.9547611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9548127Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:07:46.9548446Z 2025-03-14T05:07:46.9548819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9549597Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9550167Z 2025-03-14T05:07:46.9550541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9552483Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9554251Z 2025-03-14T05:07:46.9554640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9555183Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:07:46.9555454Z 2025-03-14T05:07:46.9555813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9556609Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9557154Z 2025-03-14T05:07:46.9557509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9559363Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9560985Z 2025-03-14T05:07:46.9561359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9561845Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:07:46.9562113Z 2025-03-14T05:07:46.9562524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9563008Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:07:46.9563270Z 2025-03-14T05:07:46.9563606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9564323Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9564859Z 2025-03-14T05:07:46.9565215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9567053Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9568694Z 2025-03-14T05:07:46.9569062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9569540Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:07:46.9569811Z 2025-03-14T05:07:46.9570142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9570860Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9571389Z 2025-03-14T05:07:46.9572197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9574361Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9575992Z 2025-03-14T05:07:46.9576377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9576857Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:07:46.9577184Z 2025-03-14T05:07:46.9577887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9578617Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9579158Z 2025-03-14T05:07:46.9579504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9581311Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9583594Z 2025-03-14T05:07:46.9583966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9584789Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:07:46.9585065Z 2025-03-14T05:07:46.9585450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9585969Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:07:46.9586233Z 2025-03-14T05:07:46.9586571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9587305Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9587853Z 2025-03-14T05:07:46.9588208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9590054Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9591705Z 2025-03-14T05:07:46.9592136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9592622Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:07:46.9592884Z 2025-03-14T05:07:46.9593215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9593952Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9594494Z 2025-03-14T05:07:46.9594849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9596680Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9598317Z 2025-03-14T05:07:46.9598690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9599165Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:07:46.9599439Z 2025-03-14T05:07:46.9599773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9600506Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9601050Z 2025-03-14T05:07:46.9601394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9603176Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9604753Z 2025-03-14T05:07:46.9605111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9605578Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:07:46.9605878Z 2025-03-14T05:07:46.9606247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9606725Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:07:46.9606981Z 2025-03-14T05:07:46.9607313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9608012Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9608542Z 2025-03-14T05:07:46.9608893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9610695Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9612292Z 2025-03-14T05:07:46.9612666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9613153Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:07:46.9613408Z 2025-03-14T05:07:46.9613739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9614446Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9614979Z 2025-03-14T05:07:46.9615319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9617099Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9618674Z 2025-03-14T05:07:46.9619078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9619539Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:07:46.9619788Z 2025-03-14T05:07:46.9620119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9620826Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9621362Z 2025-03-14T05:07:46.9621734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9623502Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9625292Z 2025-03-14T05:07:46.9625675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9626198Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:07:46.9626509Z 2025-03-14T05:07:46.9626909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9627425Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:07:46.9627702Z 2025-03-14T05:07:46.9628061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9628827Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9629391Z 2025-03-14T05:07:46.9629775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9631724Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9633511Z 2025-03-14T05:07:46.9633913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9634421Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:07:46.9634697Z 2025-03-14T05:07:46.9635057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9635799Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9636341Z 2025-03-14T05:07:46.9636695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9638544Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9640176Z 2025-03-14T05:07:46.9640550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9641043Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:07:46.9641300Z 2025-03-14T05:07:46.9641640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9642378Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9642927Z 2025-03-14T05:07:46.9643279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9645103Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9646719Z 2025-03-14T05:07:46.9647118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9647596Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T05:07:46.9647858Z 2025-03-14T05:07:46.9648217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9648685Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:07:46.9648938Z 2025-03-14T05:07:46.9649268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9649973Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9650491Z 2025-03-14T05:07:46.9650833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9652607Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9654222Z 2025-03-14T05:07:46.9654592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9655059Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T05:07:46.9655312Z 2025-03-14T05:07:46.9655638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9656349Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9656876Z 2025-03-14T05:07:46.9657225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9659016Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9660656Z 2025-03-14T05:07:46.9661031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9661501Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:07:46.9661750Z 2025-03-14T05:07:46.9662091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9662821Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9663374Z 2025-03-14T05:07:46.9663731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9665824Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9667564Z 2025-03-14T05:07:46.9667957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9668496Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T05:07:46.9668778Z 2025-03-14T05:07:46.9669176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9669689Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:07:46.9669971Z 2025-03-14T05:07:46.9670328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9671097Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9671663Z 2025-03-14T05:07:46.9672040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9674042Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9675679Z 2025-03-14T05:07:46.9676045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9676524Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T05:07:46.9676784Z 2025-03-14T05:07:46.9677120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9677840Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9678378Z 2025-03-14T05:07:46.9678729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9680554Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9682615Z 2025-03-14T05:07:46.9682990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9683466Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:07:46.9683728Z 2025-03-14T05:07:46.9684066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9684786Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9685321Z 2025-03-14T05:07:46.9685668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9687455Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9689112Z 2025-03-14T05:07:46.9689478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9689961Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T05:07:46.9690233Z 2025-03-14T05:07:46.9690603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9691084Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:07:46.9691354Z 2025-03-14T05:07:46.9691690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9692416Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9692955Z 2025-03-14T05:07:46.9693314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9695123Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9696734Z 2025-03-14T05:07:46.9697098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9697567Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T05:07:46.9697818Z 2025-03-14T05:07:46.9698149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9698868Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9699396Z 2025-03-14T05:07:46.9699740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9701561Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9703133Z 2025-03-14T05:07:46.9703496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9703962Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T05:07:46.9704328Z 2025-03-14T05:07:46.9704715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9705571Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9706137Z 2025-03-14T05:07:46.9706491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9708528Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9710421Z 2025-03-14T05:07:46.9710832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9711385Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T05:07:46.9711686Z 2025-03-14T05:07:46.9712099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9712639Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T05:07:46.9712922Z 2025-03-14T05:07:46.9713278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9713997Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9714526Z 2025-03-14T05:07:46.9714862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9716707Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9718290Z 2025-03-14T05:07:46.9718653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9719127Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T05:07:46.9719385Z 2025-03-14T05:07:46.9719715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9720434Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9720965Z 2025-03-14T05:07:46.9721306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9723102Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9724705Z 2025-03-14T05:07:46.9725070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9725539Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T05:07:46.9725791Z 2025-03-14T05:07:46.9726123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9726838Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9727373Z 2025-03-14T05:07:46.9727718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9729535Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9731128Z 2025-03-14T05:07:46.9731482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9731957Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T05:07:46.9732220Z 2025-03-14T05:07:46.9732578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9733052Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T05:07:46.9733309Z 2025-03-14T05:07:46.9733642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9734347Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9734869Z 2025-03-14T05:07:46.9735211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9736993Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9738638Z 2025-03-14T05:07:46.9739008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9739483Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T05:07:46.9739754Z 2025-03-14T05:07:46.9740089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9740808Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9741343Z 2025-03-14T05:07:46.9741685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9744035Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9745764Z 2025-03-14T05:07:46.9746147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9746627Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T05:07:46.9746891Z 2025-03-14T05:07:46.9747236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9747987Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9748542Z 2025-03-14T05:07:46.9748895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9750755Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9752411Z 2025-03-14T05:07:46.9752779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9753264Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T05:07:46.9753536Z 2025-03-14T05:07:46.9753907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9754388Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T05:07:46.9754650Z 2025-03-14T05:07:46.9754984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9755706Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9756237Z 2025-03-14T05:07:46.9756585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9758470Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9760098Z 2025-03-14T05:07:46.9760463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9760928Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T05:07:46.9761183Z 2025-03-14T05:07:46.9761512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9762222Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9762741Z 2025-03-14T05:07:46.9763085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9764884Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9766490Z 2025-03-14T05:07:46.9766852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9767320Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T05:07:46.9767574Z 2025-03-14T05:07:46.9767905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9768624Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9769154Z 2025-03-14T05:07:46.9769497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9771316Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9772900Z 2025-03-14T05:07:46.9773253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9773724Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T05:07:46.9773986Z 2025-03-14T05:07:46.9774342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9774811Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T05:07:46.9775066Z 2025-03-14T05:07:46.9775396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9776101Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9776640Z 2025-03-14T05:07:46.9776982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9778782Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9780365Z 2025-03-14T05:07:46.9780748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9781220Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T05:07:46.9781597Z 2025-03-14T05:07:46.9781949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9782685Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9783233Z 2025-03-14T05:07:46.9783587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9785610Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9787240Z 2025-03-14T05:07:46.9787614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9788093Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T05:07:46.9788354Z 2025-03-14T05:07:46.9788693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9789437Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9789983Z 2025-03-14T05:07:46.9790334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9792239Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9793888Z 2025-03-14T05:07:46.9794256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9794749Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T05:07:46.9795021Z 2025-03-14T05:07:46.9795395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9795881Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T05:07:46.9796145Z 2025-03-14T05:07:46.9796482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9797210Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9797744Z 2025-03-14T05:07:46.9798124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9800003Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9801582Z 2025-03-14T05:07:46.9801951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9802423Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T05:07:46.9802676Z 2025-03-14T05:07:46.9803005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9803718Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9804266Z 2025-03-14T05:07:46.9804608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9806403Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9808018Z 2025-03-14T05:07:46.9808383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9808849Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T05:07:46.9809104Z 2025-03-14T05:07:46.9809432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9810144Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9810673Z 2025-03-14T05:07:46.9811018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9812836Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9814424Z 2025-03-14T05:07:46.9814782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9815258Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T05:07:46.9815523Z 2025-03-14T05:07:46.9815885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9816362Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T05:07:46.9816622Z 2025-03-14T05:07:46.9816954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9817659Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9818193Z 2025-03-14T05:07:46.9818545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9820350Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9821934Z 2025-03-14T05:07:46.9822300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9822764Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T05:07:46.9823016Z 2025-03-14T05:07:46.9823345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9824063Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9824662Z 2025-03-14T05:07:46.9825051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9826902Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9828533Z 2025-03-14T05:07:46.9828913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9829402Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T05:07:46.9829662Z 2025-03-14T05:07:46.9830000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9830738Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9831297Z 2025-03-14T05:07:46.9831651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9833499Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9835128Z 2025-03-14T05:07:46.9835498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9835981Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T05:07:46.9836242Z 2025-03-14T05:07:46.9836609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9837088Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T05:07:46.9837348Z 2025-03-14T05:07:46.9837683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9838468Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9838987Z 2025-03-14T05:07:46.9839331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9841117Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9842688Z 2025-03-14T05:07:46.9843049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9843922Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T05:07:46.9844182Z 2025-03-14T05:07:46.9844515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9845258Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9845796Z 2025-03-14T05:07:46.9846160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9847973Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9849552Z 2025-03-14T05:07:46.9849916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9850384Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T05:07:46.9850637Z 2025-03-14T05:07:46.9850965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9851689Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9852214Z 2025-03-14T05:07:46.9852592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9854401Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9855986Z 2025-03-14T05:07:46.9856343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9856814Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T05:07:46.9857087Z 2025-03-14T05:07:46.9857447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9857916Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T05:07:46.9858188Z 2025-03-14T05:07:46.9858515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9859221Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9859763Z 2025-03-14T05:07:46.9860104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9861905Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9863506Z 2025-03-14T05:07:46.9863881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9864427Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T05:07:46.9864500Z 2025-03-14T05:07:46.9864754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9865255Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9865325Z 2025-03-14T05:07:46.9865599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9867126Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9867195Z 2025-03-14T05:07:46.9867485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9867620Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T05:07:46.9867693Z 2025-03-14T05:07:46.9867939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9868406Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9868489Z 2025-03-14T05:07:46.9868758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9870268Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9870336Z 2025-03-14T05:07:46.9870620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9870768Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T05:07:46.9870839Z 2025-03-14T05:07:46.9871116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9871264Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T05:07:46.9871329Z 2025-03-14T05:07:46.9871633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9872043Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9872114Z 2025-03-14T05:07:46.9872375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9873889Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9873963Z 2025-03-14T05:07:46.9874244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9874391Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T05:07:46.9874473Z 2025-03-14T05:07:46.9874727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9875154Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9875251Z 2025-03-14T05:07:46.9875514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9877035Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9877112Z 2025-03-14T05:07:46.9877395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9877545Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T05:07:46.9877611Z 2025-03-14T05:07:46.9877866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9878335Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9878410Z 2025-03-14T05:07:46.9878676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9880146Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9880220Z 2025-03-14T05:07:46.9880489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9880647Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T05:07:46.9880709Z 2025-03-14T05:07:46.9881004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9881146Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T05:07:46.9881218Z 2025-03-14T05:07:46.9881619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9882044Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9882116Z 2025-03-14T05:07:46.9882379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9883868Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9883933Z 2025-03-14T05:07:46.9884224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9884370Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T05:07:46.9884434Z 2025-03-14T05:07:46.9884747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9885160Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9885230Z 2025-03-14T05:07:46.9885485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9886958Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9887030Z 2025-03-14T05:07:46.9887301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9887462Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T05:07:46.9887525Z 2025-03-14T05:07:46.9887779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9888225Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9888296Z 2025-03-14T05:07:46.9888550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9890024Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9890097Z 2025-03-14T05:07:46.9890367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9890528Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T05:07:46.9890594Z 2025-03-14T05:07:46.9890876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9891045Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T05:07:46.9891120Z 2025-03-14T05:07:46.9891362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9891776Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9891839Z 2025-03-14T05:07:46.9892106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9893592Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9893680Z 2025-03-14T05:07:46.9893965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9894100Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T05:07:46.9894183Z 2025-03-14T05:07:46.9894423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9894847Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9894910Z 2025-03-14T05:07:46.9895175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9896637Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9896710Z 2025-03-14T05:07:46.9896997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9897127Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T05:07:46.9897227Z 2025-03-14T05:07:46.9897472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9897894Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9897958Z 2025-03-14T05:07:46.9898222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9899710Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9899775Z 2025-03-14T05:07:46.9900051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9900233Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T05:07:46.9900304Z 2025-03-14T05:07:46.9900585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9900747Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T05:07:46.9900809Z 2025-03-14T05:07:46.9901059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9901469Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9901542Z 2025-03-14T05:07:46.9901797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9903290Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9903366Z 2025-03-14T05:07:46.9903673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9903818Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T05:07:46.9903885Z 2025-03-14T05:07:46.9904185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9904617Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9904694Z 2025-03-14T05:07:46.9904963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9906506Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9906599Z 2025-03-14T05:07:46.9906887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9907034Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T05:07:46.9907115Z 2025-03-14T05:07:46.9907377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9907801Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9907875Z 2025-03-14T05:07:46.9908145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9909655Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9909732Z 2025-03-14T05:07:46.9910015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9910208Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T05:07:46.9910276Z 2025-03-14T05:07:46.9910565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9910708Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T05:07:46.9910781Z 2025-03-14T05:07:46.9911030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9911506Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:46.9911572Z 2025-03-14T05:07:46.9911846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9913375Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9913460Z 2025-03-14T05:07:46.9913767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9913904Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T05:07:46.9913975Z 2025-03-14T05:07:46.9914226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9914661Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:46.9914734Z 2025-03-14T05:07:46.9914998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9916518Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9916584Z 2025-03-14T05:07:46.9916914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9917052Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T05:07:46.9917125Z 2025-03-14T05:07:46.9917373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9917812Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:46.9917885Z 2025-03-14T05:07:46.9918145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:46.9919685Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:46.9919770Z 2025-03-14T05:07:46.9920062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:46.9920243Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T05:07:46.9920309Z 2025-03-14T05:07:46.9920596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:46.9920737Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T05:07:46.9920808Z 2025-03-14T05:07:46.9921240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:46.9921396Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:07:46.9921461Z 2025-03-14T05:07:46.9921756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9921893Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:07:46.9921962Z 2025-03-14T05:07:46.9922383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:46.9922538Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:07:46.9922601Z 2025-03-14T05:07:46.9922889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9923059Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:07:46.9923132Z 2025-03-14T05:07:46.9923498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:07:46.9923678Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:07:46.9923776Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:07:46.9923900Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:07:46.9923964Z 2025-03-14T05:07:46.9924292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:07:46.9924417Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:07:46.9924487Z 2025-03-14T05:07:46.9924807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:07:46.9924931Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:07:46.9924994Z 2025-03-14T05:07:46.9925371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:07:46.9925579Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:07:46.9925668Z 2025-03-14T05:07:46.9926077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:07:46.9926210Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:07:46.9926640Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:07:46.9926769Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:07:46.9926890Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:07:46.9926952Z 2025-03-14T05:07:46.9927252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:46.9927379Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T05:07:46.9927452Z 2025-03-14T05:07:46.9927700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:46.9928459Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:07:46.9928523Z 2025-03-14T05:07:46.9928796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:07:46.9928981Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T05:07:46.9929053Z 2025-03-14T05:07:46.9929449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:07:46.9930282Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:07:46.9930348Z 2025-03-14T05:07:46.9930705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:07:46.9931502Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:07:46.9931566Z 2025-03-14T05:07:46.9931900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:07:46.9932062Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:07:46.9932206Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:07:46.9932268Z 2025-03-14T05:07:46.9932682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:07:46.9932852Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T05:07:46.9933032Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:07:46.9933206Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:07:46.9933278Z 2025-03-14T05:07:46.9933671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:07:46.9933879Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:07:46.9933943Z 2025-03-14T05:07:46.9934373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:07:46.9934526Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:07:46.9934671Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:07:46.9934816Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:07:46.9934881Z 2025-03-14T05:07:46.9935251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:07:46.9935443Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:07:46.9935515Z 2025-03-14T05:07:46.9935818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:07:46.9935962Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:07:46.9936027Z 2025-03-14T05:07:46.9936340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:07:46.9936467Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:07:46.9936598Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:46.9936737Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:07:46.9936806Z 2025-03-14T05:07:46.9937116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:07:46.9937243Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:07:46.9937357Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:07:46.9937506Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:07:46.9937568Z 2025-03-14T05:07:46.9937870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:07:46.9938005Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:46.9938102Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:07:46.9938222Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:07:46.9938307Z 2025-03-14T05:07:46.9938608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:07:46.9938756Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:07:46.9938845Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:07:46.9938975Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:07:46.9939038Z 2025-03-14T05:07:46.9939375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:07:46.9939524Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:07:46.9939647Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:07:46.9939712Z 2025-03-14T05:07:46.9940010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:07:46.9940155Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:07:46.9940271Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:07:46.9940334Z 2025-03-14T05:07:46.9940628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:07:46.9940777Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:07:46.9940893Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:07:46.9940956Z 2025-03-14T05:07:46.9941292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:07:46.9941480Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:07:46.9941589Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:07:46.9941659Z 2025-03-14T05:07:46.9941983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:07:46.9942127Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:07:46.9942192Z 2025-03-14T05:07:46.9942518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:07:46.9942649Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:07:46.9942722Z 2025-03-14T05:07:46.9943061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:07:46.9943204Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:07:46.9943325Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:07:46.9943480Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:07:46.9943636Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:07:46.9943709Z 2025-03-14T05:07:46.9944051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:07:46.9944280Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:07:46.9944407Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:07:46.9944565Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:07:46.9944701Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:07:46.9944776Z 2025-03-14T05:07:46.9945106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:07:46.9945234Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:07:46.9945399Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:07:46.9945538Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:07:46.9945604Z 2025-03-14T05:07:46.9945934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:07:46.9946047Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:07:46.9946216Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:07:46.9946345Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:07:46.9946417Z 2025-03-14T05:07:46.9946720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:07:46.9946821Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:07:46.9946989Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:07:46.9947064Z 2025-03-14T05:07:46.9947365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:07:46.9947465Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:07:46.9947574Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:07:46.9947646Z 2025-03-14T05:07:46.9947939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:07:46.9948060Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:07:46.9948183Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:07:46.9948254Z 2025-03-14T05:07:46.9948551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:07:46.9948670Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:07:46.9948792Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:07:46.9948865Z 2025-03-14T05:07:46.9949199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:07:46.9949405Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:07:46.9949488Z 2025-03-14T05:07:46.9949821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:07:46.9950001Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:07:46.9950066Z 2025-03-14T05:07:46.9950447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:07:46.9950616Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:07:46.9950687Z 2025-03-14T05:07:46.9951153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:07:46.9951290Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:07:46.9951353Z 2025-03-14T05:07:46.9951649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9951785Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:07:46.9951856Z 2025-03-14T05:07:46.9952274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:07:46.9952392Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:07:46.9952494Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:07:46.9952616Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:07:46.9952679Z 2025-03-14T05:07:46.9953160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:07:46.9953322Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:07:46.9953556Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:07:46.9953620Z 2025-03-14T05:07:46.9954064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:07:46.9954228Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:07:46.9954299Z 2025-03-14T05:07:46.9954588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:46.9954744Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:07:46.9954805Z 2025-03-14T05:07:46.9955179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:07:46.9955320Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:07:46.9955394Z 2025-03-14T05:07:46.9955681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:46.9955847Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:07:46.9955910Z 2025-03-14T05:07:46.9956282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:07:46.9956440Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:07:46.9956503Z 2025-03-14T05:07:46.9956970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:07:46.9957106Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:07:46.9957233Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:07:46.9957382Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:07:46.9957522Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:07:46.9957586Z 2025-03-14T05:07:46.9957943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:07:46.9958056Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:07:46.9958128Z 2025-03-14T05:07:46.9958141Z 2025-03-14T05:07:46.9958243Z class GraphModule(torch.nn.Module): 2025-03-14T05:07:47.0047629Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:07:47.0048298Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:07:47.0048582Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0048901Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0049225Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0049524Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0049822Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0050141Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0050488Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0050819Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0051141Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0051457Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0051740Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0052078Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0052404Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0052722Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0053042Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0053329Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0053674Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0054013Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0054332Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0054644Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0054949Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:47.0055291Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0055633Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0055957Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0056309Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0056593Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0056933Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0057265Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0057578Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0057890Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0058168Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0058507Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0058834Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0059168Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0059473Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0059776Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0060113Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0060441Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0060761Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0061067Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0061354Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0061685Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0062023Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0062341Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0062679Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0062964Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0063292Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0063629Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0063944Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0064311Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0064613Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0065037Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0065457Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0065876Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0066264Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0066569Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0066905Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0067290Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0067652Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0068026Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0068344Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0068732Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0069141Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0069536Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0069901Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0070217Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0070588Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0070959Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0071312Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0071669Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0071995Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:47.0072384Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0072799Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0073193Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0074290Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0074615Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0074993Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0075360Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0075710Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0076013Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0076299Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0076640Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0077002Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0077322Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0077622Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0077905Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0078235Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0078573Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0078886Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0079194Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0079478Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0079829Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0080166Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0080896Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0081227Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0081635Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0081993Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0082325Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0082648Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0082962Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0083240Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0083587Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0083973Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0084292Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0085085Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0085381Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0085713Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0086052Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0086372Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0086943Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0087237Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0087608Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0087950Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0088282Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0088592Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0088867Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0089205Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0089536Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0089844Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0090153Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0090428Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0090794Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0091125Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0091445Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0091761Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0092038Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0092380Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0092710Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0093023Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0093322Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0093620Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0093953Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0094307Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0094628Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0094933Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0095235Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:07:47.0095584Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0095931Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0096259Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0096583Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0096863Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0097235Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0097571Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0097880Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0098188Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0098468Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0098804Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0099129Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0099446Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0099772Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0100058Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0100414Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0100739Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0101056Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0101360Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0101646Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0101978Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0102317Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0102633Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0102953Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0103276Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0103622Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0103966Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0104344Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0104676Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0104970Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0105328Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0105669Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0105997Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0106339Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0106626Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0106993Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0107316Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0107638Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0107940Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0108229Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0108564Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0108896Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0109221Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0109572Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0109858Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0110185Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0110519Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0110834Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0111156Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0111439Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0111784Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0112123Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0112456Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0112778Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0113078Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0113428Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0113758Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0114086Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0114402Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0114694Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0115043Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0115378Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0115709Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0116047Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0116341Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0116689Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0117041Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0117359Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0117678Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0117971Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0118322Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0118662Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0119000Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0119320Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0119620Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0119966Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0120301Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0120634Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0120951Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0121236Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0121582Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0121916Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0122294Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0122609Z l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0122903Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0123242Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0123589Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0123918Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0124228Z l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0124520Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0124861Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0125218Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0125539Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0125872Z l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0126160Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0126504Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0126848Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0127169Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0127485Z l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0127768Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0128124Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0128459Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0128818Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0129141Z l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0129428Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0129767Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0130092Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0130415Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0130719Z l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0131004Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0131330Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0131688Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0132020Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0132338Z l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0132623Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0132951Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0133289Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0133604Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0133915Z l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0134190Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0134524Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0134879Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0135200Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0135508Z l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0135783Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0136119Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0136452Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0136769Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0137068Z l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0137373Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0137720Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0138055Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0138386Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0138687Z l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0138971Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0139302Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0139635Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0139947Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0140271Z l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0140552Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0140897Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0141262Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0141581Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0141898Z l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0142181Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0142528Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0142863Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0143185Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0143493Z l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0143784Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0144235Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0144622Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0144976Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0145313Z l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0145612Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0145961Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0146318Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0146660Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0146998Z l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0147313Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0147718Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0148088Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0148424Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0148760Z l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0149065Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0149430Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0149782Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0150128Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0150463Z l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0150778Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0151150Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0151523Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0151874Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0152206Z l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0152522Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0152886Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0153266Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0153618Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0153949Z l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0154290Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0154639Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0154987Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0155309Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0155634Z l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0155925Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0156278Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0156629Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0156947Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0157282Z l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0157569Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0157933Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0158279Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0158599Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0158909Z l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0159204Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0159555Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0159892Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0160221Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0160572Z l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0160860Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0161191Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0161528Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0161839Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0162153Z l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0162439Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0162766Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0163103Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0163428Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0163741Z l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0164032Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0164371Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0164695Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0165013Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0165322Z l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0165600Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0165935Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0166260Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0166580Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0166917Z l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0167213Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0167552Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0167899Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0168225Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0168542Z l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0168832Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0169174Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0169521Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0169853Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0170189Z l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0170470Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0170818Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0171166Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0171491Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0171810Z l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0172095Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0172446Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0172773Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0173123Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0173432Z l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0173725Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0174069Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0174416Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0174754Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0175068Z l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0175359Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0175696Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0176103Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0176426Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0176760Z l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0177051Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0177398Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0177757Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0178082Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0178415Z l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0178702Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0179064Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0179443Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0179773Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0180131Z l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0180414Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0180775Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0181109Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0181628Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0181952Z l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0182249Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0182639Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0182989Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0183339Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0183652Z l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0183952Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0184387Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0184744Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0185068Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0185387Z l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0185683Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0186023Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0186414Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0186742Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0187065Z l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0187352Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0187706Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0188043Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0188377Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0188698Z l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0188999Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0189346Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0189701Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0190031Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0190343Z l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0190638Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0190990Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0191329Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0191650Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0191954Z l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0192237Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0192595Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0192934Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0193249Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0193562Z l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0193842Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0194186Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0194524Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0194835Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0195143Z l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0195448Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0195809Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0196142Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0196466Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0196777Z l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0197069Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0197415Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0197746Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0198067Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0198371Z l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0198687Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0199019Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0199357Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0199669Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0199979Z l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0200267Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T05:07:47.0200596Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0200937Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0201249Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0201579Z l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0201857Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T05:07:47.0202220Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0202550Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0202871Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0203188Z l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0203472Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T05:07:47.0203814Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:07:47.0204148Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:07:47.0204470Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:07:47.0204809Z l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:07:47.0205158Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:07:47.0205476Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:07:47.0205786Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:07:47.0206153Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:07:47.0206507Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:07:47.0206854Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:07:47.0207186Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:07:47.0207263Z 2025-03-14T05:07:47.0207548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0208037Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0208120Z 2025-03-14T05:07:47.0208402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0209834Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0209904Z 2025-03-14T05:07:47.0210202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:07:47.0210349Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:07:47.0210425Z 2025-03-14T05:07:47.0210789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:07:47.0211035Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:07:47.0211100Z 2025-03-14T05:07:47.0211390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0211803Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0211874Z 2025-03-14T05:07:47.0212136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0213626Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0213703Z 2025-03-14T05:07:47.0213984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0214130Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:07:47.0214209Z 2025-03-14T05:07:47.0214462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0214878Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0214967Z 2025-03-14T05:07:47.0215225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0216701Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0216776Z 2025-03-14T05:07:47.0217057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0217203Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:07:47.0217266Z 2025-03-14T05:07:47.0217520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0217986Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0218060Z 2025-03-14T05:07:47.0218317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0219831Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0219907Z 2025-03-14T05:07:47.0220157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0220599Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:47.0220680Z 2025-03-14T05:07:47.0220950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0222516Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0222600Z 2025-03-14T05:07:47.0222892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0223041Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:07:47.0223113Z 2025-03-14T05:07:47.0223396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0223556Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:07:47.0223620Z 2025-03-14T05:07:47.0223878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0224413Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0224491Z 2025-03-14T05:07:47.0224776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0226308Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0226385Z 2025-03-14T05:07:47.0226666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0226817Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:07:47.0226881Z 2025-03-14T05:07:47.0227140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0228090Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0228200Z 2025-03-14T05:07:47.0228478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0230036Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0230114Z 2025-03-14T05:07:47.0230405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0230558Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:07:47.0230625Z 2025-03-14T05:07:47.0230885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0231319Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0231385Z 2025-03-14T05:07:47.0231690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0233183Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0233255Z 2025-03-14T05:07:47.0233534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0233686Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:07:47.0233757Z 2025-03-14T05:07:47.0234029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0234180Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:07:47.0234243Z 2025-03-14T05:07:47.0234508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0234916Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0235009Z 2025-03-14T05:07:47.0235270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0236761Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0236834Z 2025-03-14T05:07:47.0237108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0237252Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:07:47.0237316Z 2025-03-14T05:07:47.0237567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0238005Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0238086Z 2025-03-14T05:07:47.0238761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0240530Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0240618Z 2025-03-14T05:07:47.0240906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0241053Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:07:47.0241119Z 2025-03-14T05:07:47.0241380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0241835Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0241912Z 2025-03-14T05:07:47.0242200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0243721Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0243797Z 2025-03-14T05:07:47.0244068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0244224Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:07:47.0244287Z 2025-03-14T05:07:47.0244570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0244719Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:07:47.0244792Z 2025-03-14T05:07:47.0245033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0245483Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0245552Z 2025-03-14T05:07:47.0245816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0247305Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0247370Z 2025-03-14T05:07:47.0247669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0247810Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:07:47.0247898Z 2025-03-14T05:07:47.0248142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0248570Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0248651Z 2025-03-14T05:07:47.0248917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0250417Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0250483Z 2025-03-14T05:07:47.0250769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0250912Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:07:47.0250982Z 2025-03-14T05:07:47.0251228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0251688Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0251756Z 2025-03-14T05:07:47.0252020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0253493Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0253560Z 2025-03-14T05:07:47.0253810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0254238Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:47.0254326Z 2025-03-14T05:07:47.0254582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0256112Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0256204Z 2025-03-14T05:07:47.0256476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0256628Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:07:47.0256693Z 2025-03-14T05:07:47.0256973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0257120Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:07:47.0257191Z 2025-03-14T05:07:47.0257430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0257848Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0257948Z 2025-03-14T05:07:47.0258211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0259715Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0259781Z 2025-03-14T05:07:47.0260062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0260200Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:07:47.0260272Z 2025-03-14T05:07:47.0260511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0260932Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0261010Z 2025-03-14T05:07:47.0261276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0262771Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0262841Z 2025-03-14T05:07:47.0263133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0263268Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:07:47.0263338Z 2025-03-14T05:07:47.0263580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0264004Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0264071Z 2025-03-14T05:07:47.0264426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0265952Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0266018Z 2025-03-14T05:07:47.0266306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0266461Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:07:47.0266534Z 2025-03-14T05:07:47.0266816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0266970Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:07:47.0267035Z 2025-03-14T05:07:47.0267287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0267735Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0267824Z 2025-03-14T05:07:47.0268095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0269605Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0269681Z 2025-03-14T05:07:47.0269962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0270111Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:07:47.0270176Z 2025-03-14T05:07:47.0270429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0270890Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0270959Z 2025-03-14T05:07:47.0271227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0272724Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0272799Z 2025-03-14T05:07:47.0273084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0273229Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:07:47.0273301Z 2025-03-14T05:07:47.0273548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0273981Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0274064Z 2025-03-14T05:07:47.0274338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0275872Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0275947Z 2025-03-14T05:07:47.0276231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0276386Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:07:47.0276457Z 2025-03-14T05:07:47.0276738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0276893Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:07:47.0276960Z 2025-03-14T05:07:47.0277212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0277694Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0277772Z 2025-03-14T05:07:47.0278037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0279556Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0279631Z 2025-03-14T05:07:47.0279919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0280066Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:07:47.0280131Z 2025-03-14T05:07:47.0280402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0280827Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0280913Z 2025-03-14T05:07:47.0281176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0282868Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0282949Z 2025-03-14T05:07:47.0283233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0283382Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:07:47.0283446Z 2025-03-14T05:07:47.0283702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0284207Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0284285Z 2025-03-14T05:07:47.0284552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0286056Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0286130Z 2025-03-14T05:07:47.0286400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0286552Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:07:47.0286614Z 2025-03-14T05:07:47.0286895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0287063Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:07:47.0287135Z 2025-03-14T05:07:47.0287383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0287812Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0287874Z 2025-03-14T05:07:47.0288136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0289595Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0289662Z 2025-03-14T05:07:47.0289945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0290077Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:07:47.0290147Z 2025-03-14T05:07:47.0290388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0290828Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0290894Z 2025-03-14T05:07:47.0291154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0292608Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0292677Z 2025-03-14T05:07:47.0292958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0293090Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:07:47.0293184Z 2025-03-14T05:07:47.0293425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0293840Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0293919Z 2025-03-14T05:07:47.0294182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0295657Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0295723Z 2025-03-14T05:07:47.0295973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0296385Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:07:47.0296458Z 2025-03-14T05:07:47.0296711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0298273Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0298350Z 2025-03-14T05:07:47.0298631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0298776Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:07:47.0298839Z 2025-03-14T05:07:47.0299120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0299259Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:07:47.0299330Z 2025-03-14T05:07:47.0299571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0299995Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0300074Z 2025-03-14T05:07:47.0300337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0301809Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0301874Z 2025-03-14T05:07:47.0320467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0320891Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:07:47.0320976Z 2025-03-14T05:07:47.0321289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0321757Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0321858Z 2025-03-14T05:07:47.0322294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0323863Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0323946Z 2025-03-14T05:07:47.0324273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0324417Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:07:47.0324495Z 2025-03-14T05:07:47.0324767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0325220Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0325318Z 2025-03-14T05:07:47.0325607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0327159Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0327235Z 2025-03-14T05:07:47.0327528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0327690Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:07:47.0327758Z 2025-03-14T05:07:47.0328052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0328199Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:07:47.0328275Z 2025-03-14T05:07:47.0328529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0328992Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0329066Z 2025-03-14T05:07:47.0329332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0330876Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0330946Z 2025-03-14T05:07:47.0331238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0331375Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:07:47.0331445Z 2025-03-14T05:07:47.0331697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0332156Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0332247Z 2025-03-14T05:07:47.0332514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0334049Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0334116Z 2025-03-14T05:07:47.0334410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0334544Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:07:47.0334617Z 2025-03-14T05:07:47.0334865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0335300Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0335374Z 2025-03-14T05:07:47.0335679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0337197Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0337265Z 2025-03-14T05:07:47.0337553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0337711Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:07:47.0337778Z 2025-03-14T05:07:47.0338070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0338213Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:07:47.0338304Z 2025-03-14T05:07:47.0338554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0338976Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0339056Z 2025-03-14T05:07:47.0339329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0340823Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0340898Z 2025-03-14T05:07:47.0341184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0341316Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:07:47.0341389Z 2025-03-14T05:07:47.0341629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0342069Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0342136Z 2025-03-14T05:07:47.0342401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0343919Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0344001Z 2025-03-14T05:07:47.0344411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0344557Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:07:47.0344637Z 2025-03-14T05:07:47.0344903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0345387Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0345468Z 2025-03-14T05:07:47.0345732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0347222Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0347301Z 2025-03-14T05:07:47.0347594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0347741Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:07:47.0347814Z 2025-03-14T05:07:47.0348095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0348246Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:07:47.0348311Z 2025-03-14T05:07:47.0348565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0348998Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0349073Z 2025-03-14T05:07:47.0349336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0350826Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0350902Z 2025-03-14T05:07:47.0351177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0351314Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:07:47.0351393Z 2025-03-14T05:07:47.0351644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0352046Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0352135Z 2025-03-14T05:07:47.0352390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0353856Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0353930Z 2025-03-14T05:07:47.0354206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0354344Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:07:47.0354407Z 2025-03-14T05:07:47.0354652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0355088Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0355163Z 2025-03-14T05:07:47.0355418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0356885Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0356961Z 2025-03-14T05:07:47.0357234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0357383Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:07:47.0357445Z 2025-03-14T05:07:47.0357725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0357877Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:07:47.0357945Z 2025-03-14T05:07:47.0358189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0358627Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0358692Z 2025-03-14T05:07:47.0358958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0360427Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0360494Z 2025-03-14T05:07:47.0360780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0360911Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:07:47.0360983Z 2025-03-14T05:07:47.0361226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0361678Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0361744Z 2025-03-14T05:07:47.0362009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0363470Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0363537Z 2025-03-14T05:07:47.0363825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0363956Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:07:47.0364045Z 2025-03-14T05:07:47.0364289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0364706Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0364784Z 2025-03-14T05:07:47.0365046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0366505Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0366574Z 2025-03-14T05:07:47.0366856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0366997Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:07:47.0367069Z 2025-03-14T05:07:47.0367343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0367487Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:07:47.0367550Z 2025-03-14T05:07:47.0367827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0368228Z x_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0368299Z 2025-03-14T05:07:47.0368559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0370019Z x_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0370093Z 2025-03-14T05:07:47.0370372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0370527Z out_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:07:47.0370590Z 2025-03-14T05:07:47.0370842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0371265Z x_90: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0371337Z 2025-03-14T05:07:47.0371592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0373062Z x_91: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0373135Z 2025-03-14T05:07:47.0373413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0373550Z out_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:07:47.0373613Z 2025-03-14T05:07:47.0373861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0374295Z x_92: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0374367Z 2025-03-14T05:07:47.0374631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0376104Z x_93: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0376177Z 2025-03-14T05:07:47.0376450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0376596Z x_93 += out_51; out_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T05:07:47.0376691Z 2025-03-14T05:07:47.0376965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0377109Z out_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:07:47.0377188Z 2025-03-14T05:07:47.0377438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0377834Z x_94: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0377904Z 2025-03-14T05:07:47.0378158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0379624Z x_95: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0379696Z 2025-03-14T05:07:47.0379972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0380108Z out_56: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T05:07:47.0380173Z 2025-03-14T05:07:47.0380456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0380861Z x_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0380931Z 2025-03-14T05:07:47.0381190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0382951Z x_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0383029Z 2025-03-14T05:07:47.0383307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0383503Z out_57: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:07:47.0383566Z 2025-03-14T05:07:47.0383819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0384308Z x_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0384388Z 2025-03-14T05:07:47.0384653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0386157Z x_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0386233Z 2025-03-14T05:07:47.0386513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0386667Z x_99 += out_55; out_58: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T05:07:47.0386733Z 2025-03-14T05:07:47.0387017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0387203Z out_59: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:07:47.0387280Z 2025-03-14T05:07:47.0387528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0387958Z x_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0388021Z 2025-03-14T05:07:47.0388282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0389758Z x_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0389847Z 2025-03-14T05:07:47.0390131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0390273Z out_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T05:07:47.0390360Z 2025-03-14T05:07:47.0390611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0391036Z x_102: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0391101Z 2025-03-14T05:07:47.0391372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0392888Z x_103: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0392962Z 2025-03-14T05:07:47.0393255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0393391Z out_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:07:47.0393465Z 2025-03-14T05:07:47.0393753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0394184Z x_104: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0394249Z 2025-03-14T05:07:47.0394519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0396035Z x_105: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0396103Z 2025-03-14T05:07:47.0396395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0396561Z x_105 += out_59; out_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T05:07:47.0396634Z 2025-03-14T05:07:47.0396918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0397081Z out_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:07:47.0397147Z 2025-03-14T05:07:47.0397406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0397819Z x_106: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0397896Z 2025-03-14T05:07:47.0398160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0399691Z x_107: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0399767Z 2025-03-14T05:07:47.0400114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0400265Z out_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T05:07:47.0400339Z 2025-03-14T05:07:47.0400585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0400990Z x_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0401062Z 2025-03-14T05:07:47.0401318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0402781Z x_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0402870Z 2025-03-14T05:07:47.0403148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0403289Z out_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T05:07:47.0403368Z 2025-03-14T05:07:47.0403621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0404028Z x_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0404100Z 2025-03-14T05:07:47.0404354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0405839Z x_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0405911Z 2025-03-14T05:07:47.0406188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0406345Z x_111 += out_63; out_66: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T05:07:47.0406437Z 2025-03-14T05:07:47.0406721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0406858Z out_67: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T05:07:47.0406932Z 2025-03-14T05:07:47.0407171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0407584Z x_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0407648Z 2025-03-14T05:07:47.0407915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0409402Z x_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0409490Z 2025-03-14T05:07:47.0409776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0409923Z out_68: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T05:07:47.0409994Z 2025-03-14T05:07:47.0410235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0410648Z x_114: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0410721Z 2025-03-14T05:07:47.0410976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0412450Z x_115: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0412520Z 2025-03-14T05:07:47.0412862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0412997Z out_69: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T05:07:47.0413068Z 2025-03-14T05:07:47.0413309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0413732Z x_116: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0413804Z 2025-03-14T05:07:47.0414057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0415528Z x_117: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0415608Z 2025-03-14T05:07:47.0415890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0416036Z x_117 += out_67; out_70: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T05:07:47.0416123Z 2025-03-14T05:07:47.0416404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0416540Z out_71: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T05:07:47.0416611Z 2025-03-14T05:07:47.0416854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0417270Z x_118: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0417333Z 2025-03-14T05:07:47.0417600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0419091Z x_119: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0419165Z 2025-03-14T05:07:47.0419450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0419581Z out_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T05:07:47.0419653Z 2025-03-14T05:07:47.0419894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0420311Z x_120: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0420375Z 2025-03-14T05:07:47.0420639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0422116Z x_121: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0422210Z 2025-03-14T05:07:47.0422507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0422637Z out_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T05:07:47.0422709Z 2025-03-14T05:07:47.0422948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0423365Z x_122: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0423430Z 2025-03-14T05:07:47.0423698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0425275Z x_123: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0425355Z 2025-03-14T05:07:47.0425671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0425826Z x_123 += out_71; out_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T05:07:47.0425901Z 2025-03-14T05:07:47.0426187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0426335Z out_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T05:07:47.0426400Z 2025-03-14T05:07:47.0426658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0427074Z x_124: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0427148Z 2025-03-14T05:07:47.0427416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0428932Z x_125: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0429036Z 2025-03-14T05:07:47.0429319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0429460Z out_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T05:07:47.0429523Z 2025-03-14T05:07:47.0429779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0430199Z x_126: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0430275Z 2025-03-14T05:07:47.0430536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0432091Z x_127: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0432169Z 2025-03-14T05:07:47.0432456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0432603Z out_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T05:07:47.0432667Z 2025-03-14T05:07:47.0432923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0433347Z x_128: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0433424Z 2025-03-14T05:07:47.0433691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0435219Z x_129: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0435324Z 2025-03-14T05:07:47.0435603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0435759Z x_129 += out_75; out_78: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T05:07:47.0435823Z 2025-03-14T05:07:47.0436110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0436250Z out_79: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T05:07:47.0436323Z 2025-03-14T05:07:47.0436569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0436999Z x_130: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0437065Z 2025-03-14T05:07:47.0437337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0438894Z x_131: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0438963Z 2025-03-14T05:07:47.0439252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0439385Z out_80: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T05:07:47.0439457Z 2025-03-14T05:07:47.0439703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0440134Z x_132: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0440200Z 2025-03-14T05:07:47.0440467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0441986Z x_133: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0442080Z 2025-03-14T05:07:47.0442378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0442509Z out_81: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T05:07:47.0442579Z 2025-03-14T05:07:47.0442819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0443237Z x_134: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0443302Z 2025-03-14T05:07:47.0443562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0445072Z x_135: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0445139Z 2025-03-14T05:07:47.0445416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0445559Z x_135 += out_79; out_82: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T05:07:47.0445632Z 2025-03-14T05:07:47.0445904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0446048Z out_83: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T05:07:47.0446110Z 2025-03-14T05:07:47.0446364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0446772Z x_136: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0446838Z 2025-03-14T05:07:47.0447098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0448560Z x_137: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0448660Z 2025-03-14T05:07:47.0448937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0449078Z out_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T05:07:47.0449142Z 2025-03-14T05:07:47.0449393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0449809Z x_138: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0449875Z 2025-03-14T05:07:47.0450140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0451652Z x_139: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0451729Z 2025-03-14T05:07:47.0452007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0452145Z out_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T05:07:47.0452209Z 2025-03-14T05:07:47.0452460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0452879Z x_140: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0452942Z 2025-03-14T05:07:47.0453205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0454681Z x_141: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0454780Z 2025-03-14T05:07:47.0455056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0455202Z x_141 += out_83; out_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T05:07:47.0455275Z 2025-03-14T05:07:47.0455550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0455693Z out_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T05:07:47.0455761Z 2025-03-14T05:07:47.0456011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0456412Z x_142: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0456482Z 2025-03-14T05:07:47.0456736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0458269Z x_143: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0458342Z 2025-03-14T05:07:47.0458621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0458761Z out_88: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T05:07:47.0458826Z 2025-03-14T05:07:47.0459079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0459490Z x_144: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0459561Z 2025-03-14T05:07:47.0459817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0461291Z x_145: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0461412Z 2025-03-14T05:07:47.0461693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0461833Z out_89: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T05:07:47.0461895Z 2025-03-14T05:07:47.0462151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0462561Z x_146: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0462634Z 2025-03-14T05:07:47.0462893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0464472Z x_147: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0464557Z 2025-03-14T05:07:47.0464843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0465000Z x_147 += out_87; out_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T05:07:47.0465068Z 2025-03-14T05:07:47.0465363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0465506Z out_91: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T05:07:47.0465579Z 2025-03-14T05:07:47.0465852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0466275Z x_148: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0466342Z 2025-03-14T05:07:47.0466637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0468153Z x_149: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0468233Z 2025-03-14T05:07:47.0468526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0468665Z out_92: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T05:07:47.0468738Z 2025-03-14T05:07:47.0468990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0469416Z x_150: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0469479Z 2025-03-14T05:07:47.0469750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0471292Z x_151: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0471360Z 2025-03-14T05:07:47.0471654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0471786Z out_93: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T05:07:47.0471857Z 2025-03-14T05:07:47.0472110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0472533Z x_152: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0472597Z 2025-03-14T05:07:47.0472865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0474416Z x_153: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0474498Z 2025-03-14T05:07:47.0474785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0474934Z x_153 += out_91; out_94: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T05:07:47.0475009Z 2025-03-14T05:07:47.0475292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0475440Z out_95: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T05:07:47.0475506Z 2025-03-14T05:07:47.0475760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0476173Z x_154: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0476251Z 2025-03-14T05:07:47.0476510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0478074Z x_155: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0478153Z 2025-03-14T05:07:47.0478436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0478582Z out_96: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T05:07:47.0478648Z 2025-03-14T05:07:47.0478903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0479321Z x_156: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0479410Z 2025-03-14T05:07:47.0479671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0481156Z x_157: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0481255Z 2025-03-14T05:07:47.0481705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0481861Z out_97: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T05:07:47.0481928Z 2025-03-14T05:07:47.0482183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0482599Z x_158: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0482673Z 2025-03-14T05:07:47.0482944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0484490Z x_159: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0484569Z 2025-03-14T05:07:47.0484849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0485005Z x_159 += out_95; out_98: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T05:07:47.0485072Z 2025-03-14T05:07:47.0485354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0485491Z out_99: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T05:07:47.0485566Z 2025-03-14T05:07:47.0485807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0486217Z x_160: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0486308Z 2025-03-14T05:07:47.0487304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0488869Z x_161: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0488935Z 2025-03-14T05:07:47.0489227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0489374Z out_100: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T05:07:47.0489438Z 2025-03-14T05:07:47.0489688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0490100Z x_162: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0490174Z 2025-03-14T05:07:47.0490460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0491940Z x_163: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0492014Z 2025-03-14T05:07:47.0492294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0492439Z out_101: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T05:07:47.0492502Z 2025-03-14T05:07:47.0492751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0493173Z x_164: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0493258Z 2025-03-14T05:07:47.0493515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0494999Z x_165: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0495086Z 2025-03-14T05:07:47.0495359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0495516Z x_165 += out_99; out_102: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T05:07:47.0495579Z 2025-03-14T05:07:47.0495860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0496006Z out_103: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T05:07:47.0496077Z 2025-03-14T05:07:47.0496316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0496760Z x_166: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0496828Z 2025-03-14T05:07:47.0497091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0498559Z x_167: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0498635Z 2025-03-14T05:07:47.0498916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0499050Z out_104: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T05:07:47.0499121Z 2025-03-14T05:07:47.0499360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0499779Z x_168: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0499859Z 2025-03-14T05:07:47.0500122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0501651Z x_169: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0501726Z 2025-03-14T05:07:47.0502012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0502146Z out_105: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T05:07:47.0502217Z 2025-03-14T05:07:47.0502458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0502886Z x_170: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0502952Z 2025-03-14T05:07:47.0503243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0504861Z x_171: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0504946Z 2025-03-14T05:07:47.0505255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0505433Z x_171 += out_103; out_106: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T05:07:47.0505506Z 2025-03-14T05:07:47.0505783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0505933Z out_107: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T05:07:47.0506025Z 2025-03-14T05:07:47.0506281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0506699Z x_172: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0506790Z 2025-03-14T05:07:47.0507047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0508527Z x_173: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0508601Z 2025-03-14T05:07:47.0508877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0509016Z out_108: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T05:07:47.0509080Z 2025-03-14T05:07:47.0509326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0509772Z x_174: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0509845Z 2025-03-14T05:07:47.0510105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0511604Z x_175: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0511680Z 2025-03-14T05:07:47.0511960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0512101Z out_109: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T05:07:47.0512164Z 2025-03-14T05:07:47.0512416Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0512848Z x_176: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0512937Z 2025-03-14T05:07:47.0513193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0514682Z x_177: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0514755Z 2025-03-14T05:07:47.0515025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0515185Z x_177 += out_107; out_110: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T05:07:47.0515250Z 2025-03-14T05:07:47.0515530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0515673Z out_111: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T05:07:47.0515747Z 2025-03-14T05:07:47.0516016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0516435Z x_178: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0516508Z 2025-03-14T05:07:47.0516763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0518241Z x_179: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0518308Z 2025-03-14T05:07:47.0518591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0518723Z out_112: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T05:07:47.0518813Z 2025-03-14T05:07:47.0519054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0519476Z x_180: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0519565Z 2025-03-14T05:07:47.0519825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0521318Z x_181: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0521384Z 2025-03-14T05:07:47.0521671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0521803Z out_113: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T05:07:47.0521873Z 2025-03-14T05:07:47.0522119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0522562Z x_182: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0522636Z 2025-03-14T05:07:47.0522892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0524384Z x_183: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0524451Z 2025-03-14T05:07:47.0524727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0524886Z x_183 += out_111; out_114: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T05:07:47.0524950Z 2025-03-14T05:07:47.0525251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0525392Z out_115: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T05:07:47.0525462Z 2025-03-14T05:07:47.0525707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0526132Z x_184: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T05:07:47.0526197Z 2025-03-14T05:07:47.0526459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0527940Z x_185: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0528015Z 2025-03-14T05:07:47.0528299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0528435Z out_116: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T05:07:47.0528505Z 2025-03-14T05:07:47.0528780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0529207Z x_186: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T05:07:47.0529272Z 2025-03-14T05:07:47.0529537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0531024Z x_187: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0531100Z 2025-03-14T05:07:47.0531385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0531533Z out_117: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T05:07:47.0531605Z 2025-03-14T05:07:47.0531850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0532297Z x_188: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T05:07:47.0532362Z 2025-03-14T05:07:47.0532628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:07:47.0534094Z x_189: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:07:47.0534171Z 2025-03-14T05:07:47.0534449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:07:47.0534601Z x_189 += out_115; out_118: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T05:07:47.0534674Z 2025-03-14T05:07:47.0534949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:07:47.0535130Z out_119: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T05:07:47.0535195Z 2025-03-14T05:07:47.0535627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:47.0535778Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:07:47.0535850Z 2025-03-14T05:07:47.0536136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:47.0536281Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:07:47.0536345Z 2025-03-14T05:07:47.0536774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:47.0536923Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:07:47.0536997Z 2025-03-14T05:07:47.0537279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:47.0537422Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:07:47.0537485Z 2025-03-14T05:07:47.0537851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:07:47.0538042Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:07:47.0538152Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:07:47.0538286Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:07:47.0538358Z 2025-03-14T05:07:47.0538679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:07:47.0538809Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:07:47.0538873Z 2025-03-14T05:07:47.0539193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:07:47.0539310Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:07:47.0539382Z 2025-03-14T05:07:47.0539751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:07:47.0539963Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:07:47.0540026Z 2025-03-14T05:07:47.0540440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:07:47.0540571Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:07:47.0540985Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:07:47.0541111Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:07:47.0541255Z x_190: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:07:47.0541326Z 2025-03-14T05:07:47.0541617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:47.0541746Z tensor: "f32[82125, 4][4, 1]cpu" = x_190.to(torch.float32); x_190 = None 2025-03-14T05:07:47.0541809Z 2025-03-14T05:07:47.0542064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:47.0542812Z x_191: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_119, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_119 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:07:47.0542888Z 2025-03-14T05:07:47.0543153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:07:47.0543343Z x_192: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_191, inplace = False); x_191 = None 2025-03-14T05:07:47.0543407Z 2025-03-14T05:07:47.0543783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:07:47.0544700Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:07:47.0544790Z 2025-03-14T05:07:47.0545162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:07:47.0545976Z x_193: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_192, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_192 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:07:47.0546056Z 2025-03-14T05:07:47.0546392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:07:47.0546556Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:07:47.0546698Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:07:47.0546777Z 2025-03-14T05:07:47.0547193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:07:47.0547363Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_193.view(4, -1, 4, 73, 75); x_193 = None 2025-03-14T05:07:47.0547580Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:07:47.0547760Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:07:47.0547832Z 2025-03-14T05:07:47.0548232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:07:47.0548446Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:07:47.0548512Z 2025-03-14T05:07:47.0548948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:07:47.0549098Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:07:47.0549257Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:07:47.0549394Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:07:47.0549470Z 2025-03-14T05:07:47.0549839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:07:47.0550022Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:07:47.0550088Z 2025-03-14T05:07:47.0550424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:07:47.0550564Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:07:47.0550636Z 2025-03-14T05:07:47.0550972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:07:47.0551111Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:07:47.0551238Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:47.0551395Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:07:47.0551461Z 2025-03-14T05:07:47.0551787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:07:47.0551911Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:07:47.0552039Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:07:47.0552186Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:07:47.0552263Z 2025-03-14T05:07:47.0552574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:07:47.0552701Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:47.0552791Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:07:47.0552920Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:07:47.0552985Z 2025-03-14T05:07:47.0553310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:07:47.0553451Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:07:47.0553586Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:07:47.0553715Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:07:47.0553788Z 2025-03-14T05:07:47.0554115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:07:47.0554272Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:07:47.0554383Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:07:47.0554453Z 2025-03-14T05:07:47.0554741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:07:47.0554898Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:07:47.0555018Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:07:47.0555083Z 2025-03-14T05:07:47.0555376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:07:47.0555523Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:07:47.0555643Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:07:47.0555705Z 2025-03-14T05:07:47.0556004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:07:47.0556201Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:07:47.0556318Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:07:47.0556382Z 2025-03-14T05:07:47.0556718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:07:47.0556871Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:07:47.0556942Z 2025-03-14T05:07:47.0557265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:07:47.0557402Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:07:47.0557466Z 2025-03-14T05:07:47.0557809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:07:47.0557944Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:07:47.0558077Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:07:47.0558223Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:07:47.0558365Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:07:47.0558429Z 2025-03-14T05:07:47.0558769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:07:47.0558903Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:07:47.0559031Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:07:47.0559176Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:07:47.0559348Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:07:47.0559415Z 2025-03-14T05:07:47.0559746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:07:47.0559863Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:07:47.0560027Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:07:47.0560154Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:07:47.0560227Z 2025-03-14T05:07:47.0560550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:07:47.0560671Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:07:47.0560831Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:07:47.0560968Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:07:47.0561029Z 2025-03-14T05:07:47.0561339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:07:47.0561440Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:07:47.0561552Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:07:47.0561643Z 2025-03-14T05:07:47.0561941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:07:47.0562042Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:07:47.0562155Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:07:47.0562240Z 2025-03-14T05:07:47.0562541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:07:47.0562656Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:07:47.0562780Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:07:47.0562853Z 2025-03-14T05:07:47.0563149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:07:47.0563267Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:07:47.0563387Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:07:47.0563460Z 2025-03-14T05:07:47.0563801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:07:47.0563986Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:07:47.0564049Z 2025-03-14T05:07:47.0564403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:07:47.0564564Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:07:47.0564641Z 2025-03-14T05:07:47.0565030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:07:47.0565244Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:07:47.0565311Z 2025-03-14T05:07:47.0565783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:07:47.0565915Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:07:47.0565988Z 2025-03-14T05:07:47.0566270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:47.0566417Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:07:47.0566481Z 2025-03-14T05:07:47.0566905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:07:47.0567019Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:07:47.0567129Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:07:47.0567241Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:07:47.0567313Z 2025-03-14T05:07:47.0567758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:07:47.0567945Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:07:47.0568172Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:07:47.0568249Z 2025-03-14T05:07:47.0568703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:07:47.0568873Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:07:47.0568955Z 2025-03-14T05:07:47.0569241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:47.0569395Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:07:47.0569458Z 2025-03-14T05:07:47.0569832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:07:47.0569977Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:07:47.0570049Z 2025-03-14T05:07:47.0570336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:47.0570482Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:07:47.0570545Z 2025-03-14T05:07:47.0570912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:07:47.0571050Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:07:47.0571120Z 2025-03-14T05:07:47.0571614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:07:47.0571760Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:07:47.0571879Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:07:47.0572037Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:07:47.0572165Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:07:47.0572239Z 2025-03-14T05:07:47.0572588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:07:47.0572712Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:07:47.0572775Z 2025-03-14T05:07:55.7344532Z 2025-03-14T05:07:55.7345302Z class GraphModule(torch.nn.Module): 2025-03-14T05:07:55.7346873Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:07:55.7348664Z l_features_res4_ = L_features_res4_ 2025-03-14T05:07:55.7349176Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:07:55.7349835Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:07:55.7354512Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:07:55.7356410Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:07:55.7357133Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:07:55.7357984Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:07:55.7362536Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:07:55.7364300Z 2025-03-14T05:07:55.7365045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:55.7370228Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:07:55.7374453Z 2025-03-14T05:07:55.7379106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7381286Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:07:55.7381937Z 2025-03-14T05:07:55.7382756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:55.7383442Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:07:55.7383723Z 2025-03-14T05:07:55.7384213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7384732Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:07:55.7385006Z 2025-03-14T05:07:55.7385483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:07:55.7386115Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:07:55.7386448Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:07:55.7386726Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:07:55.7386969Z 2025-03-14T05:07:55.7387379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:07:55.7387887Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:07:55.7388132Z 2025-03-14T05:07:55.7388544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:07:55.7389045Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:07:55.7389339Z 2025-03-14T05:07:55.7389813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:07:55.7390464Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:07:55.7390824Z 2025-03-14T05:07:55.7391365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:07:55.7391957Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:07:55.7392454Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:07:55.7392944Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:07:55.7393231Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:07:55.7393459Z 2025-03-14T05:07:55.7393856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:55.7394324Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:07:55.7394561Z 2025-03-14T05:07:55.7394895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:55.7395784Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:07:55.7396486Z 2025-03-14T05:07:55.7396898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:07:55.7397429Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:07:55.7397733Z 2025-03-14T05:07:55.7398205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:07:55.7399279Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:07:55.7400243Z 2025-03-14T05:07:55.7400893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:07:55.7401902Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:07:55.7402922Z 2025-03-14T05:07:55.7403511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:07:55.7404122Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:07:55.7404598Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:07:55.7404867Z 2025-03-14T05:07:55.7405391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:07:55.7406011Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:07:55.7406388Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:07:55.7406788Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:07:55.7407082Z 2025-03-14T05:07:55.7407572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:07:55.7408234Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:07:55.7408559Z 2025-03-14T05:07:55.7409076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:07:55.7409705Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:07:55.7410056Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:07:55.7410400Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:07:55.7410661Z 2025-03-14T05:07:55.7411127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:07:55.7411757Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:07:55.7412052Z 2025-03-14T05:07:55.7412452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:07:55.7412955Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:07:55.7413213Z 2025-03-14T05:07:55.7413609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:07:55.7414104Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:07:55.7414454Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:55.7414783Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:07:55.7415048Z 2025-03-14T05:07:55.7415458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:07:55.7415956Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:07:55.7416259Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:07:55.7416583Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:07:55.7416850Z 2025-03-14T05:07:55.7417247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:07:55.7417751Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:55.7418020Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:07:55.7418285Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:07:55.7418541Z 2025-03-14T05:07:55.7418937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:07:55.7419446Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:07:55.7419734Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:07:55.7419996Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:07:55.7420239Z 2025-03-14T05:07:55.7420657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:07:55.7421163Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:07:55.7421486Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:07:55.7421722Z 2025-03-14T05:07:55.7422113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:07:55.7422620Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:07:55.7422939Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:07:55.7423175Z 2025-03-14T05:07:55.7423573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:07:55.7424069Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:07:55.7424472Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:07:55.7424709Z 2025-03-14T05:07:55.7425175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:07:55.7425734Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:07:55.7426102Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:07:55.7426348Z 2025-03-14T05:07:55.7426778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:07:55.7427313Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:07:55.7427576Z 2025-03-14T05:07:55.7428001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:07:55.7428540Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:07:55.7428800Z 2025-03-14T05:07:55.7429231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:07:55.7429773Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:07:55.7430093Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:07:55.7430428Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:07:55.7430796Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:07:55.7431057Z 2025-03-14T05:07:55.7431500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:07:55.7432059Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:07:55.7432379Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:07:55.7432711Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:07:55.7433055Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:07:55.7433312Z 2025-03-14T05:07:55.7433731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:07:55.7434236Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:07:55.7434569Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:07:55.7434915Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:07:55.7435170Z 2025-03-14T05:07:55.7435590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:07:55.7436086Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:07:55.7436421Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:07:55.7436777Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:07:55.7437036Z 2025-03-14T05:07:55.7437435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:07:55.7437956Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:07:55.7438233Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:07:55.7438482Z 2025-03-14T05:07:55.7438886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:07:55.7439353Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:07:55.7439624Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:07:55.7439868Z 2025-03-14T05:07:55.7440269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:07:55.7440752Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:07:55.7441060Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:07:55.7441324Z 2025-03-14T05:07:55.7441723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:07:55.7442207Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:07:55.7442504Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:07:55.7442762Z 2025-03-14T05:07:55.7443203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:07:55.7443813Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:07:55.7444108Z 2025-03-14T05:07:55.7444532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:07:55.7445091Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:07:55.7445377Z 2025-03-14T05:07:55.7445841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:07:55.7446442Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:07:55.7446731Z 2025-03-14T05:07:55.7447294Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:07:55.7447974Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:07:55.7448230Z 2025-03-14T05:07:55.7448617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7449108Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:07:55.7449372Z 2025-03-14T05:07:55.7449890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:07:55.7450489Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:07:55.7450776Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:07:55.7451049Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:07:55.7451280Z 2025-03-14T05:07:55.7451863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:07:55.7452538Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:07:55.7452993Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:07:55.7453346Z 2025-03-14T05:07:55.7453872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:07:55.7454527Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:07:55.7454804Z 2025-03-14T05:07:55.7455182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7455679Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:07:55.7455948Z 2025-03-14T05:07:55.7456409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:07:55.7456985Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:07:55.7457246Z 2025-03-14T05:07:55.7457640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:55.7458131Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:07:55.7458394Z 2025-03-14T05:07:55.7458850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:07:55.7459423Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:07:55.7459677Z 2025-03-14T05:07:55.7460227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:07:55.7460873Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:07:55.7461181Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:07:55.7461508Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:07:55.7461843Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:07:55.7462110Z 2025-03-14T05:07:55.7462569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:07:55.7463114Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:07:55.7463345Z 2025-03-14T05:07:55.7463484Z 2025-03-14T05:07:55.7463583Z class GraphModule(torch.nn.Module): 2025-03-14T05:07:55.7465024Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:07:55.7466340Z l_features_res4_ = L_features_res4_ 2025-03-14T05:07:55.7466752Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:07:55.7467268Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:07:55.7467741Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:07:55.7468273Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:07:55.7468868Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:07:55.7469438Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:07:55.7469982Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:07:55.7470347Z 2025-03-14T05:07:55.7470890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:55.7471549Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:07:55.7471817Z 2025-03-14T05:07:55.7472215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7472749Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:07:55.7473003Z 2025-03-14T05:07:55.7473521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:07:55.7474149Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:07:55.7474412Z 2025-03-14T05:07:55.7474786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7475265Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:07:55.7475522Z 2025-03-14T05:07:55.7475979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:07:55.7476582Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:07:55.7476914Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:07:55.7477187Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:07:55.7477426Z 2025-03-14T05:07:55.7477841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:07:55.7478350Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:07:55.7478592Z 2025-03-14T05:07:55.7479031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:07:55.7479532Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:07:55.7479775Z 2025-03-14T05:07:55.7480235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:07:55.7480870Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:07:55.7481196Z 2025-03-14T05:07:55.7481879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:07:55.7482481Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:07:55.7482986Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:07:55.7483459Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:07:55.7483740Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:07:55.7483966Z 2025-03-14T05:07:55.7484343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:55.7485870Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:07:55.7486110Z 2025-03-14T05:07:55.7486452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:07:55.7487352Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:07:55.7488072Z 2025-03-14T05:07:55.7488432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:07:55.7488931Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:07:55.7489230Z 2025-03-14T05:07:55.7489688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:07:55.7490724Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:07:55.7491442Z 2025-03-14T05:07:55.7491876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:07:55.7492894Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:07:55.7493582Z 2025-03-14T05:07:55.7494000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:07:55.7494531Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:07:55.7494864Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:07:55.7495115Z 2025-03-14T05:07:55.7495609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:07:55.7496209Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:07:55.7496582Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:07:55.7496969Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:07:55.7497259Z 2025-03-14T05:07:55.7497735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:07:55.7498380Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:07:55.7498694Z 2025-03-14T05:07:55.7499214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:07:55.7499832Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:07:55.7500190Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:07:55.7500526Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:07:55.7500779Z 2025-03-14T05:07:55.7501225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:07:55.7501801Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:07:55.7502087Z 2025-03-14T05:07:55.7502475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:07:55.7502966Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:07:55.7503223Z 2025-03-14T05:07:55.7503618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:07:55.7504105Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:07:55.7504474Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:55.7504798Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:07:55.7505066Z 2025-03-14T05:07:55.7505482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:07:55.7505973Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:07:55.7506273Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:07:55.7506630Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:07:55.7506903Z 2025-03-14T05:07:55.7507302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:07:55.7507803Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:55.7508992Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:07:55.7509266Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:07:55.7509515Z 2025-03-14T05:07:55.7509915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:07:55.7510437Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:07:55.7510733Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:07:55.7511012Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:07:55.7511257Z 2025-03-14T05:07:55.7511660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:07:55.7512162Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:07:55.7512485Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:07:55.7512719Z 2025-03-14T05:07:55.7513098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:07:55.7513648Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:07:55.7513973Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:07:55.7514221Z 2025-03-14T05:07:55.7514603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:07:55.7515111Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:07:55.7515431Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:07:55.7515669Z 2025-03-14T05:07:55.7516056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:07:55.7516596Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:07:55.7516947Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:07:55.7517187Z 2025-03-14T05:07:55.7517615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:07:55.7518152Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:07:55.7518412Z 2025-03-14T05:07:55.7518831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:07:55.7519358Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:07:55.7519618Z 2025-03-14T05:07:55.7520047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:07:55.7520614Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:07:55.7520930Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:07:55.7521255Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:07:55.7521593Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:07:55.7521848Z 2025-03-14T05:07:55.7522270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:07:55.7522796Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:07:55.7523109Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:07:55.7523427Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:07:55.7523765Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:07:55.7524024Z 2025-03-14T05:07:55.7524432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:07:55.7524924Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:07:55.7525243Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:07:55.7525578Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:07:55.7525852Z 2025-03-14T05:07:55.7526251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:07:55.7526744Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:07:55.7527079Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:07:55.7527416Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:07:55.7527659Z 2025-03-14T05:07:55.7528048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:07:55.7528496Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:07:55.7528753Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:07:55.7528985Z 2025-03-14T05:07:55.7529367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:07:55.7529810Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:07:55.7530063Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:07:55.7530292Z 2025-03-14T05:07:55.7530675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:07:55.7531135Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:07:55.7531420Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:07:55.7531668Z 2025-03-14T05:07:55.7532589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:07:55.7533095Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:07:55.7533384Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:07:55.7533629Z 2025-03-14T05:07:55.7534113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:07:55.7534681Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:07:55.7534968Z 2025-03-14T05:07:55.7535374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:07:55.7535903Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:07:55.7536197Z 2025-03-14T05:07:55.7536652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:07:55.7537237Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:07:55.7537521Z 2025-03-14T05:07:55.7538078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:07:55.7538747Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:07:55.7538999Z 2025-03-14T05:07:55.7539380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7539891Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:07:55.7540157Z 2025-03-14T05:07:55.7540678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:07:55.7541296Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:07:55.7541569Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:07:55.7541846Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:07:55.7542076Z 2025-03-14T05:07:55.7542615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:07:55.7543285Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:07:55.7543734Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:07:55.7544092Z 2025-03-14T05:07:55.7544733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:07:55.7545433Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:07:55.7545734Z 2025-03-14T05:07:55.7546121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:55.7546624Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:07:55.7546900Z 2025-03-14T05:07:55.7547366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:07:55.7548001Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:07:55.7548267Z 2025-03-14T05:07:55.7548653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:55.7549148Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:07:55.7549414Z 2025-03-14T05:07:55.7549871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:07:55.7550441Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:07:55.7550704Z 2025-03-14T05:07:55.7551277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:07:55.7551953Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:07:55.7552269Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:07:55.7552606Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:07:55.7552950Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:07:55.7553207Z 2025-03-14T05:07:55.7553665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:07:55.7554213Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:07:55.7554444Z 2025-03-14T05:07:56.3316829Z 2025-03-14T05:07:56.3323285Z class GraphModule(torch.nn.Module): 2025-03-14T05:07:56.3324598Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T05:07:56.3325084Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:07:56.3325417Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:07:56.3325689Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:07:56.3325939Z 2025-03-14T05:07:56.3326483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:07:56.3327179Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:07:56.3327516Z 2025-03-14T05:07:56.3328056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:07:56.3328736Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:07:56.3329128Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:07:56.3329473Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:07:56.3329737Z 2025-03-14T05:07:56.3330209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:07:56.3330802Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:07:56.3331224Z 2025-03-14T05:07:56.3331656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:07:56.3332241Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:07:56.3332516Z 2025-03-14T05:07:56.3332950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:07:56.3333507Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:07:56.3333830Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:56.3334173Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:07:56.3334431Z 2025-03-14T05:07:56.3334832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:07:56.3335323Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:07:56.3335617Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:07:56.3335934Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:07:56.3336194Z 2025-03-14T05:07:56.3336584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:07:56.3337106Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:07:56.3337368Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:07:56.3337625Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:07:56.3337862Z 2025-03-14T05:07:56.3338258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:07:56.3338781Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:07:56.3339067Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:07:56.3339336Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:07:56.3339575Z 2025-03-14T05:07:56.3339982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:07:56.3340478Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:07:56.3340797Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:07:56.3341028Z 2025-03-14T05:07:56.3341409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:07:56.3341899Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:07:56.3342214Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:07:56.3342448Z 2025-03-14T05:07:56.3342824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:07:56.3343309Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:07:56.3343629Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:07:56.3343862Z 2025-03-14T05:07:56.3344533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:07:56.3345099Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:07:56.3345465Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:07:56.3345696Z 2025-03-14T05:07:56.3346113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:07:56.3346638Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:07:56.3346892Z 2025-03-14T05:07:56.3347301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:07:56.3347814Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:07:56.3348065Z 2025-03-14T05:07:56.3348484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:07:56.3349014Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:07:56.3349322Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:07:56.3349651Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:07:56.3349994Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:07:56.3350267Z 2025-03-14T05:07:56.3350693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:07:56.3351223Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:07:56.3351552Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:07:56.3351872Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:07:56.3352207Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:07:56.3352462Z 2025-03-14T05:07:56.3352872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:07:56.3353358Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:07:56.3353675Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:07:56.3354012Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:07:56.3354260Z 2025-03-14T05:07:56.3354669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:07:56.3355156Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:07:56.3355480Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:07:56.3355823Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:07:56.3356074Z 2025-03-14T05:07:56.3356466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:07:56.3356916Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:07:56.3357205Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:07:56.3357440Z 2025-03-14T05:07:56.3357828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:07:56.3358276Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:07:56.3358532Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:07:56.3358762Z 2025-03-14T05:07:56.3359145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:07:56.3359607Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:07:56.3359896Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:07:56.3360141Z 2025-03-14T05:07:56.3360522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:07:56.3360982Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:07:56.3361267Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:07:56.3361507Z 2025-03-14T05:07:56.3361929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:07:56.3362499Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:07:56.3362808Z 2025-03-14T05:07:56.3363220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:07:56.3363754Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:07:56.3364045Z 2025-03-14T05:07:56.3364501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:07:56.3365081Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:07:56.3365363Z 2025-03-14T05:07:56.3365916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:07:56.3366622Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:07:56.3366863Z 2025-03-14T05:07:56.3367239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:56.3367712Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:07:56.3367952Z 2025-03-14T05:07:56.3368461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:07:56.3369097Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:07:56.3369423Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:07:56.3369687Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:07:56.3370005Z 2025-03-14T05:07:56.3370588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:07:56.3371257Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:07:56.3371703Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T05:07:56.3372050Z 2025-03-14T05:07:56.3372579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:07:56.3373238Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:07:56.3373519Z 2025-03-14T05:07:56.3373893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:07:56.3374386Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:07:56.3374654Z 2025-03-14T05:07:56.3375116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:07:56.3375678Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:07:56.3375940Z 2025-03-14T05:07:56.3376313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:07:56.3376819Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T05:07:56.3377075Z 2025-03-14T05:07:56.3378675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:07:56.3379342Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:07:56.3379609Z 2025-03-14T05:07:56.3380166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:07:56.3380826Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:07:56.3381130Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:07:56.3381661Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:07:56.3382011Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:07:56.3382264Z 2025-03-14T05:07:56.3382719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:07:56.3383247Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:07:56.3383483Z 2025-03-14T05:08:11.0574485Z 2025-03-14T05:08:11.0575073Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:11.0577258Z def forward(self, L_stack0_: "f32[3272, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:11.0578728Z l_stack0_ = L_stack0_ 2025-03-14T05:08:11.0579142Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:08:11.0579738Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:08:11.0580328Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:08:11.0580915Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:08:11.0581424Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0582040Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0582465Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0582884Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0583202Z 2025-03-14T05:08:11.0583799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:08:11.0584638Z mean: "f32[3272, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:08:11.0584928Z 2025-03-14T05:08:11.0585366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:08:11.0586437Z scores: "f32[3272, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:08:11.0587197Z 2025-03-14T05:08:11.0587629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:08:11.0588689Z proposal_deltas: "f32[3272, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:08:11.0589439Z 2025-03-14T05:08:11.0589823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0590285Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0590543Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:11.0590779Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:11.0591055Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0591319Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:11.0591567Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:11.0591793Z 2025-03-14T05:08:11.0592169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:11.0593150Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0593853Z 2025-03-14T05:08:11.0594307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:11.0594880Z deltas: "f32[3272, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:08:11.0595170Z 2025-03-14T05:08:11.0595590Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:11.0596149Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:11.0596431Z 2025-03-14T05:08:11.0596832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:11.0597326Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:11.0597626Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0597943Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:11.0598204Z 2025-03-14T05:08:11.0598605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:11.0599118Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:11.0599410Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:11.0599732Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:11.0600016Z 2025-03-14T05:08:11.0600420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:11.0600905Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0601165Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:11.0601419Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:11.0601663Z 2025-03-14T05:08:11.0602063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:11.0602575Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:11.0602866Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:11.0603133Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:11.0603376Z 2025-03-14T05:08:11.0603788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:11.0604301Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:11.0604629Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:11.0604873Z 2025-03-14T05:08:11.0605248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:11.0605742Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:11.0606089Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:11.0606317Z 2025-03-14T05:08:11.0606693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:11.0607177Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:11.0607490Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:11.0607717Z 2025-03-14T05:08:11.0608102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:11.0608647Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:11.0608985Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:11.0609215Z 2025-03-14T05:08:11.0609630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:11.0610147Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:11.0610399Z 2025-03-14T05:08:11.0610807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:11.0611312Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:11.0611575Z 2025-03-14T05:08:11.0611994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:11.0612514Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:11.0612842Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:11.0613165Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:11.0613501Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:11.0613755Z 2025-03-14T05:08:11.0614180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:11.0614701Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:11.0615011Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:11.0615326Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:11.0615661Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:11.0615914Z 2025-03-14T05:08:11.0616323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:11.0616814Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:11.0617134Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:11.0617468Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:11.0617715Z 2025-03-14T05:08:11.0618120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:11.0618603Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:11.0618953Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:11.0619299Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:11.0619544Z 2025-03-14T05:08:11.0619943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:11.0620405Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:11.0620673Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:11.0620918Z 2025-03-14T05:08:11.0621321Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:11.0621788Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:11.0622057Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:11.0622301Z 2025-03-14T05:08:11.0622696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:11.0623376Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:11.0623764Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:11.0624017Z 2025-03-14T05:08:11.0624488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:11.0625029Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:11.0625350Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:11.0625640Z 2025-03-14T05:08:11.0626253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:11.0626900Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:11.0627206Z 2025-03-14T05:08:11.0627666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:11.0628295Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:11.0628600Z 2025-03-14T05:08:11.0629313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:11.0629947Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:11.0630325Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:11.0630628Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:11.0630941Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:11.0631271Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:11.0631544Z 2025-03-14T05:08:11.0632024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0632672Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0633025Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:11.0633446Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:11.0633832Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0634208Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:11.0634465Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:11.0634689Z 2025-03-14T05:08:11.0635112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:11.0635700Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:08:11.0635989Z 2025-03-14T05:08:11.0636448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:11.0637071Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:11.0637447Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:11.0637738Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:11.0638040Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:11.0638356Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:11.0638620Z 2025-03-14T05:08:11.0639174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:11.0639891Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:11.0640236Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:11.0640591Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:11.0640933Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:11.0641227Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:11.0641469Z 2025-03-14T05:08:11.0641912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:11.0642430Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:11.0642666Z 2025-03-14T05:08:11.0642761Z 2025-03-14T05:08:11.0642851Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:11.0644217Z def forward(self, L_stack0_: "f32[3272, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:11.0645545Z l_stack0_ = L_stack0_ 2025-03-14T05:08:11.0645935Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:08:11.0646509Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:08:11.0647117Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:08:11.0647678Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:08:11.0648153Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0648557Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0648951Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0649349Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0649644Z 2025-03-14T05:08:11.0650179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:08:11.0650816Z mean: "f32[3272, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:08:11.0651086Z 2025-03-14T05:08:11.0651489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:08:11.0652447Z scores: "f32[3272, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:08:11.0653167Z 2025-03-14T05:08:11.0653561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:08:11.0654564Z proposal_deltas: "f32[3272, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:08:11.0655298Z 2025-03-14T05:08:11.0655674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0656136Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0656392Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:11.0656626Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:11.0656896Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0657154Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:11.0657397Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:11.0657613Z 2025-03-14T05:08:11.0657977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:11.0658898Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0659607Z 2025-03-14T05:08:11.0660072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:11.0660679Z deltas: "f32[3272, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:08:11.0660961Z 2025-03-14T05:08:11.0661358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:11.0661885Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:11.0662167Z 2025-03-14T05:08:11.0662572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:11.0663077Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:11.0663386Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0663705Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:11.0664181Z 2025-03-14T05:08:11.0664634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:11.0665159Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:11.0665473Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:11.0665806Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:11.0666085Z 2025-03-14T05:08:11.0666510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:11.0667018Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0667276Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:11.0667540Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:11.0667797Z 2025-03-14T05:08:11.0668196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:11.0668710Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:11.0668996Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:11.0669259Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:11.0669502Z 2025-03-14T05:08:11.0669910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:11.0670424Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:11.0670749Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:11.0670985Z 2025-03-14T05:08:11.0671373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:11.0671876Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:11.0672194Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:11.0672427Z 2025-03-14T05:08:11.0672812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:11.0673313Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:11.0673629Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:11.0673892Z 2025-03-14T05:08:11.0674314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:11.0674849Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:11.0675195Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:11.0675421Z 2025-03-14T05:08:11.0675846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:11.0676369Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:11.0676627Z 2025-03-14T05:08:11.0677081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:11.0677604Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:11.0677861Z 2025-03-14T05:08:11.0678363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:11.0679106Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:11.0679513Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:11.0679883Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:11.0680277Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:11.0680539Z 2025-03-14T05:08:11.0680982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:11.0681693Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:11.0682178Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:11.0682642Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:11.0682985Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:11.0683245Z 2025-03-14T05:08:11.0683667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:11.0684179Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:11.0684508Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:11.0684853Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:11.0685112Z 2025-03-14T05:08:11.0685543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:11.0686047Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:11.0686379Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:11.0686728Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:11.0686985Z 2025-03-14T05:08:11.0687386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:11.0687863Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:11.0688212Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:11.0688449Z 2025-03-14T05:08:11.0688832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:11.0689276Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:11.0689533Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:11.0689763Z 2025-03-14T05:08:11.0690147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:11.0690609Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:11.0690894Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:11.0691135Z 2025-03-14T05:08:11.0691517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:11.0691975Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:11.0692254Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:11.0692492Z 2025-03-14T05:08:11.0692908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:11.0693463Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:11.0693778Z 2025-03-14T05:08:11.0694194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:11.0694738Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:11.0695045Z 2025-03-14T05:08:11.0695479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:11.0696078Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:11.0696430Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:11.0696713Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:11.0697013Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:11.0697322Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:11.0697569Z 2025-03-14T05:08:11.0697965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0698506Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0698843Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:11.0699085Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:11.0699437Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0699781Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:11.0700026Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:11.0700243Z 2025-03-14T05:08:11.0700648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:11.0701223Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:08:11.0701509Z 2025-03-14T05:08:11.0701939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:11.0702520Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:11.0702871Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:11.0703154Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:11.0703451Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:11.0703757Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:11.0704011Z 2025-03-14T05:08:11.0704646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:11.0705373Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:11.0705733Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:11.0706091Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:11.0706443Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:11.0706746Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:11.0706988Z 2025-03-14T05:08:11.0707422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:11.0707944Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:11.0708175Z 2025-03-14T05:08:11.0708308Z 2025-03-14T05:08:11.0708399Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:11.0709721Z def forward(self, L_stack0_: "f32[3272, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:11.0711004Z l_stack0_ = L_stack0_ 2025-03-14T05:08:11.0711400Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:08:11.0711966Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:08:11.0712524Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:08:11.0713089Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:08:11.0713567Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0714004Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0714433Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0714831Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0715124Z 2025-03-14T05:08:11.0715649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:08:11.0716274Z mean: "f32[3272, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:08:11.0716541Z 2025-03-14T05:08:11.0716932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:08:11.0717886Z scores: "f32[3272, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:08:11.0718602Z 2025-03-14T05:08:11.0719012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:08:11.0720007Z proposal_deltas: "f32[3272, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:08:11.0720771Z 2025-03-14T05:08:11.0721141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0721611Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0721868Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:11.0722103Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:11.0722377Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0722638Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:11.0722884Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:11.0723102Z 2025-03-14T05:08:11.0723466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:11.0724376Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0725069Z 2025-03-14T05:08:11.0725521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:11.0726080Z deltas: "f32[3272, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:08:11.0726351Z 2025-03-14T05:08:11.0726743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:11.0727260Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:11.0727535Z 2025-03-14T05:08:11.0727967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:11.0728495Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:11.0728899Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0729346Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:11.0729604Z 2025-03-14T05:08:11.0730001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:11.0730562Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:11.0731040Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:11.0731381Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:11.0731640Z 2025-03-14T05:08:11.0732028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:11.0732501Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0732754Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:11.0733003Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:11.0733237Z 2025-03-14T05:08:11.0733623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:11.0734294Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:11.0734598Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:11.0734853Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:11.0735088Z 2025-03-14T05:08:11.0735505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:11.0736004Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:11.0736324Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:11.0736553Z 2025-03-14T05:08:11.0736936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:11.0737431Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:11.0737749Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:11.0737976Z 2025-03-14T05:08:11.0738359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:11.0738849Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:11.0739160Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:11.0739393Z 2025-03-14T05:08:11.0739780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:11.0740312Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:11.0740658Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:11.0740886Z 2025-03-14T05:08:11.0741346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:11.0741878Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:11.0742135Z 2025-03-14T05:08:11.0742557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:11.0743082Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:11.0743348Z 2025-03-14T05:08:11.0743809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:11.0744449Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:11.0744811Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:11.0745185Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:11.0745587Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:11.0745848Z 2025-03-14T05:08:11.0746285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:11.0746829Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:11.0747164Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:11.0747527Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:11.0747885Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:11.0748156Z 2025-03-14T05:08:11.0748600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:11.0749153Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:11.0749494Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:11.0749850Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:11.0750115Z 2025-03-14T05:08:11.0750535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:11.0751038Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:11.0751366Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:11.0751713Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:11.0751967Z 2025-03-14T05:08:11.0752366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:11.0752826Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:11.0753090Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:11.0753327Z 2025-03-14T05:08:11.0753751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:11.0754205Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:11.0754465Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:11.0754698Z 2025-03-14T05:08:11.0755117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:11.0755600Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:11.0755894Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:11.0756143Z 2025-03-14T05:08:11.0756532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:11.0757000Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:11.0757288Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:11.0757533Z 2025-03-14T05:08:11.0757971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:11.0758554Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:11.0758842Z 2025-03-14T05:08:11.0759263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:11.0759813Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:11.0760099Z 2025-03-14T05:08:11.0760540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:11.0761170Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:11.0761530Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:11.0761833Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:11.0762129Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:11.0762432Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:11.0762690Z 2025-03-14T05:08:11.0763060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0763604Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0763948Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:11.0764188Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:11.0764546Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0764894Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:11.0765138Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:11.0765353Z 2025-03-14T05:08:11.0765775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:11.0766313Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:08:11.0766594Z 2025-03-14T05:08:11.0767020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:11.0767602Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:11.0767986Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:11.0768271Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:11.0768564Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:11.0768872Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:11.0769123Z 2025-03-14T05:08:11.0769656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:11.0770327Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:11.0770659Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:11.0770993Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:11.0771328Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:11.0771613Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:11.0771848Z 2025-03-14T05:08:11.0772276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:11.0772781Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:11.0773010Z 2025-03-14T05:08:11.0773146Z 2025-03-14T05:08:11.0773236Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:11.0774570Z def forward(self, L_stack0_: "f32[3272, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:11.0775861Z l_stack0_ = L_stack0_ 2025-03-14T05:08:11.0776239Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:08:11.0776801Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:08:11.0777362Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:08:11.0777935Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:08:11.0778436Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0778839Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0779237Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0779631Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:11.0779926Z 2025-03-14T05:08:11.0780455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:08:11.0781127Z mean: "f32[3272, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:08:11.0781402Z 2025-03-14T05:08:11.0781972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:08:11.0782976Z scores: "f32[3272, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:08:11.0783719Z 2025-03-14T05:08:11.0784184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:08:11.0785235Z proposal_deltas: "f32[3272, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:08:11.0786001Z 2025-03-14T05:08:11.0786383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0786863Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0787135Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:11.0787371Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:11.0787701Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:11.0787964Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:11.0788209Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:11.0788433Z 2025-03-14T05:08:11.0788829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:11.0789771Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0790481Z 2025-03-14T05:08:11.0790942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:11.0791515Z deltas: "f32[3272, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:08:11.0791789Z 2025-03-14T05:08:11.0792186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:11.0792709Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:11.0792979Z 2025-03-14T05:08:11.0793380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:11.0793875Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:11.0794177Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0794494Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:11.0794753Z 2025-03-14T05:08:11.0795214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:11.0795707Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:11.0795997Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:11.0796308Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:11.0796569Z 2025-03-14T05:08:11.0796968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:11.0797451Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:11.0797711Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:11.0797969Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:11.0798206Z 2025-03-14T05:08:11.0798606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:11.0799118Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:11.0799400Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:11.0799658Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:11.0799896Z 2025-03-14T05:08:11.0800283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:11.0800778Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:11.0801115Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:11.0801345Z 2025-03-14T05:08:11.0801728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:11.0802232Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:11.0802543Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:11.0802769Z 2025-03-14T05:08:11.0803142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:11.0803626Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:11.0803939Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:11.0804166Z 2025-03-14T05:08:11.0804542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:11.0805057Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:11.0805395Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:11.0805625Z 2025-03-14T05:08:11.0806032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:11.0806543Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:11.0806796Z 2025-03-14T05:08:11.0807198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:11.0807699Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:11.0807944Z 2025-03-14T05:08:11.0808392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:11.0808912Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:11.0809218Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:11.0809536Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:11.0809864Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:11.0810117Z 2025-03-14T05:08:11.0810539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:11.0811058Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:11.0811364Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:11.0811679Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:11.0812012Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:11.0812261Z 2025-03-14T05:08:11.0812670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:11.0813154Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:11.0813492Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:11.0813825Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:11.0814072Z 2025-03-14T05:08:11.0814481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:11.0814987Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:11.0815308Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:11.0815652Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:11.0815899Z 2025-03-14T05:08:11.0816289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:11.0816740Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:11.0816997Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:11.0817229Z 2025-03-14T05:08:11.0817615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:11.0818059Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:11.0818315Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:11.0818544Z 2025-03-14T05:08:11.0818924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:11.0819384Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:11.0819670Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:11.0819909Z 2025-03-14T05:08:11.0820287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:11.0820783Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:11.0821064Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:11.0821308Z 2025-03-14T05:08:11.0821728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:11.0822292Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:11.0822577Z 2025-03-14T05:08:11.0822985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:11.0823529Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:11.0823812Z 2025-03-14T05:08:11.0824346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:11.0824990Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:11.0825373Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:11.0825659Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:11.0825977Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:11.0826329Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:11.0826600Z 2025-03-14T05:08:11.0826986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:11.0827557Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0827961Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:11.0828219Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:11.0828600Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:11.0828969Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:11.0829230Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:11.0829465Z 2025-03-14T05:08:11.0829908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:11.0830495Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:08:11.0830801Z 2025-03-14T05:08:11.0831267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:11.0831893Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:11.0832267Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:11.0832572Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:11.0832888Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:11.0833220Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:11.0833490Z 2025-03-14T05:08:11.0834103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:11.0834798Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:11.0835161Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:11.0835512Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:11.0835864Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:11.0836168Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:11.0836414Z 2025-03-14T05:08:11.0836860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:11.0837389Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:11.0837636Z 2025-03-14T05:08:12.7210207Z 2025-03-14T05:08:12.7211066Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:12.7212130Z def forward(self, L_predictions_0_: "f32[3272, 81][81, 1]cpu", L_predictions_1_: "f32[3272, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:12.7213063Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:08:12.7213306Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:08:12.7213980Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7214396Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7214812Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7215272Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7215570Z 2025-03-14T05:08:12.7216002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:12.7216495Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:12.7216761Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:12.7217006Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:12.7217289Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:12.7217566Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:12.7217821Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:12.7218052Z 2025-03-14T05:08:12.7218451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:12.7219425Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7220166Z 2025-03-14T05:08:12.7220649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:12.7221250Z deltas: "f32[3272, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:08:12.7221533Z 2025-03-14T05:08:12.7222033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:12.7222589Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:12.7222877Z 2025-03-14T05:08:12.7223297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:12.7223816Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:12.7224245Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:12.7224590Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:12.7224868Z 2025-03-14T05:08:12.7225296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:12.7225823Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:12.7226137Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:12.7226469Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:12.7226741Z 2025-03-14T05:08:12.7227156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:12.7227661Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:12.7227930Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:12.7228226Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:12.7228472Z 2025-03-14T05:08:12.7228886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:12.7229426Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:12.7229719Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:12.7229993Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:12.7230245Z 2025-03-14T05:08:12.7230668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:12.7231201Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:12.7231544Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:12.7231780Z 2025-03-14T05:08:12.7232193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:12.7232705Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:12.7233031Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:12.7233264Z 2025-03-14T05:08:12.7233659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:12.7234159Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:12.7234480Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:12.7234715Z 2025-03-14T05:08:12.7235112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:12.7235733Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:12.7236094Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:12.7236334Z 2025-03-14T05:08:12.7236780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:12.7237341Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:12.7237599Z 2025-03-14T05:08:12.7238026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:12.7238554Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:12.7238808Z 2025-03-14T05:08:12.7239242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:12.7239787Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:12.7240110Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:12.7240439Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:12.7240788Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:12.7241048Z 2025-03-14T05:08:12.7241483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:12.7242042Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:12.7242360Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:12.7242699Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:12.7243038Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:12.7243290Z 2025-03-14T05:08:12.7243707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:12.7244210Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:12.7244534Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:12.7244874Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:12.7245124Z 2025-03-14T05:08:12.7245546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:12.7246051Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:12.7246379Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:12.7246726Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:12.7246976Z 2025-03-14T05:08:12.7247374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:12.7247841Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:12.7248110Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:12.7248345Z 2025-03-14T05:08:12.7248780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:12.7249245Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:12.7249506Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:12.7249733Z 2025-03-14T05:08:12.7250125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:12.7250602Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:12.7250892Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:12.7251145Z 2025-03-14T05:08:12.7251539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:12.7252013Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:12.7252303Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:12.7252552Z 2025-03-14T05:08:12.7252985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:12.7253570Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:12.7253864Z 2025-03-14T05:08:12.7254280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:12.7254851Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:12.7255141Z 2025-03-14T05:08:12.7255606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:12.7256238Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:12.7256603Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:12.7256899Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:12.7257205Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:12.7257526Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:12.7257789Z 2025-03-14T05:08:12.7258170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:12.7258729Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7259079Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:12.7259323Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:12.7259681Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7260032Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:12.7260281Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:12.7260502Z 2025-03-14T05:08:12.7260922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:12.7261516Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:08:12.7261838Z 2025-03-14T05:08:12.7262341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:12.7262944Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:12.7263513Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:12.7263818Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:12.7264187Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:12.7264540Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:12.7264821Z 2025-03-14T05:08:12.7265411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:12.7266136Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:12.7266504Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:12.7266901Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:12.7267264Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:12.7267578Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:12.7267833Z 2025-03-14T05:08:12.7268300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:12.7268880Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:12.7269135Z 2025-03-14T05:08:12.7279152Z 2025-03-14T05:08:12.7279669Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:12.7280692Z def forward(self, L_predictions_0_: "f32[3272, 81][81, 1]cpu", L_predictions_1_: "f32[3272, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:12.7281788Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:08:12.7282045Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:08:12.7282386Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7282808Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7283226Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7283639Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7283958Z 2025-03-14T05:08:12.7284372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:12.7284845Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:12.7285100Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:12.7285337Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:12.7285614Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:12.7285878Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:12.7286126Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:12.7286347Z 2025-03-14T05:08:12.7286861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:12.7287856Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7288582Z 2025-03-14T05:08:12.7289061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:12.7289649Z deltas: "f32[3272, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:08:12.7289929Z 2025-03-14T05:08:12.7290335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:12.7290864Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:12.7291146Z 2025-03-14T05:08:12.7291551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:12.7292057Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:12.7292364Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:12.7292774Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:12.7293179Z 2025-03-14T05:08:12.7293812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:12.7294448Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:12.7294776Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:12.7295101Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:12.7295371Z 2025-03-14T05:08:12.7295787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:12.7296310Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:12.7296590Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:12.7296864Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:12.7297119Z 2025-03-14T05:08:12.7297537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:12.7298068Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:12.7298368Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:12.7298644Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:12.7298901Z 2025-03-14T05:08:12.7299330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:12.7299848Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:12.7300178Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:12.7300421Z 2025-03-14T05:08:12.7300820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:12.7301368Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:12.7301692Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:12.7301926Z 2025-03-14T05:08:12.7302310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:12.7302808Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:12.7303130Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:12.7303364Z 2025-03-14T05:08:12.7303755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:12.7304416Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:12.7304788Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:12.7305039Z 2025-03-14T05:08:12.7305490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:12.7306023Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:12.7306284Z 2025-03-14T05:08:12.7306702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:12.7307251Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:12.7307507Z 2025-03-14T05:08:12.7307942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:12.7308491Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:12.7308810Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:12.7309141Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:12.7309485Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:12.7309743Z 2025-03-14T05:08:12.7310173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:12.7310711Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:12.7311025Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:12.7311353Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:12.7311695Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:12.7311943Z 2025-03-14T05:08:12.7312359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:12.7312860Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:12.7313182Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:12.7313523Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:12.7313775Z 2025-03-14T05:08:12.7314225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:12.7314747Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:12.7315076Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:12.7315424Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:12.7315676Z 2025-03-14T05:08:12.7316072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:12.7316536Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:12.7316800Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:12.7317035Z 2025-03-14T05:08:12.7317430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:12.7317886Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:12.7318144Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:12.7318374Z 2025-03-14T05:08:12.7318763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:12.7319236Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:12.7319523Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:12.7319802Z 2025-03-14T05:08:12.7320188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:12.7320649Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:12.7320935Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:12.7321209Z 2025-03-14T05:08:12.7321629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:12.7322194Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:12.7322482Z 2025-03-14T05:08:12.7322889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:12.7323428Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:12.7323747Z 2025-03-14T05:08:12.7324181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:12.7324773Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:12.7325125Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:12.7325406Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:12.7325703Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:12.7326014Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:12.7326268Z 2025-03-14T05:08:12.7326637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:12.7327204Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7327546Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:12.7327785Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:12.7328142Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7328488Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:12.7328736Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:12.7328957Z 2025-03-14T05:08:12.7329384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:12.7329987Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:08:12.7330309Z 2025-03-14T05:08:12.7330747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:12.7331341Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:12.7331694Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:12.7331978Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:12.7332270Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:12.7332574Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:12.7332846Z 2025-03-14T05:08:12.7333380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:12.7334053Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:12.7334411Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:12.7334740Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:12.7335072Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:12.7335360Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:12.7335598Z 2025-03-14T05:08:12.7336019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:12.7336533Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:12.7336754Z 2025-03-14T05:08:12.7336846Z 2025-03-14T05:08:12.7336938Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:12.7337732Z def forward(self, L_predictions_0_: "f32[3272, 81][81, 1]cpu", L_predictions_1_: "f32[3272, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1272 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1272 - s0, 4][4, 1]cpu"): 2025-03-14T05:08:12.7338526Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:08:12.7338756Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:08:12.7339062Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7339466Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7339865Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7340288Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:08:12.7340580Z 2025-03-14T05:08:12.7340963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:12.7341423Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:12.7341679Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:08:12.7341916Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:08:12.7342220Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:08:12.7342481Z getitem_2: "Sym(1272 - s0)" = size_1[0] 2025-03-14T05:08:12.7342726Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:08:12.7342949Z 2025-03-14T05:08:12.7343318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:08:12.7344358Z proposal_boxes: "f32[3272, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7345097Z 2025-03-14T05:08:12.7345573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:08:12.7346150Z deltas: "f32[3272, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:08:12.7346463Z 2025-03-14T05:08:12.7346861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:08:12.7347382Z boxes: "f32[3272, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:08:12.7347691Z 2025-03-14T05:08:12.7348095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:08:12.7348588Z getitem_4: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:08:12.7348890Z getitem_5: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:12.7349210Z widths: "f32[3272][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:08:12.7349472Z 2025-03-14T05:08:12.7349876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:08:12.7350364Z getitem_6: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:08:12.7350658Z getitem_7: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:08:12.7350978Z heights: "f32[3272][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:08:12.7351237Z 2025-03-14T05:08:12.7351632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:08:12.7352113Z getitem_8: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:08:12.7352371Z mul: "f32[3272][1]cpu" = 0.5 * widths 2025-03-14T05:08:12.7352623Z ctr_x: "f32[3272][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:08:12.7352861Z 2025-03-14T05:08:12.7353260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:08:12.7355003Z getitem_9: "f32[3272][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:08:12.7355294Z mul_1: "f32[3272][1]cpu" = 0.5 * heights 2025-03-14T05:08:12.7355561Z ctr_y: "f32[3272][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:08:12.7355797Z 2025-03-14T05:08:12.7356202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:08:12.7356718Z getitem_10: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:08:12.7357046Z dx: "f32[3272, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:08:12.7357286Z 2025-03-14T05:08:12.7357685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:08:12.7358178Z getitem_11: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:08:12.7358499Z dy: "f32[3272, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:08:12.7358738Z 2025-03-14T05:08:12.7359123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:08:12.7359625Z getitem_12: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:08:12.7359948Z dw: "f32[3272, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:08:12.7360190Z 2025-03-14T05:08:12.7360568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:08:12.7361107Z getitem_13: "f32[3272, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:08:12.7361442Z dh: "f32[3272, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:08:12.7361686Z 2025-03-14T05:08:12.7362098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:08:12.7362611Z dw_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:08:12.7362864Z 2025-03-14T05:08:12.7363269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:08:12.7363780Z dh_1: "f32[3272, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:08:12.7364034Z 2025-03-14T05:08:12.7364463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:08:12.7365010Z getitem_14: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:08:12.7365319Z mul_2: "f32[3272, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:08:12.7365645Z getitem_15: "f32[3272, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:08:12.7365987Z pred_ctr_x: "f32[3272, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:08:12.7366244Z 2025-03-14T05:08:12.7366674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:08:12.7367227Z getitem_16: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:08:12.7367535Z mul_3: "f32[3272, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:08:12.7367885Z getitem_17: "f32[3272, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:08:12.7368227Z pred_ctr_y: "f32[3272, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:08:12.7368483Z 2025-03-14T05:08:12.7368896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:08:12.7369392Z exp: "f32[3272, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:08:12.7369716Z getitem_18: "f32[3272, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:08:12.7370055Z pred_w: "f32[3272, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:08:12.7370303Z 2025-03-14T05:08:12.7370717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:08:12.7371216Z exp_1: "f32[3272, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:08:12.7371542Z getitem_19: "f32[3272, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:08:12.7371887Z pred_h: "f32[3272, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:08:12.7372140Z 2025-03-14T05:08:12.7372540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:08:12.7372998Z mul_6: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:08:12.7373299Z x1: "f32[3272, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:08:12.7373538Z 2025-03-14T05:08:12.7373922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:08:12.7374377Z mul_7: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:08:12.7374654Z y1: "f32[3272, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:08:12.7374894Z 2025-03-14T05:08:12.7375292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:08:12.7375768Z mul_8: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:08:12.7376068Z x2: "f32[3272, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:08:12.7376322Z 2025-03-14T05:08:12.7376717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:08:12.7377190Z mul_9: "f32[3272, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:08:12.7377485Z y2: "f32[3272, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:08:12.7377738Z 2025-03-14T05:08:12.7378177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:08:12.7378753Z pred_boxes: "f32[3272, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:08:12.7379053Z 2025-03-14T05:08:12.7379470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:08:12.7380028Z predict_boxes: "f32[3272, 320][320, 1]cpu" = pred_boxes.reshape((3272, 320)); pred_boxes = None 2025-03-14T05:08:12.7380316Z 2025-03-14T05:08:12.7380795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:08:12.7381402Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:08:12.7381960Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:08:12.7382253Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:08:12.7382561Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:08:12.7382966Z getitem_23: "f32[1272 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:08:12.7395460Z 2025-03-14T05:08:12.7395945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:08:12.7396558Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7396929Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:08:12.7397192Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:08:12.7397576Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:08:12.7397950Z getitem_26: "Sym(1272 - s0)" = size_3[0] 2025-03-14T05:08:12.7398209Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:08:12.7398439Z 2025-03-14T05:08:12.7398884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:08:12.7399649Z probs: "f32[3272, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:08:12.7399992Z 2025-03-14T05:08:12.7400468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:08:12.7401133Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:08:12.7401511Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:08:12.7401820Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:08:12.7402136Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:08:12.7402469Z getitem_31: "f32[1272 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:08:12.7402744Z 2025-03-14T05:08:12.7403322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:12.7404037Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:08:12.7404399Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:12.7404749Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:08:12.7405103Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:12.7405400Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:12.7405652Z 2025-03-14T05:08:12.7406115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:12.7406655Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:12.7406895Z 2025-03-14T05:08:15.0354166Z 2025-03-14T05:08:15.0355009Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:15.0355862Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:08:15.0356193Z l_scores_0_ = L_scores_0_ 2025-03-14T05:08:15.0356410Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:08:15.0356609Z 2025-03-14T05:08:15.0357218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:15.0357943Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:08:15.0358285Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:15.0358623Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:08:15.0358956Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:15.0359261Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:15.0359516Z 2025-03-14T05:08:15.0359977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:15.0360512Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:15.0360763Z 2025-03-14T05:08:15.0360854Z 2025-03-14T05:08:15.0360956Z class GraphModule(torch.nn.Module): 2025-03-14T05:08:15.0361266Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:08:15.0361623Z l_scores_0_ = L_scores_0_ 2025-03-14T05:08:15.0361840Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:08:15.0362040Z 2025-03-14T05:08:15.0362602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:08:15.0363302Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:08:15.0363631Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:08:15.0363949Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:08:15.0364285Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:08:15.0364592Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:08:15.0364830Z 2025-03-14T05:08:15.0365263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:08:15.0365770Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:08:15.0366003Z 2025-03-14T05:08:58.3807018Z E0314 05:08:58.379602 61109 site-packages/torch/_dynamo/utils.py:2789] Accuracy failed: uint8 tensor did not match 2025-03-14T05:08:58.3810515Z E0314 05:08:58.380072 61109 site-packages/torch/_dynamo/utils.py:2752] Accuracy failed for key name pred_masks 2025-03-14T05:08:58.3813527Z E0314 05:08:58.380577 61109 site-packages/torch/_dynamo/utils.py:2752] Accuracy failed for key name instances 2025-03-14T05:08:58.4740761Z Compilation time (from dynamo_timed): 62.065702157 2025-03-14T05:08:58.4746527Z fail_accuracy 2025-03-14T05:08:58.4747130Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:08:58.4748236Z TIMING: entire_frame_compile:62.0657 gc:0.04684 _recursive_pre_grad_passes:0.03885 async_compile.wait:22.26888 backend_compile:43.08486 _recursive_joint_graph_passes:0.23827 inductor_compile:28.41757 _recursive_post_grad_passes:0.09874 code_gen:25.59921 total_wall_time:62.0657 2025-03-14T05:08:58.4749950Z STATS: call_* op count: 936 | FakeTensorMode.__torch_dispatch__:22007 | FakeTensor.__torch_dispatch__:1491 | ProxyTorchDispatchMode.__torch_dispatch__:4733 | attempt fast:415 | slow no contiguity match:46 | fast is_contiguous:359 | slow both tensors nontrivially broadcast:10 2025-03-14T05:08:58.4750756Z Dynamo produced 67 graphs covering 936 ops with 56 graph breaks (8 unique) 2025-03-14T05:09:04.6367960Z 2025-03-14T05:09:14.5160548Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:09:14.5162827Z loading model: 0it [00:09, ?it/s] 2025-03-14T05:09:14.5175460Z cpu eval detectron2_maskrcnn_r_101_fpn 2025-03-14T05:09:30.0859519Z WARNING:common:fp64 golden ref were not generated for detectron2_maskrcnn_r_101_fpn. Setting accuracy check to cosine 2025-03-14T05:09:30.1029875Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:09:38.9366359Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:09:48.0355825Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:10:00.4705010Z 2025-03-14T05:10:00.4705570Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:00.4854609Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:10:00.4974056Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:10:00.4974575Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.4975358Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.4976175Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.4977121Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.4977891Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.4978682Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.4979520Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.4980563Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.4981647Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.4982613Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.4983543Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.4984610Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.4985770Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.4986741Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.4987685Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.4988590Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.4989523Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.4990525Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.4991482Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.4992360Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.4993282Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.4994250Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.4995224Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.4996102Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.4996960Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.4997761Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.4999273Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5000153Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5001012Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5001899Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5002703Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5003542Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5004428Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5005725Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5006565Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5007364Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5008162Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5009400Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5010260Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5011061Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5011832Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5012631Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5013475Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5014304Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5015105Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5015916Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5016711Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5017552Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5018375Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5019179Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5019945Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5020742Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5021579Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5022442Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5023812Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5024684Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5025507Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5026372Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5027224Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5028049Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5028829Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5029634Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5030537Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5031389Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5032533Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5033307Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5034115Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5034962Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5035788Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5037248Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5038065Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.5038916Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5039792Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5040643Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5041468Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5042238Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5043027Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5043867Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5044716Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5045507Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5046266Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5047049Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5047887Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5048705Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5049557Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5050329Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5051155Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5052009Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5052853Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5053649Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5054413Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5055200Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5056046Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5056880Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5057672Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5058461Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5060182Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5061045Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5061874Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5062674Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5063453Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5064332Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5065252Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5066137Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5067000Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5067808Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5068696Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5069593Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5070461Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5071295Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5072094Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5072926Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5073852Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5074714Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5075550Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5076334Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5077119Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5077956Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5078767Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5079569Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5080323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5081127Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5082100Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5082946Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5083765Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5084526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5085325Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5086167Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5087091Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5087884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5088664Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5092612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5093549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5094411Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5095235Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5096037Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.5096980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5097936Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5098813Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5099659Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5100457Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5101279Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5102153Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5102997Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5103818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5104713Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5105536Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5108575Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5109460Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5110279Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5111060Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5111865Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5112739Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5113629Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5114441Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5115205Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5116000Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5116847Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5117665Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5118459Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5119220Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5120050Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5120901Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5121726Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5122530Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5123298Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5124551Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5125409Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5126236Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5127064Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5127831Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5128642Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5129482Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5130297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5131087Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5131848Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5132635Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5133477Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5134327Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5135122Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5135881Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5136675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5137530Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5138355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5139145Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5139910Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5140720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5141588Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5142405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5143198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5143961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5144839Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5145700Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5146543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5148170Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5148957Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5149779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5150651Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5151498Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5152319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5153102Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5153910Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5155225Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5156086Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5156930Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5157712Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5158529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5159394Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5160232Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5161042Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5161829Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5162657Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5163498Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5164321Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5165114Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5165876Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5166673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5167517Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5168336Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5169604Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5170403Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5171195Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5172040Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5172863Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5173663Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5174873Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5175673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5176519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5177380Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5178179Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5178938Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5179727Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5180571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5181393Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5182423Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5183210Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5184072Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5185036Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5185886Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5186704Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5187489Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5188301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5189165Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5190002Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5190882Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5191676Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5192481Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5193340Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5194180Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5194995Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5195773Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5196585Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5197472Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5198301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5199117Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5199881Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5200675Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5201521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5202342Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5203136Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5203894Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5204722Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5205575Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5206400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5207201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5208756Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5209582Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5210445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5211269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5212097Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5212881Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5213668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5214501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5215322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5216116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5216873Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5217672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5218521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5219379Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5220184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5220949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5221750Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5222596Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5223421Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5224296Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5225131Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5225966Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5226858Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5227721Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5228548Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5229334Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5230989Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5231868Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5232720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5233603Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5234398Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5235223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5236113Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5236961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5237786Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5238567Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5239379Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5240273Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5241130Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5241925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5242686Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5243487Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5244329Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5245165Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5245965Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5246729Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5247594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5248445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5249535Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5250345Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5251108Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5251909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5252757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5253607Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5254405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5255194Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5256358Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5257240Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5258079Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5258894Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5259666Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5260472Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5261378Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5262227Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5263026Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5263783Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5264699Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5265589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5266437Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5267255Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5268075Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5268922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5269804Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5270661Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5271499Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5272293Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5273120Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5273993Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5276397Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5277245Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5278034Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5278853Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5279725Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5280559Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5281371Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5282311Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5283172Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5284021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5284871Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5285667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5286434Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5287236Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5288086Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5288907Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5289701Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5290513Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5291306Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5292158Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5292990Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5293790Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5294554Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5295341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5296182Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5297016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5297836Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5298595Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5299382Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5301299Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5302164Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5302996Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5303797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5304738Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5305674Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5306527Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5307345Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5308125Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5309388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5310269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5311116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5311975Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5312757Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5313589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5314453Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5315301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5316124Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5316914Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5317715Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5318565Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5319414Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5320213Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5320985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5321783Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5322630Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5323449Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5324243Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5325003Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5325817Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5326680Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5327510Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5328312Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5329073Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5329861Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5330705Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5331518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5332344Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5333108Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5333900Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5334741Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5335568Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5336360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5337115Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5337905Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5339433Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5340278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5341108Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5341890Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5342708Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5343574Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5344493Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5345324Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5346116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5347045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5347919Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5348768Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5349574Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5350362Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5351176Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5352045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5352883Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5353721Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5354516Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5355329Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5356191Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5357037Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5357833Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5358592Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5359376Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5360251Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5361077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5361873Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5362645Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5363437Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5364280Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5365754Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5366585Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5367393Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5368213Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5369096Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5369934Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5370726Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5371489Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5372282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5373128Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5373985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5374839Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5375680Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5376830Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5377983Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5379184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5380384Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5381706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5382997Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5384410Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5385427Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5386498Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5387294Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5388203Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5389179Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5390131Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5390943Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5391798Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5392636Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5393587Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5394429Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5395343Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5396372Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5397430Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5398292Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5399148Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5400056Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5400873Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.5401719Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5402609Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5403483Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5404329Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5405120Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5405931Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5406830Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5407673Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5408533Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5409331Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5411914Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5412820Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5413669Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5414488Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5415505Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5416353Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5417215Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5418439Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5419325Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5420113Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.5420971Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5422209Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5423289Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5424431Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5425659Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.5426522Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5427694Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5428972Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5430023Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5431106Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.5432044Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.5433297Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.5434449Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.5435446Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.5436276Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:10:00.5436882Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:10:00.5437508Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:10:00.5438120Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:10:00.5438633Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:10:00.5439309Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:10:00.5439983Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:10:00.5442171Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:10:00.5442872Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:10:00.5443517Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:10:00.5444045Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:10:00.5444536Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:10:00.5445032Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:10:00.5445527Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:10:00.5446029Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:10:00.5446529Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:10:00.5447158Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:10:00.5447921Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:10:00.5448679Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:10:00.5449876Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:10:00.5450638Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:10:00.5451387Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:10:00.5452077Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:10:00.5452822Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:10:00.5453606Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:10:00.5454374Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:10:00.5455123Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:10:00.5455598Z 2025-03-14T05:10:00.5456003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5456884Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5457573Z 2025-03-14T05:10:00.5457952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5460843Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5463129Z 2025-03-14T05:10:00.5463577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:10:00.5464164Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:10:00.5464542Z 2025-03-14T05:10:00.5465057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:10:00.5465814Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:10:00.5466194Z 2025-03-14T05:10:00.5466569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5467447Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5468083Z 2025-03-14T05:10:00.5468462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5470698Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5472726Z 2025-03-14T05:10:00.5473130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5473650Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:10:00.5473962Z 2025-03-14T05:10:00.5474310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5475123Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5475733Z 2025-03-14T05:10:00.5476088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5478218Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5480108Z 2025-03-14T05:10:00.5480483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5480966Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:10:00.5481259Z 2025-03-14T05:10:00.5481749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5482573Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5483191Z 2025-03-14T05:10:00.5483552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5485656Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5490482Z 2025-03-14T05:10:00.5491082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5491938Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.5492571Z 2025-03-14T05:10:00.5492939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5498680Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5500840Z 2025-03-14T05:10:00.5501309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5501815Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:10:00.5502090Z 2025-03-14T05:10:00.5502499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5503749Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:10:00.5504038Z 2025-03-14T05:10:00.5504455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5505275Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5505932Z 2025-03-14T05:10:00.5506291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5510204Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5520093Z 2025-03-14T05:10:00.5520699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5521398Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:10:00.5521670Z 2025-03-14T05:10:00.5522187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5523162Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5523792Z 2025-03-14T05:10:00.5524149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5526220Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5528173Z 2025-03-14T05:10:00.5528555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5529048Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:10:00.5529318Z 2025-03-14T05:10:00.5529663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5530497Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5531117Z 2025-03-14T05:10:00.5531477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5533677Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5535585Z 2025-03-14T05:10:00.5535955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5536448Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:10:00.5536722Z 2025-03-14T05:10:00.5537093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5537590Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:10:00.5537863Z 2025-03-14T05:10:00.5538487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5539327Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5539940Z 2025-03-14T05:10:00.5540299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5542928Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5544961Z 2025-03-14T05:10:00.5545369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5545899Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:10:00.5546170Z 2025-03-14T05:10:00.5546517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5547331Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5547942Z 2025-03-14T05:10:00.5548299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5550443Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5552291Z 2025-03-14T05:10:00.5552657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5553133Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:10:00.5553396Z 2025-03-14T05:10:00.5553726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5554520Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5555165Z 2025-03-14T05:10:00.5555525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5557576Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5559453Z 2025-03-14T05:10:00.5559820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5560297Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:10:00.5560556Z 2025-03-14T05:10:00.5560919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5561404Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:10:00.5561670Z 2025-03-14T05:10:00.5562005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5562814Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5563407Z 2025-03-14T05:10:00.5563752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5566219Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5568109Z 2025-03-14T05:10:00.5568493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5568985Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:10:00.5569283Z 2025-03-14T05:10:00.5569620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5570418Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5571036Z 2025-03-14T05:10:00.5571382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5573427Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5575263Z 2025-03-14T05:10:00.5575631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5576111Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:10:00.5576372Z 2025-03-14T05:10:00.5576701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5577568Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5578596Z 2025-03-14T05:10:00.5578991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5581786Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5583709Z 2025-03-14T05:10:00.5584068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5585089Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.5585782Z 2025-03-14T05:10:00.5586141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5588309Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5590414Z 2025-03-14T05:10:00.5590784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5591275Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:10:00.5591545Z 2025-03-14T05:10:00.5591914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5592461Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:10:00.5592739Z 2025-03-14T05:10:00.5593086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5593900Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5594511Z 2025-03-14T05:10:00.5594868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5596986Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5598900Z 2025-03-14T05:10:00.5599279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5599772Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:10:00.5600058Z 2025-03-14T05:10:00.5600399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5601206Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5601814Z 2025-03-14T05:10:00.5602167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5604759Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5606665Z 2025-03-14T05:10:00.5607108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5607603Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:10:00.5607874Z 2025-03-14T05:10:00.5608215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5609073Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5609699Z 2025-03-14T05:10:00.5610051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5612157Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5614127Z 2025-03-14T05:10:00.5614540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5615024Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:10:00.5615300Z 2025-03-14T05:10:00.5615661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5616153Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:10:00.5616425Z 2025-03-14T05:10:00.5616759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5619254Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5619905Z 2025-03-14T05:10:00.5620252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5622419Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5624416Z 2025-03-14T05:10:00.5626457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5627012Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:10:00.5627289Z 2025-03-14T05:10:00.5627637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5628451Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5629065Z 2025-03-14T05:10:00.5629422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5631522Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5633539Z 2025-03-14T05:10:00.5633924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5634436Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:10:00.5634710Z 2025-03-14T05:10:00.5635061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5635900Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5636529Z 2025-03-14T05:10:00.5636891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5639111Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5641039Z 2025-03-14T05:10:00.5641426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5641906Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:10:00.5642180Z 2025-03-14T05:10:00.5642547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5643027Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:10:00.5643293Z 2025-03-14T05:10:00.5643622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5644393Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5645002Z 2025-03-14T05:10:00.5645347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5647421Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5649296Z 2025-03-14T05:10:00.5649661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5650168Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:10:00.5650433Z 2025-03-14T05:10:00.5650773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5651607Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5652202Z 2025-03-14T05:10:00.5652587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5654643Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5656472Z 2025-03-14T05:10:00.5656839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5657327Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:10:00.5657594Z 2025-03-14T05:10:00.5657934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5658842Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5659485Z 2025-03-14T05:10:00.5659842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5661964Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5663841Z 2025-03-14T05:10:00.5664300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5664832Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:10:00.5665121Z 2025-03-14T05:10:00.5665508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5666002Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:10:00.5666279Z 2025-03-14T05:10:00.5666689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5667493Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5668094Z 2025-03-14T05:10:00.5668451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5670545Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5672431Z 2025-03-14T05:10:00.5672797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5673280Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:10:00.5673560Z 2025-03-14T05:10:00.5673899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5674687Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5675287Z 2025-03-14T05:10:00.5675622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5677656Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5679468Z 2025-03-14T05:10:00.5679862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5680330Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:10:00.5680581Z 2025-03-14T05:10:00.5680911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5681865Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5682468Z 2025-03-14T05:10:00.5682815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5684868Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5688771Z 2025-03-14T05:10:00.5689186Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5690055Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.5690677Z 2025-03-14T05:10:00.5691037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5693190Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5695369Z 2025-03-14T05:10:00.5695746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5696290Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:10:00.5696559Z 2025-03-14T05:10:00.5696931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5697417Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:10:00.5697676Z 2025-03-14T05:10:00.5698057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5698876Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5699476Z 2025-03-14T05:10:00.5699831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5701920Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5703841Z 2025-03-14T05:10:00.5704356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5704907Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:10:00.5705202Z 2025-03-14T05:10:00.5705564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5706385Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5706999Z 2025-03-14T05:10:00.5707358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5709477Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5711333Z 2025-03-14T05:10:00.5711714Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5712200Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:10:00.5712454Z 2025-03-14T05:10:00.5712784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5713566Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5714153Z 2025-03-14T05:10:00.5714497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5716563Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5718440Z 2025-03-14T05:10:00.5719573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5720113Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:10:00.5720381Z 2025-03-14T05:10:00.5720755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5721230Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:10:00.5721491Z 2025-03-14T05:10:00.5721826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5722601Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5723191Z 2025-03-14T05:10:00.5723536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5725667Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5727477Z 2025-03-14T05:10:00.5727847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5728315Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:10:00.5728567Z 2025-03-14T05:10:00.5728900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5732476Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5733262Z 2025-03-14T05:10:00.5733616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5737714Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5739763Z 2025-03-14T05:10:00.5740181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5740677Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:10:00.5740946Z 2025-03-14T05:10:00.5741301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5742116Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5742729Z 2025-03-14T05:10:00.5743096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5745328Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5747224Z 2025-03-14T05:10:00.5747611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5748114Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:10:00.5748384Z 2025-03-14T05:10:00.5748764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5749255Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:10:00.5749511Z 2025-03-14T05:10:00.5749856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5750686Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5751297Z 2025-03-14T05:10:00.5751651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5753736Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5755540Z 2025-03-14T05:10:00.5755902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5756367Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:10:00.5756618Z 2025-03-14T05:10:00.5756948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5757751Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5758346Z 2025-03-14T05:10:00.5758690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5760714Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5762546Z 2025-03-14T05:10:00.5762912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5763380Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:10:00.5763649Z 2025-03-14T05:10:00.5763982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5764765Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5765366Z 2025-03-14T05:10:00.5765711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5767744Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5769558Z 2025-03-14T05:10:00.5769916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5770389Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:10:00.5770646Z 2025-03-14T05:10:00.5771038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5771507Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:10:00.5771759Z 2025-03-14T05:10:00.5772084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5772844Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5773422Z 2025-03-14T05:10:00.5773761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5775780Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5777631Z 2025-03-14T05:10:00.5778002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5778482Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:10:00.5778735Z 2025-03-14T05:10:00.5779066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5779839Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5780423Z 2025-03-14T05:10:00.5780769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5783119Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5785094Z 2025-03-14T05:10:00.5785496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5786020Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:10:00.5786293Z 2025-03-14T05:10:00.5786640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5787444Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5788052Z 2025-03-14T05:10:00.5788407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5790505Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5792430Z 2025-03-14T05:10:00.5792796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5793283Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:10:00.5793547Z 2025-03-14T05:10:00.5793920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5794404Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:10:00.5794668Z 2025-03-14T05:10:00.5795003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5795789Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5796390Z 2025-03-14T05:10:00.5796742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5798890Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5800708Z 2025-03-14T05:10:00.5801068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5801533Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:10:00.5801787Z 2025-03-14T05:10:00.5802120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5802899Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5803499Z 2025-03-14T05:10:00.5803840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5805887Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5807734Z 2025-03-14T05:10:00.5808098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5808563Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:10:00.5808818Z 2025-03-14T05:10:00.5809155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5809928Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5810521Z 2025-03-14T05:10:00.5810870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5812932Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5814763Z 2025-03-14T05:10:00.5815123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5815594Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:10:00.5815855Z 2025-03-14T05:10:00.5816216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5816687Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:10:00.5816942Z 2025-03-14T05:10:00.5817262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5818037Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5818631Z 2025-03-14T05:10:00.5818976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5830209Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5832135Z 2025-03-14T05:10:00.5832525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5833008Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:10:00.5833275Z 2025-03-14T05:10:00.5833622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5834577Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5835203Z 2025-03-14T05:10:00.5835560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5837655Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5839527Z 2025-03-14T05:10:00.5839894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5840355Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:10:00.5840605Z 2025-03-14T05:10:00.5840929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5841731Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5842328Z 2025-03-14T05:10:00.5842673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5844713Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5846558Z 2025-03-14T05:10:00.5846920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5847399Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T05:10:00.5847664Z 2025-03-14T05:10:00.5848023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5848526Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:10:00.5848791Z 2025-03-14T05:10:00.5849128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5849898Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5850473Z 2025-03-14T05:10:00.5850822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5852856Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5854707Z 2025-03-14T05:10:00.5855074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5855549Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T05:10:00.5855816Z 2025-03-14T05:10:00.5856145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5856924Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5857512Z 2025-03-14T05:10:00.5857860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5860006Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5861876Z 2025-03-14T05:10:00.5862284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5862760Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:10:00.5863020Z 2025-03-14T05:10:00.5863353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5864202Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5864821Z 2025-03-14T05:10:00.5865177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5867289Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5869169Z 2025-03-14T05:10:00.5869543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5870418Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T05:10:00.5870483Z 2025-03-14T05:10:00.5870775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5870915Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:10:00.5870987Z 2025-03-14T05:10:00.5871238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5871725Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5871793Z 2025-03-14T05:10:00.5872067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5873853Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5873930Z 2025-03-14T05:10:00.5874227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5874368Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T05:10:00.5874441Z 2025-03-14T05:10:00.5874691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5875184Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5875252Z 2025-03-14T05:10:00.5875521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5877270Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5877367Z 2025-03-14T05:10:00.5877653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5877790Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:10:00.5877859Z 2025-03-14T05:10:00.5878107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5878585Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5878651Z 2025-03-14T05:10:00.5878915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5880670Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5880738Z 2025-03-14T05:10:00.5881018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5881168Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T05:10:00.5881242Z 2025-03-14T05:10:00.5881662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5881819Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:10:00.5881884Z 2025-03-14T05:10:00.5882138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5882618Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5882741Z 2025-03-14T05:10:00.5883007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5884742Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5884840Z 2025-03-14T05:10:00.5885123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5885258Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T05:10:00.5885329Z 2025-03-14T05:10:00.5885570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5886046Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5886114Z 2025-03-14T05:10:00.5886430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5888147Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5888222Z 2025-03-14T05:10:00.5888510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5888642Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T05:10:00.5888714Z 2025-03-14T05:10:00.5888958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5889440Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5889522Z 2025-03-14T05:10:00.5889805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5891533Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5891599Z 2025-03-14T05:10:00.5891879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5892025Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T05:10:00.5892094Z 2025-03-14T05:10:00.5892371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5892520Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T05:10:00.5892582Z 2025-03-14T05:10:00.5892858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5893333Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5893406Z 2025-03-14T05:10:00.5893662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5895413Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5895502Z 2025-03-14T05:10:00.5895782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5895924Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T05:10:00.5895993Z 2025-03-14T05:10:00.5896265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5896749Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5896812Z 2025-03-14T05:10:00.5897074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5898802Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5898877Z 2025-03-14T05:10:00.5899161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5899321Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T05:10:00.5899396Z 2025-03-14T05:10:00.5899645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5900141Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5900208Z 2025-03-14T05:10:00.5900481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5902267Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5902356Z 2025-03-14T05:10:00.5902642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5902813Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T05:10:00.5902885Z 2025-03-14T05:10:00.5903164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5903321Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T05:10:00.5905341Z 2025-03-14T05:10:00.5905705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5906215Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5906294Z 2025-03-14T05:10:00.5906558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5908407Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5908486Z 2025-03-14T05:10:00.5908770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5908918Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T05:10:00.5908983Z 2025-03-14T05:10:00.5909245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5909740Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5909817Z 2025-03-14T05:10:00.5910079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5911876Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5911987Z 2025-03-14T05:10:00.5912269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5912412Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T05:10:00.5912479Z 2025-03-14T05:10:00.5912735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5913228Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5913295Z 2025-03-14T05:10:00.5913565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5915381Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5915461Z 2025-03-14T05:10:00.5915752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5915902Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T05:10:00.5915976Z 2025-03-14T05:10:00.5916262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5916409Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T05:10:00.5916474Z 2025-03-14T05:10:00.5916729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5917212Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5917337Z 2025-03-14T05:10:00.5917598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5919359Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5919451Z 2025-03-14T05:10:00.5919729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5919890Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T05:10:00.5919952Z 2025-03-14T05:10:00.5920199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5921353Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5921448Z 2025-03-14T05:10:00.5921770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5923514Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5923591Z 2025-03-14T05:10:00.5923875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5924016Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T05:10:00.5924080Z 2025-03-14T05:10:00.5924331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5924811Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5924899Z 2025-03-14T05:10:00.5925157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5926905Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5926978Z 2025-03-14T05:10:00.5927252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5927408Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T05:10:00.5927471Z 2025-03-14T05:10:00.5927757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5927904Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T05:10:00.5927967Z 2025-03-14T05:10:00.5928247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5928715Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5928790Z 2025-03-14T05:10:00.5929048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5932969Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5933077Z 2025-03-14T05:10:00.5933432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5933581Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T05:10:00.5933647Z 2025-03-14T05:10:00.5933921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5934396Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5934468Z 2025-03-14T05:10:00.5934723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5936462Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5936538Z 2025-03-14T05:10:00.5936816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5936989Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T05:10:00.5937053Z 2025-03-14T05:10:00.5937302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5937770Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5937840Z 2025-03-14T05:10:00.5938157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5939925Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5940013Z 2025-03-14T05:10:00.5940288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5940456Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T05:10:00.5940520Z 2025-03-14T05:10:00.5940804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5940942Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T05:10:00.5941014Z 2025-03-14T05:10:00.5941256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5941739Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5941810Z 2025-03-14T05:10:00.5942067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5943833Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5943912Z 2025-03-14T05:10:00.5944251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5944404Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T05:10:00.5944469Z 2025-03-14T05:10:00.5944732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5945225Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5945300Z 2025-03-14T05:10:00.5945564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5947366Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5947481Z 2025-03-14T05:10:00.5947765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5947910Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T05:10:00.5947976Z 2025-03-14T05:10:00.5948236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5948729Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5948804Z 2025-03-14T05:10:00.5949067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5950885Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5950962Z 2025-03-14T05:10:00.5951243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5951400Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T05:10:00.5951465Z 2025-03-14T05:10:00.5951756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5951896Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T05:10:00.5951969Z 2025-03-14T05:10:00.5952215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5952702Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5952783Z 2025-03-14T05:10:00.5953055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5954840Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5954919Z 2025-03-14T05:10:00.5955218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5955358Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T05:10:00.5955431Z 2025-03-14T05:10:00.5955680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5956173Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5956249Z 2025-03-14T05:10:00.5956550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5958340Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5958418Z 2025-03-14T05:10:00.5958696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5958835Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T05:10:00.5958898Z 2025-03-14T05:10:00.5959148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5959622Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5959710Z 2025-03-14T05:10:00.5959967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5961718Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5961792Z 2025-03-14T05:10:00.5962062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5962213Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T05:10:00.5962276Z 2025-03-14T05:10:00.5962554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5962692Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T05:10:00.5962762Z 2025-03-14T05:10:00.5963029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5963500Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5963564Z 2025-03-14T05:10:00.5963825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5965546Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5965611Z 2025-03-14T05:10:00.5965891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5966039Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T05:10:00.5966109Z 2025-03-14T05:10:00.5966354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5966845Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5966910Z 2025-03-14T05:10:00.5967169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5968913Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5968979Z 2025-03-14T05:10:00.5969261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5969426Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T05:10:00.5969498Z 2025-03-14T05:10:00.5969740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5970218Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5970288Z 2025-03-14T05:10:00.5970543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5972261Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5972351Z 2025-03-14T05:10:00.5972630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5972796Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T05:10:00.5972860Z 2025-03-14T05:10:00.5973140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5973276Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T05:10:00.5973346Z 2025-03-14T05:10:00.5973586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5974060Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5974123Z 2025-03-14T05:10:00.5974386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5976141Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5976218Z 2025-03-14T05:10:00.5976505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5976639Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T05:10:00.5976709Z 2025-03-14T05:10:00.5976949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5977434Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5977499Z 2025-03-14T05:10:00.5977762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5979501Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5979594Z 2025-03-14T05:10:00.5979883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5980016Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T05:10:00.5980088Z 2025-03-14T05:10:00.5980332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5980819Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5980884Z 2025-03-14T05:10:00.5981150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5983187Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5983267Z 2025-03-14T05:10:00.5983558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5983708Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T05:10:00.5983784Z 2025-03-14T05:10:00.5984065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5984267Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T05:10:00.5984345Z 2025-03-14T05:10:00.5984596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5985093Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5985189Z 2025-03-14T05:10:00.5985462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5987240Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5987339Z 2025-03-14T05:10:00.5987635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5987785Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T05:10:00.5987859Z 2025-03-14T05:10:00.5988108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5988615Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5988681Z 2025-03-14T05:10:00.5988986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5990772Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5990841Z 2025-03-14T05:10:00.5991134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5991279Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T05:10:00.5991350Z 2025-03-14T05:10:00.5991600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5992104Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.5992185Z 2025-03-14T05:10:00.5992457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5994247Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5994314Z 2025-03-14T05:10:00.5994601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.5994753Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T05:10:00.5994828Z 2025-03-14T05:10:00.5995110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5995267Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T05:10:00.5995331Z 2025-03-14T05:10:00.5995617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5996096Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.5996168Z 2025-03-14T05:10:00.5996434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.5998211Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.5998284Z 2025-03-14T05:10:00.5998570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.5998724Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T05:10:00.5998795Z 2025-03-14T05:10:00.5999044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.5999556Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.5999620Z 2025-03-14T05:10:00.5999886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6001646Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6001721Z 2025-03-14T05:10:00.6002009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6002179Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T05:10:00.6002253Z 2025-03-14T05:10:00.6002501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6003000Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6003065Z 2025-03-14T05:10:00.6003334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6005120Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6005203Z 2025-03-14T05:10:00.6005497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6005683Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T05:10:00.6005757Z 2025-03-14T05:10:00.6006038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6006193Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T05:10:00.6006258Z 2025-03-14T05:10:00.6006511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6006997Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6007073Z 2025-03-14T05:10:00.6007333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6009143Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6009221Z 2025-03-14T05:10:00.6009506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6009651Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T05:10:00.6009716Z 2025-03-14T05:10:00.6009976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6011698Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6011797Z 2025-03-14T05:10:00.6012086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6013908Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6014045Z 2025-03-14T05:10:00.6014344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6014483Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T05:10:00.6014557Z 2025-03-14T05:10:00.6014808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6015320Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6015388Z 2025-03-14T05:10:00.6015667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6017527Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6017607Z 2025-03-14T05:10:00.6017902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6018131Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T05:10:00.6018212Z 2025-03-14T05:10:00.6018508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6018666Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T05:10:00.6018733Z 2025-03-14T05:10:00.6018995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6019491Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6019586Z 2025-03-14T05:10:00.6019858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6022608Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6022739Z 2025-03-14T05:10:00.6023967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6024296Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T05:10:00.6024372Z 2025-03-14T05:10:00.6024675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6025203Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6025292Z 2025-03-14T05:10:00.6025654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6027511Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6027589Z 2025-03-14T05:10:00.6027875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6028021Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T05:10:00.6028087Z 2025-03-14T05:10:00.6028343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6028850Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6028932Z 2025-03-14T05:10:00.6029202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6030997Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6031074Z 2025-03-14T05:10:00.6031359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6031515Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T05:10:00.6031587Z 2025-03-14T05:10:00.6031866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6032017Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T05:10:00.6032082Z 2025-03-14T05:10:00.6032372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6032895Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6032972Z 2025-03-14T05:10:00.6033233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6035007Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6035082Z 2025-03-14T05:10:00.6035398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6035543Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T05:10:00.6035609Z 2025-03-14T05:10:00.6035863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6036357Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6036432Z 2025-03-14T05:10:00.6036691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6038467Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6038544Z 2025-03-14T05:10:00.6038823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6038996Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T05:10:00.6039065Z 2025-03-14T05:10:00.6039320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6039804Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6039878Z 2025-03-14T05:10:00.6040139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6041935Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6042025Z 2025-03-14T05:10:00.6042314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6042497Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T05:10:00.6042562Z 2025-03-14T05:10:00.6042846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6042999Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T05:10:00.6043063Z 2025-03-14T05:10:00.6043316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6043794Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6043866Z 2025-03-14T05:10:00.6044119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6045951Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6046026Z 2025-03-14T05:10:00.6046311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6046455Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T05:10:00.6046518Z 2025-03-14T05:10:00.6046777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6047262Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6047335Z 2025-03-14T05:10:00.6047600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6049362Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6049465Z 2025-03-14T05:10:00.6049747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6049890Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T05:10:00.6049955Z 2025-03-14T05:10:00.6050210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6050697Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6050771Z 2025-03-14T05:10:00.6051035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6052808Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6052886Z 2025-03-14T05:10:00.6053130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6053610Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.6053677Z 2025-03-14T05:10:00.6053940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6055733Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6055836Z 2025-03-14T05:10:00.6056118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6056265Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T05:10:00.6056338Z 2025-03-14T05:10:00.6056612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6056760Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T05:10:00.6056831Z 2025-03-14T05:10:00.6057075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6057545Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6057609Z 2025-03-14T05:10:00.6057872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6059699Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6059775Z 2025-03-14T05:10:00.6060066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6060200Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T05:10:00.6060272Z 2025-03-14T05:10:00.6060520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6061008Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6061073Z 2025-03-14T05:10:00.6061340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6063114Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6063198Z 2025-03-14T05:10:00.6063486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6063622Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T05:10:00.6063695Z 2025-03-14T05:10:00.6063953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6064565Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6064645Z 2025-03-14T05:10:00.6064928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6066763Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6066833Z 2025-03-14T05:10:00.6067122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6067280Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T05:10:00.6067358Z 2025-03-14T05:10:00.6067638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6067791Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T05:10:00.6067856Z 2025-03-14T05:10:00.6068114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6068603Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6068695Z 2025-03-14T05:10:00.6068984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6070775Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6070851Z 2025-03-14T05:10:00.6071134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6071276Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T05:10:00.6071352Z 2025-03-14T05:10:00.6071599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6072118Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6072186Z 2025-03-14T05:10:00.6072456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6074214Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6074290Z 2025-03-14T05:10:00.6074581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6074713Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T05:10:00.6074804Z 2025-03-14T05:10:00.6075050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6075567Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6075655Z 2025-03-14T05:10:00.6075940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6090287Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6090542Z 2025-03-14T05:10:00.6090927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6091123Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T05:10:00.6091198Z 2025-03-14T05:10:00.6091766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6091978Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T05:10:00.6092065Z 2025-03-14T05:10:00.6092366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6093075Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:10:00.6093164Z 2025-03-14T05:10:00.6093445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6094028Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:10:00.6094100Z 2025-03-14T05:10:00.6094544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.6094831Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T05:10:00.6094955Z 2025-03-14T05:10:00.6095220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6095844Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:10:00.6095913Z 2025-03-14T05:10:00.6096409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.6096695Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T05:10:00.6096821Z 2025-03-14T05:10:00.6097203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6097982Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:10:00.6098105Z 2025-03-14T05:10:00.6098646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.6099000Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:10:00.6099072Z 2025-03-14T05:10:00.6099421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6100020Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:10:00.6100101Z 2025-03-14T05:10:00.6100459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.6100689Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T05:10:00.6100759Z 2025-03-14T05:10:00.6101031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6101633Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:10:00.6101702Z 2025-03-14T05:10:00.6102121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.6102485Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:10:00.6102562Z 2025-03-14T05:10:00.6102824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6103450Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:10:00.6103522Z 2025-03-14T05:10:00.6103889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.6104215Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T05:10:00.6104317Z 2025-03-14T05:10:00.6104586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6105226Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:10:00.6105307Z 2025-03-14T05:10:00.6105687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:10:00.6105917Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:10:00.6105988Z 2025-03-14T05:10:00.6133594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6133900Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:10:00.6133992Z 2025-03-14T05:10:00.6134331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6134491Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:10:00.6134571Z 2025-03-14T05:10:00.6135046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6135206Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:10:00.6135283Z 2025-03-14T05:10:00.6135583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6135740Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:10:00.6135811Z 2025-03-14T05:10:00.6136194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.6136413Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:10:00.6136524Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:10:00.6136653Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:10:00.6136726Z 2025-03-14T05:10:00.6137083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.6137225Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:10:00.6137292Z 2025-03-14T05:10:00.6137680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.6137813Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:10:00.6137896Z 2025-03-14T05:10:00.6138612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.6138896Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:10:00.6138974Z 2025-03-14T05:10:00.6139428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.6139570Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:10:00.6140242Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:10:00.6140408Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:10:00.6140571Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:10:00.6140653Z 2025-03-14T05:10:00.6141165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6141336Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:10:00.6141404Z 2025-03-14T05:10:00.6141717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6141862Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:10:00.6141938Z 2025-03-14T05:10:00.6142380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6142544Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:10:00.6142611Z 2025-03-14T05:10:00.6142920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6143066Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:10:00.6143141Z 2025-03-14T05:10:00.6143519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.6143755Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:10:00.6164859Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:10:00.6165192Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:10:00.6165377Z 2025-03-14T05:10:00.6165782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.6165924Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:10:00.6166001Z 2025-03-14T05:10:00.6166347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.6166485Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:10:00.6166555Z 2025-03-14T05:10:00.6166961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.6167186Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:10:00.6167262Z 2025-03-14T05:10:00.6167702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.6167839Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:10:00.6168274Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:10:00.6168407Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:10:00.6168583Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:10:00.6168651Z 2025-03-14T05:10:00.6169718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6169909Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:10:00.6169987Z 2025-03-14T05:10:00.6170306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6170463Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:10:00.6170529Z 2025-03-14T05:10:00.6170981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6171136Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:10:00.6171208Z 2025-03-14T05:10:00.6171507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6171654Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:10:00.6171719Z 2025-03-14T05:10:00.6172094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.6172321Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:10:00.6172431Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:10:00.6172559Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:10:00.6172663Z 2025-03-14T05:10:00.6172994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.6173130Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:10:00.6173197Z 2025-03-14T05:10:00.6173531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.6173657Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:10:00.6173733Z 2025-03-14T05:10:00.6174692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.6174920Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:10:00.6174987Z 2025-03-14T05:10:00.6175412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.6175549Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:10:00.6175967Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:10:00.6176102Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:10:00.6176260Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:10:00.6176335Z 2025-03-14T05:10:00.6176769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6176925Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:10:00.6176991Z 2025-03-14T05:10:00.6177289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6177431Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:10:00.6177505Z 2025-03-14T05:10:00.6177932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6178612Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:10:00.6178693Z 2025-03-14T05:10:00.6179017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6179159Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:10:00.6179246Z 2025-03-14T05:10:00.6179628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.6179853Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:10:00.6179968Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:10:00.6180106Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:10:00.6180178Z 2025-03-14T05:10:00.6180501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.6180631Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:10:00.6180695Z 2025-03-14T05:10:00.6181020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.6181143Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:10:00.6181218Z 2025-03-14T05:10:00.6181775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.6182004Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:10:00.6182069Z 2025-03-14T05:10:00.6182492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.6182622Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:10:00.6183051Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:10:00.6183287Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:10:00.6183409Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:10:00.6183482Z 2025-03-14T05:10:00.6183916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6184073Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:00.6184260Z 2025-03-14T05:10:00.6184577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6184721Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:10:00.6208643Z 2025-03-14T05:10:00.6209389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.6209584Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:00.6209656Z 2025-03-14T05:10:00.6209983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6210137Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:10:00.6210214Z 2025-03-14T05:10:00.6210760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.6210972Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:10:00.6211121Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:10:00.6211258Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:10:00.6211329Z 2025-03-14T05:10:00.6211670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.6211801Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:10:00.6211872Z 2025-03-14T05:10:00.6212200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.6212332Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:10:00.6212398Z 2025-03-14T05:10:00.6212791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.6213008Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:10:00.6213084Z 2025-03-14T05:10:00.6213508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.6213644Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:10:00.6214068Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:10:00.6214247Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:10:00.6214377Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:10:00.6214442Z 2025-03-14T05:10:00.6214756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:00.6214887Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T05:10:00.6215022Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T05:10:00.6215143Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T05:10:00.6215275Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T05:10:00.6215395Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T05:10:00.6215467Z 2025-03-14T05:10:00.6215737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6216255Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T05:10:00.6216325Z 2025-03-14T05:10:00.6216613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.6216831Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T05:10:00.6216905Z 2025-03-14T05:10:00.6217289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.6217833Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.6217900Z 2025-03-14T05:10:00.6218362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.6218889Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T05:10:00.6218967Z 2025-03-14T05:10:00.6219233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6219713Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T05:10:00.6219786Z 2025-03-14T05:10:00.6220071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.6220269Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T05:10:00.6220335Z 2025-03-14T05:10:00.6220775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.6221276Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.6221348Z 2025-03-14T05:10:00.6221691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.6222196Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T05:10:00.6222263Z 2025-03-14T05:10:00.6222514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6222982Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T05:10:00.6224601Z 2025-03-14T05:10:00.6224975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.6225246Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T05:10:00.6225320Z 2025-03-14T05:10:00.6225704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.6226234Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.6226301Z 2025-03-14T05:10:00.6226660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.6227158Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T05:10:00.6227236Z 2025-03-14T05:10:00.6227485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6227955Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T05:10:00.6228027Z 2025-03-14T05:10:00.6228297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.6228486Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T05:10:00.6228552Z 2025-03-14T05:10:00.6229002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.6229496Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.6229571Z 2025-03-14T05:10:00.6229921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.6230425Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T05:10:00.6230491Z 2025-03-14T05:10:00.6230749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6231501Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:10:00.6231593Z 2025-03-14T05:10:00.6231872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.6232051Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T05:10:00.6232139Z 2025-03-14T05:10:00.6232516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.6254064Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:10:00.6254177Z 2025-03-14T05:10:00.6254541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.6255362Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:10:00.6255438Z 2025-03-14T05:10:00.6255777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:10:00.6255954Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:10:00.6256139Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:10:00.6256317Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:10:00.6256465Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:10:00.6256628Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:10:00.6256770Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:10:00.6256922Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:10:00.6257073Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:10:00.6257230Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:10:00.6257388Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:10:00.6257457Z 2025-03-14T05:10:00.6257893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:10:00.6258358Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T05:10:00.6258592Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:10:00.6258815Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:10:00.6258991Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T05:10:00.6259172Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:10:00.6259369Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:10:00.6259524Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T05:10:00.6259698Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:10:00.6259871Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:10:00.6260014Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T05:10:00.6260181Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:10:00.6260350Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:10:00.6260496Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T05:10:00.6260650Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:10:00.6260817Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:10:00.6260883Z 2025-03-14T05:10:00.6261310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.6261517Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:10:00.6261587Z 2025-03-14T05:10:00.6262049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.6262216Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:10:00.6262367Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:10:00.6262513Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:10:00.6262577Z 2025-03-14T05:10:00.6262959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.6263129Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:10:00.6263207Z 2025-03-14T05:10:00.6263516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.6263669Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:10:00.6263736Z 2025-03-14T05:10:00.6264056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.6264282Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:00.6264449Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6264612Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:00.6264686Z 2025-03-14T05:10:00.6265025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.6265178Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:00.6265302Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:00.6265462Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:10:00.6265527Z 2025-03-14T05:10:00.6265844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.6265980Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6266072Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:10:00.6266210Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:10:00.6266275Z 2025-03-14T05:10:00.6266597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.6266748Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:00.6266846Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:10:00.6266974Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:10:00.6267045Z 2025-03-14T05:10:00.6267374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.6267538Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.6267654Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:10:00.6267724Z 2025-03-14T05:10:00.6268068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.6268233Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.6268347Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:10:00.6268420Z 2025-03-14T05:10:00.6268718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.6268875Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.6268989Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:10:00.6269061Z 2025-03-14T05:10:00.6269364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.6269555Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:00.6269667Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:10:00.6269737Z 2025-03-14T05:10:00.6270080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.6270233Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:00.6270315Z 2025-03-14T05:10:00.6270658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.6270801Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:00.6270900Z 2025-03-14T05:10:00.6271247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.6271396Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:00.6271523Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:10:00.6271682Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:00.6271824Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:10:00.6271900Z 2025-03-14T05:10:00.6272247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.6272400Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:00.6272524Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:10:00.6272683Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:00.6272823Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:10:00.6272896Z 2025-03-14T05:10:00.6273229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.6273359Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:00.6274219Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:00.6274803Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:10:00.6275809Z 2025-03-14T05:10:00.6277056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.6277543Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:00.6277815Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:00.6278691Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:10:00.6278798Z 2025-03-14T05:10:00.6279176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.6279284Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:00.6279424Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:00.6279496Z 2025-03-14T05:10:00.6279818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.6279913Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:00.6280039Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:00.6280105Z 2025-03-14T05:10:00.6280464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.6280625Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:00.6280767Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:00.6280833Z 2025-03-14T05:10:00.6281148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.6281281Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:00.6281415Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:00.6281643Z 2025-03-14T05:10:00.6282007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.6282195Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:00.6282273Z 2025-03-14T05:10:00.6282608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.6282783Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:10:00.6282851Z 2025-03-14T05:10:00.6283240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.6283416Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:10:00.6283494Z 2025-03-14T05:10:00.6283889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.6284111Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:10:00.6284176Z 2025-03-14T05:10:00.6284707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.6284869Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:10:00.6285030Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:10:00.6285182Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:10:00.6285248Z 2025-03-14T05:10:00.6285632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.6285807Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:10:00.6285883Z 2025-03-14T05:10:00.6286204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.6286367Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:10:00.6286433Z 2025-03-14T05:10:00.6286759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.6286896Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:10:00.6287059Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6287215Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:10:00.6287289Z 2025-03-14T05:10:00.6287607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.6287764Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:10:00.6287907Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:10:00.6288071Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:10:00.6288139Z 2025-03-14T05:10:00.6288454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.6288580Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6288688Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:10:00.6288824Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:10:00.6288900Z 2025-03-14T05:10:00.6290367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.6290563Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:10:00.6290663Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:10:00.6290800Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:10:00.6290867Z 2025-03-14T05:10:00.6291194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.6291356Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.6291479Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:10:00.6291593Z 2025-03-14T05:10:00.6291905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.6292060Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.6292182Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:10:00.6292249Z 2025-03-14T05:10:00.6292553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.6292704Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.6292822Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:10:00.6292887Z 2025-03-14T05:10:00.6293197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.6293384Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:10:00.6293507Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:10:00.6293570Z 2025-03-14T05:10:00.6293914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.6294057Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:10:00.6294146Z 2025-03-14T05:10:00.6294478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.6294630Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:10:00.6294712Z 2025-03-14T05:10:00.6295063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.6295205Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:10:00.6295346Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:10:00.6295504Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:10:00.6295662Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:10:00.6295728Z 2025-03-14T05:10:00.6296083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.6296226Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:10:00.6296358Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:10:00.6296515Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:10:00.6296670Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:10:00.6296735Z 2025-03-14T05:10:00.6297067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.6297187Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:10:00.6297416Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:10:00.6297556Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:10:00.6297630Z 2025-03-14T05:10:00.6297956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.6298139Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:10:00.6298317Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:10:00.6298458Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:10:00.6298527Z 2025-03-14T05:10:00.6298843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.6298949Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:10:00.6299084Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:10:00.6299148Z 2025-03-14T05:10:00.6299463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.6299561Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:10:00.6299687Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:10:00.6299751Z 2025-03-14T05:10:00.6300065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.6300228Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:10:00.6300382Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:10:00.6300471Z 2025-03-14T05:10:00.6300780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.6302162Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:10:00.6302396Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:10:00.6302481Z 2025-03-14T05:10:00.6302851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.6303066Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:10:00.6303133Z 2025-03-14T05:10:00.6303484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.6303656Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:10:00.6303731Z 2025-03-14T05:10:00.6304197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.6304396Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:10:00.6304473Z 2025-03-14T05:10:00.6304909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.6305186Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:10:00.6305260Z 2025-03-14T05:10:00.6305728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.6305893Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:10:00.6306064Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:10:00.6306209Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:10:00.6306288Z 2025-03-14T05:10:00.6306680Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.6306867Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:10:00.6306942Z 2025-03-14T05:10:00.6307280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.6307447Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:10:00.6307516Z 2025-03-14T05:10:00.6307853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.6308015Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:10:00.6308157Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6308317Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:10:00.6308400Z 2025-03-14T05:10:00.6308752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.6308891Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:10:00.6309018Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:10:00.6309186Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:10:00.6309255Z 2025-03-14T05:10:00.6309593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.6309722Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6309827Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:10:00.6309969Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:10:00.6310051Z 2025-03-14T05:10:00.6310381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.6310544Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:10:00.6310656Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:10:00.6310795Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:10:00.6310873Z 2025-03-14T05:10:00.6311231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.6311407Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.6311571Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:10:00.6312100Z 2025-03-14T05:10:00.6312881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.6314852Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.6314986Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:10:00.6315055Z 2025-03-14T05:10:00.6315381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.6315555Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.6315667Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:10:00.6315743Z 2025-03-14T05:10:00.6316040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.6316233Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:10:00.6316342Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:10:00.6316415Z 2025-03-14T05:10:00.6316743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.6316905Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:10:00.6316969Z 2025-03-14T05:10:00.6317303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.6317453Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:10:00.6317525Z 2025-03-14T05:10:00.6317855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.6317994Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:10:00.6318114Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:10:00.6318276Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:10:00.6318414Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:10:00.6318487Z 2025-03-14T05:10:00.6318820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.6318963Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:10:00.6319081Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:10:00.6319237Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:10:00.6319371Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:10:00.6319447Z 2025-03-14T05:10:00.6319768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.6319893Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:10:00.6320086Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:10:00.6320233Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:10:00.6320297Z 2025-03-14T05:10:00.6320622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.6320743Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:10:00.6320907Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:10:00.6321048Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:10:00.6321114Z 2025-03-14T05:10:00.6321428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.6321527Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:10:00.6321653Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:10:00.6321718Z 2025-03-14T05:10:00.6322025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.6322121Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:10:00.6322243Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:10:00.6322324Z 2025-03-14T05:10:00.6322630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.6322744Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:10:00.6322883Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:10:00.6322975Z 2025-03-14T05:10:00.6323280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.6323395Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:10:00.6323533Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:10:00.6323599Z 2025-03-14T05:10:00.6324725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.6325033Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:10:00.6325114Z 2025-03-14T05:10:00.6325463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.6325627Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:10:00.6325703Z 2025-03-14T05:10:00.6326080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.6326262Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:10:00.6326330Z 2025-03-14T05:10:00.6326728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.6326992Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:10:00.6327070Z 2025-03-14T05:10:00.6327497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.6327654Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:10:00.6327803Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:10:00.6327954Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:10:00.6328020Z 2025-03-14T05:10:00.6328394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.6328562Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:10:00.6328639Z 2025-03-14T05:10:00.6328942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.6329094Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:10:00.6329159Z 2025-03-14T05:10:00.6329470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.6329618Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:10:00.6329748Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6329897Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:10:00.6329992Z 2025-03-14T05:10:00.6330303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.6330435Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:10:00.6330554Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:10:00.6330712Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:10:00.6330780Z 2025-03-14T05:10:00.6331085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.6331215Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6331312Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:10:00.6331452Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:10:00.6331517Z 2025-03-14T05:10:00.6331827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.6331972Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:10:00.6332074Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:10:00.6332201Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:10:00.6332279Z 2025-03-14T05:10:00.6332584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.6332787Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.6332903Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:10:00.6332979Z 2025-03-14T05:10:00.6333280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.6333434Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.6333546Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:10:00.6333623Z 2025-03-14T05:10:00.6333920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.6334077Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.6334203Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:10:00.6334279Z 2025-03-14T05:10:00.6334570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.6334763Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:10:00.6334874Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:10:00.6334948Z 2025-03-14T05:10:00.6335278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.6335440Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:10:00.6335506Z 2025-03-14T05:10:00.6335851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.6336006Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:10:00.6336081Z 2025-03-14T05:10:00.6336423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.6336564Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:10:00.6336692Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:10:00.6336858Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:10:00.6336996Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:10:00.6337064Z 2025-03-14T05:10:00.6337419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.6337557Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:10:00.6337690Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:10:00.6337843Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:10:00.6338049Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:10:00.6338129Z 2025-03-14T05:10:00.6338478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.6338630Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:10:00.6338803Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:10:00.6338941Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:10:00.6339016Z 2025-03-14T05:10:00.6339344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.6339465Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:10:00.6339632Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:10:00.6339776Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:10:00.6339842Z 2025-03-14T05:10:00.6340160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.6340262Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:10:00.6340389Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:10:00.6340454Z 2025-03-14T05:10:00.6340765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.6340862Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:10:00.6340987Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:10:00.6341072Z 2025-03-14T05:10:00.6341377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.6341505Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:10:00.6341655Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:10:00.6341731Z 2025-03-14T05:10:00.6342034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.6342163Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:10:00.6342295Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:10:00.6342370Z 2025-03-14T05:10:00.6342718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.6342920Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:10:00.6342986Z 2025-03-14T05:10:00.6343328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.6343495Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:10:00.6343571Z 2025-03-14T05:10:00.6343948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.6344196Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:10:00.6344277Z 2025-03-14T05:10:00.6344728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.6344944Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:10:00.6345019Z 2025-03-14T05:10:00.6345453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.6345613Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:10:00.6345764Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:10:00.6345915Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:10:00.6345981Z 2025-03-14T05:10:00.6346365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.6346533Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:10:00.6346608Z 2025-03-14T05:10:00.6346914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.6347070Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:10:00.6347134Z 2025-03-14T05:10:00.6347449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.6347622Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:10:00.6347751Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6347960Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:10:00.6348025Z 2025-03-14T05:10:00.6348352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.6348474Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:10:00.6348604Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:10:00.6348752Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:10:00.6348832Z 2025-03-14T05:10:00.6349138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.6349268Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:00.6349360Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:10:00.6349499Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:10:00.6349565Z 2025-03-14T05:10:00.6349880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.6350027Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:10:00.6350126Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:10:00.6350254Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:10:00.6350332Z 2025-03-14T05:10:00.6350636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.6350830Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.6350948Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:10:00.6351022Z 2025-03-14T05:10:00.6351320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.6351477Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.6351589Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:10:00.6351671Z 2025-03-14T05:10:00.6351963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.6352118Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.6352229Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:10:00.6352296Z 2025-03-14T05:10:00.6352602Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.6352793Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:10:00.6352902Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:10:00.6352967Z 2025-03-14T05:10:00.6353304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.6353458Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:10:00.6353534Z 2025-03-14T05:10:00.6353867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.6354038Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:10:00.6354103Z 2025-03-14T05:10:00.6354445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.6354578Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:10:00.6354707Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:10:00.6354857Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:10:00.6355004Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:10:00.6355070Z 2025-03-14T05:10:00.6355417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.6355553Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:10:00.6355684Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:10:00.6355837Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:10:00.6355981Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:10:00.6356050Z 2025-03-14T05:10:00.6356386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.6356532Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:10:00.6356703Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:10:00.6356839Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:10:00.6356914Z 2025-03-14T05:10:00.6357241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.6357362Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:10:00.6357527Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:10:00.6357658Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:10:00.6357733Z 2025-03-14T05:10:00.6358041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.6358150Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:10:00.6358264Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:10:00.6358349Z 2025-03-14T05:10:00.6358647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.6358756Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:10:00.6358871Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:10:00.6358961Z 2025-03-14T05:10:00.6359253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.6359378Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:10:00.6359526Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:10:00.6359597Z 2025-03-14T05:10:00.6359892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.6360013Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:10:00.6360139Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:10:00.6360212Z 2025-03-14T05:10:00.6360547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.6360743Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:10:00.6360811Z 2025-03-14T05:10:00.6361140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.6361295Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:10:00.6361366Z 2025-03-14T05:10:00.6361734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.6361904Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:10:00.6361978Z 2025-03-14T05:10:00.6362489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:10:00.6362625Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:10:00.6362698Z 2025-03-14T05:10:00.6362984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6363137Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:10:00.6363200Z 2025-03-14T05:10:00.6363620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.6363741Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:10:00.6363841Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:10:00.6363967Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:10:00.6364033Z 2025-03-14T05:10:00.6364489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.6364620Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.6364852Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:10:00.6364938Z 2025-03-14T05:10:00.6365404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.6365571Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.6365667Z 2025-03-14T05:10:00.6367642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6367821Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:10:00.6367893Z 2025-03-14T05:10:00.6368335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.6368471Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:10:00.6368589Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:10:00.6368706Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:10:00.6368788Z 2025-03-14T05:10:00.6369288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.6369435Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.6369681Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:10:00.6369755Z 2025-03-14T05:10:00.6370204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.6370462Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.6370531Z 2025-03-14T05:10:00.6370829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6370972Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:10:00.6371041Z 2025-03-14T05:10:00.6371485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.6371605Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:10:00.6371726Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:10:00.6371849Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:10:00.6371929Z 2025-03-14T05:10:00.6372389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.6372539Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.6372776Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:10:00.6372859Z 2025-03-14T05:10:00.6373320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.6373518Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.6373583Z 2025-03-14T05:10:00.6373887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6374030Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:10:00.6374106Z 2025-03-14T05:10:00.6374537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.6374663Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:10:00.6374772Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:10:00.6374899Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:10:00.6374968Z 2025-03-14T05:10:00.6375435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.6375575Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.6375818Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:10:00.6375887Z 2025-03-14T05:10:00.6376350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.6376516Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.6376595Z 2025-03-14T05:10:00.6376925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6377061Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:10:00.6377129Z 2025-03-14T05:10:00.6377564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.6377681Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:10:00.6377799Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:10:00.6377918Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:10:00.6378025Z 2025-03-14T05:10:00.6378499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.6380592Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:10:00.6380881Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:10:00.6380952Z 2025-03-14T05:10:00.6381641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.6381928Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.6382006Z 2025-03-14T05:10:00.6382308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.6382478Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:10:00.6382547Z 2025-03-14T05:10:00.6382835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.6383210Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:10:00.6383284Z 2025-03-14T05:10:00.6383563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.6384031Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:10:00.6384100Z 2025-03-14T05:10:00.6384479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.6384689Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:10:00.6384765Z 2025-03-14T05:10:00.6385158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:10:00.6385323Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:10:00.6385389Z 2025-03-14T05:10:00.6385758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:00.6385914Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:10:00.6385990Z 2025-03-14T05:10:00.6386370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:10:00.6386516Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:10:00.6386584Z 2025-03-14T05:10:00.6387077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:10:00.6387216Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:10:00.6387351Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:00.6387513Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:10:00.6387657Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:10:00.6387723Z 2025-03-14T05:10:00.6388100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:10:00.6388220Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:10:00.6388311Z 2025-03-14T05:10:00.6394070Z 2025-03-14T05:10:00.6394181Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:00.6522627Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:10:00.6523641Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:10:00.6524008Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6524432Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6524838Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6525207Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6525920Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6526283Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6526700Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6527100Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6527488Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6527869Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6528495Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6528909Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6529303Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6529692Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6530060Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6530409Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6530814Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6531207Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6531611Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6531993Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6532364Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.6532777Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6533196Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6533596Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6533976Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6534332Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6534762Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6535165Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6535547Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6535911Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6536257Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6536651Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6537053Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6537422Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6537811Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6538574Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6538999Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6539398Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6539772Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6540148Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6540487Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6540888Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6541285Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6541685Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6542065Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6542403Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6542809Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6543203Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6543588Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6543962Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6544375Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6544843Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6545318Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6545769Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6546196Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6546603Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6547074Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6547522Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6547965Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6548389Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6548821Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6549278Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6549746Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6550188Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6551435Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6551845Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6552298Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6552781Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6553224Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6553677Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6554097Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.6554569Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6555045Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6555495Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6555940Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6556337Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6558006Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6558447Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6558865Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6559283Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6559650Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6560071Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6560499Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6560895Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6561310Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6561672Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6562087Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6562493Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6562878Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6563263Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6563620Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6564035Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6564434Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6564858Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6565256Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6565613Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6566028Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6566431Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6566820Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6567200Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6567572Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6567985Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6568399Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6568787Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6569171Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6569529Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6569931Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6570336Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6570726Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6571133Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6571493Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6571902Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6572300Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6572679Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6573054Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6573401Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6573793Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6574807Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6575223Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6575598Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6575938Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6577598Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6578009Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6578641Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6579021Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6579364Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6579819Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6580210Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6580606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6581393Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6581967Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6582683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6583109Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6583506Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6583945Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6584396Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.6584820Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6586047Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6586535Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6586932Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6587283Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6587683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6588200Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6588594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6588986Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6589326Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6589735Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6590141Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6590517Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6590893Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6591252Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6591672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6592083Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6592464Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6592843Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6593184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6593592Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6593985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6594368Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6594763Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6595110Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6595513Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6595901Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6596285Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6596649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6596998Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6597392Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6597807Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6598205Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6598572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6598917Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6599316Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6599718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6600097Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6600463Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6600808Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6601241Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6601639Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6602011Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6602385Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6602732Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6603129Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6603527Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6603925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6604313Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6604685Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6605087Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6605493Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6605876Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6606256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6606615Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6607046Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6607473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6607867Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6608256Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6608615Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6609040Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6609440Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6609832Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6610201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6610572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6611003Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6611400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6611788Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6612165Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6612521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6612925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6613327Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6613718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6614118Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6614475Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6614881Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6615290Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6615673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6616051Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6616400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6616804Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6617224Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6617620Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6618006Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6618803Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6619223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6619618Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6619989Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6620360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6620735Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6621140Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6621532Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6621911Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6622285Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6622630Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6623029Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6623423Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6623834Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6624290Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6624670Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6625081Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6625479Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6625870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6626596Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6626958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6627355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6627805Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6628210Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6628573Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6628919Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6629319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6629719Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6630101Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6630470Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6630840Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6631253Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6631652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6632023Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6632400Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6632749Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6633145Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6633543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6633913Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6634310Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6634649Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6635058Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6635481Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6635856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6636228Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6636567Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6636987Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6637381Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6637780Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6638153Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6638496Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6638903Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6639293Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6639672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6640033Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6640419Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6640827Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6641219Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6641603Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6641974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6642326Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6642722Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6643120Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6643518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6643902Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6644252Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6644650Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6645046Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6645424Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6645801Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6646148Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6646545Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6646971Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6647343Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6647714Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6648054Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6648459Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6682672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6683843Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6684401Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6684777Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6685232Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6685641Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6686029Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6686403Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6686764Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6687166Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6687571Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6688010Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6688391Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6688740Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6689827Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6690250Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6690630Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6691005Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6691791Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6692236Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6692655Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6693037Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6693414Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6693758Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6694166Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6694573Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6694947Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6695321Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6695692Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6696095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6696489Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6696871Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6698582Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6699000Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6699423Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6699856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6700246Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6700629Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6700980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6701387Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6701797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6702194Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6702569Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6702933Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6703420Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6703838Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6704294Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6704680Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6705049Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6705457Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6705871Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6706259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6706665Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6707038Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6707451Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6707863Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6708254Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6708650Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6709002Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6709454Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6709864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6710295Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6710684Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6711040Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6711464Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6711870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6712267Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6712654Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6713027Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6713450Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6713862Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6714262Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6714637Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6714997Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6715411Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6715812Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6716201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6716607Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6716967Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6717373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6717778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6718173Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6719041Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6719433Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6719841Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6720300Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6720706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6721068Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6721413Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6721810Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6722204Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6722574Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6722945Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6723291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6723717Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6724117Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6724488Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6724858Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6725198Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6725597Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6725991Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6726376Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6726768Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6727870Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6728289Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6728683Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6729121Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6729501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6729838Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6730238Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6730708Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6731098Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6731474Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6731823Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6732236Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6732632Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6733016Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6733385Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6733749Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6734169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6734563Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6734939Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6735307Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6735671Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6736072Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6736529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6736953Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6737321Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6737668Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6738119Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6738528Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6738911Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6739278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6739627Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6740042Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6740443Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6740831Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6741206Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6741557Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6741957Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6742366Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6742748Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6743135Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6743541Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6743961Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6744422Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6744818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6745222Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6745581Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6746010Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6746424Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6746846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6747247Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6747594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6748010Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6748417Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6748809Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6749185Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6749543Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6749989Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6750444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6750836Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6751214Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6751572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6751980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6752389Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6752778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6753171Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6753533Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6753958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6754364Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6754745Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6755130Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6755487Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6755888Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6756295Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6756706Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6757090Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6757434Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6757843Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6758254Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6758637Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6759007Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6759342Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6759770Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6760176Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6760552Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6760927Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6761288Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.6761703Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6762106Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6762505Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6762919Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6763258Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6763655Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6764044Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6764421Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6764785Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6765129Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6765526Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6765943Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6766329Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6766725Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6767081Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6767490Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6767902Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6768288Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6768648Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6768990Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.6769423Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6769832Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6770219Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6770607Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6770981Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.6771379Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6771783Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6772157Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6772554Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6772907Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.6773310Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.6773708Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.6774078Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.6774459Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.6774690Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:10:00.6774925Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:10:00.6775140Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:10:00.6775357Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:10:00.6775601Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:10:00.6775819Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:10:00.6776034Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:10:00.6776246Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:10:00.6776458Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:10:00.6776670Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:10:00.6776888Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:10:00.6777092Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:10:00.6777310Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:10:00.6777514Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:10:00.6777733Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:10:00.6777933Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:10:00.6778305Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:10:00.6778654Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:10:00.6779020Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:10:00.6779361Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:10:00.6779707Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:10:00.6780038Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:10:00.6780351Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:10:00.6780726Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:10:00.6781081Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:10:00.6781646Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:10:00.6782092Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:10:00.6782179Z 2025-03-14T05:10:00.6782492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6783049Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6783123Z 2025-03-14T05:10:00.6783417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6787738Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6787909Z 2025-03-14T05:10:00.6788229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:10:00.6788377Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:10:00.6788480Z 2025-03-14T05:10:00.6788857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:10:00.6789114Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:10:00.6789191Z 2025-03-14T05:10:00.6789453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6789955Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6790022Z 2025-03-14T05:10:00.6790299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6792121Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6792199Z 2025-03-14T05:10:00.6792499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6792645Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:10:00.6792721Z 2025-03-14T05:10:00.6792982Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6793496Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6793566Z 2025-03-14T05:10:00.6793845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6795661Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6795786Z 2025-03-14T05:10:00.6796090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6796235Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:10:00.6796308Z 2025-03-14T05:10:00.6796566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6797092Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6797157Z 2025-03-14T05:10:00.6797422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6799189Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6799257Z 2025-03-14T05:10:00.6799511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6799997Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.6800071Z 2025-03-14T05:10:00.6800329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6802124Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6802239Z 2025-03-14T05:10:00.6802514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6802665Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:10:00.6802729Z 2025-03-14T05:10:00.6803014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6803162Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:10:00.6803233Z 2025-03-14T05:10:00.6803477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6803957Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6804028Z 2025-03-14T05:10:00.6806754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6808537Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6808645Z 2025-03-14T05:10:00.6808937Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6809079Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:10:00.6809150Z 2025-03-14T05:10:00.6809399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6809885Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6809949Z 2025-03-14T05:10:00.6810210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6811955Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6812020Z 2025-03-14T05:10:00.6812303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6812443Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:10:00.6812513Z 2025-03-14T05:10:00.6812757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6813244Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6813402Z 2025-03-14T05:10:00.6813660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6815429Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6815505Z 2025-03-14T05:10:00.6815779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6815940Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:10:00.6816005Z 2025-03-14T05:10:00.6816287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6816431Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:10:00.6816503Z 2025-03-14T05:10:00.6816747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6817250Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6817314Z 2025-03-14T05:10:00.6817578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6819424Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6819505Z 2025-03-14T05:10:00.6819790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6819957Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:10:00.6820028Z 2025-03-14T05:10:00.6820274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6820804Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6820871Z 2025-03-14T05:10:00.6821150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6822932Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6823002Z 2025-03-14T05:10:00.6823300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6823443Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:10:00.6823532Z 2025-03-14T05:10:00.6823784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6824386Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6824458Z 2025-03-14T05:10:00.6824736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6826512Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6826604Z 2025-03-14T05:10:00.6826892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6827049Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:10:00.6827124Z 2025-03-14T05:10:00.6827439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6827601Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:10:00.6827675Z 2025-03-14T05:10:00.6827924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6829413Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6829501Z 2025-03-14T05:10:00.6829792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6831583Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6831690Z 2025-03-14T05:10:00.6831988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6832135Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:10:00.6832209Z 2025-03-14T05:10:00.6832463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6832965Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6833033Z 2025-03-14T05:10:00.6833305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6835086Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6835480Z 2025-03-14T05:10:00.6835776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6835921Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:10:00.6835995Z 2025-03-14T05:10:00.6836252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6836740Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6836805Z 2025-03-14T05:10:00.6837071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6838812Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6838943Z 2025-03-14T05:10:00.6839197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6839691Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.6839766Z 2025-03-14T05:10:00.6840024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6841860Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6841952Z 2025-03-14T05:10:00.6842260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6842421Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:10:00.6843806Z 2025-03-14T05:10:00.6846576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6846773Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:10:00.6846853Z 2025-03-14T05:10:00.6847117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6847620Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6847692Z 2025-03-14T05:10:00.6847957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6849691Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6849832Z 2025-03-14T05:10:00.6850110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6850258Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:10:00.6850326Z 2025-03-14T05:10:00.6850576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6851057Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6851129Z 2025-03-14T05:10:00.6851386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6853151Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6853247Z 2025-03-14T05:10:00.6853526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6853677Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:10:00.6853741Z 2025-03-14T05:10:00.6853990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6854472Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6854545Z 2025-03-14T05:10:00.6854799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6856526Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6856621Z 2025-03-14T05:10:00.6856899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6857067Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:10:00.6857131Z 2025-03-14T05:10:00.6857422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6857571Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:10:00.6857643Z 2025-03-14T05:10:00.6857892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6858396Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6858492Z 2025-03-14T05:10:00.6858747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6860529Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6860603Z 2025-03-14T05:10:00.6860892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6861041Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:10:00.6861106Z 2025-03-14T05:10:00.6861366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6861859Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6861945Z 2025-03-14T05:10:00.6862215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6863993Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6864072Z 2025-03-14T05:10:00.6864464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6864627Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:10:00.6864697Z 2025-03-14T05:10:00.6864998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6865517Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6865642Z 2025-03-14T05:10:00.6865916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6867723Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6867798Z 2025-03-14T05:10:00.6868075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6868231Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:10:00.6868295Z 2025-03-14T05:10:00.6868584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6868749Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:10:00.6868823Z 2025-03-14T05:10:00.6869078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6869573Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6869637Z 2025-03-14T05:10:00.6869915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6871708Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6871794Z 2025-03-14T05:10:00.6872092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6872233Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:10:00.6872334Z 2025-03-14T05:10:00.6872582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6873080Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6873155Z 2025-03-14T05:10:00.6873413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6875263Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6875354Z 2025-03-14T05:10:00.6875637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6875786Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:10:00.6875850Z 2025-03-14T05:10:00.6876104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6876599Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6876673Z 2025-03-14T05:10:00.6876938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6878706Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6878798Z 2025-03-14T05:10:00.6879120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6879281Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:10:00.6879345Z 2025-03-14T05:10:00.6879634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6879782Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:10:00.6879855Z 2025-03-14T05:10:00.6880101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6880587Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6880652Z 2025-03-14T05:10:00.6880923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6882882Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6883010Z 2025-03-14T05:10:00.6883293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6883428Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:10:00.6883502Z 2025-03-14T05:10:00.6883743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6884219Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6884284Z 2025-03-14T05:10:00.6884545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6886345Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6886446Z 2025-03-14T05:10:00.6886736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6886872Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:10:00.6886948Z 2025-03-14T05:10:00.6887191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6887670Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6887745Z 2025-03-14T05:10:00.6887998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6889714Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6889809Z 2025-03-14T05:10:00.6890054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6890544Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.6890609Z 2025-03-14T05:10:00.6890873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6892679Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6892771Z 2025-03-14T05:10:00.6893056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6893196Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:10:00.6893268Z 2025-03-14T05:10:00.6893543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6893690Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:10:00.6893753Z 2025-03-14T05:10:00.6894002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6894468Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6894540Z 2025-03-14T05:10:00.6894795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6896545Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6897636Z 2025-03-14T05:10:00.6898029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6898191Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:10:00.6898266Z 2025-03-14T05:10:00.6898522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6898998Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6899105Z 2025-03-14T05:10:00.6899364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6901169Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6901244Z 2025-03-14T05:10:00.6901527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6901673Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:10:00.6901737Z 2025-03-14T05:10:00.6901994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6902481Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6902556Z 2025-03-14T05:10:00.6902848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6908283Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6908386Z 2025-03-14T05:10:00.6908693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6908847Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:10:00.6908918Z 2025-03-14T05:10:00.6909207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6909358Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:10:00.6909476Z 2025-03-14T05:10:00.6909737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6910244Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6910320Z 2025-03-14T05:10:00.6910585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6912361Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6912438Z 2025-03-14T05:10:00.6912718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6912859Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:10:00.6912924Z 2025-03-14T05:10:00.6913198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6913678Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6913761Z 2025-03-14T05:10:00.6914013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6915710Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6915783Z 2025-03-14T05:10:00.6916060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6916214Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:10:00.6916279Z 2025-03-14T05:10:00.6916525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6917024Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6917099Z 2025-03-14T05:10:00.6917352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6919052Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6919127Z 2025-03-14T05:10:00.6919399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6919569Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:10:00.6919631Z 2025-03-14T05:10:00.6919912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6920051Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:10:00.6920122Z 2025-03-14T05:10:00.6920362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6920834Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6920907Z 2025-03-14T05:10:00.6921164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6922886Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6922989Z 2025-03-14T05:10:00.6923295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6923434Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:10:00.6923498Z 2025-03-14T05:10:00.6923747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6924209Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6924281Z 2025-03-14T05:10:00.6924536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6926260Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6926353Z 2025-03-14T05:10:00.6926628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6926764Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:10:00.6926827Z 2025-03-14T05:10:00.6927078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6927547Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6927620Z 2025-03-14T05:10:00.6927880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6930706Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6930865Z 2025-03-14T05:10:00.6931166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6931322Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:10:00.6931387Z 2025-03-14T05:10:00.6931675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6931814Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:10:00.6931890Z 2025-03-14T05:10:00.6932137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6932635Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6932702Z 2025-03-14T05:10:00.6932977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6934767Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6934858Z 2025-03-14T05:10:00.6935152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6935288Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:10:00.6935362Z 2025-03-14T05:10:00.6935615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6936111Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6936184Z 2025-03-14T05:10:00.6936446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6938258Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6938334Z 2025-03-14T05:10:00.6938621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6938764Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:10:00.6938827Z 2025-03-14T05:10:00.6939086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6939572Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6939646Z 2025-03-14T05:10:00.6939908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6941772Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6941845Z 2025-03-14T05:10:00.6942123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6942277Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:10:00.6942343Z 2025-03-14T05:10:00.6942628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6942766Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:10:00.6942840Z 2025-03-14T05:10:00.6943087Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6943589Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6943655Z 2025-03-14T05:10:00.6943942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6945814Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6945886Z 2025-03-14T05:10:00.6946178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6946312Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:10:00.6946384Z 2025-03-14T05:10:00.6946635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6947121Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6947220Z 2025-03-14T05:10:00.6947490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6949272Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6949340Z 2025-03-14T05:10:00.6949628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6949757Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:10:00.6949848Z 2025-03-14T05:10:00.6950104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6950647Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6950721Z 2025-03-14T05:10:00.6950974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6952686Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6952752Z 2025-03-14T05:10:00.6953030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6953180Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:10:00.6953243Z 2025-03-14T05:10:00.6953541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6953679Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:10:00.6953754Z 2025-03-14T05:10:00.6953998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6954467Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6954531Z 2025-03-14T05:10:00.6954794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6956502Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6956594Z 2025-03-14T05:10:00.6956877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6957035Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:10:00.6957105Z 2025-03-14T05:10:00.6957345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6957823Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6957888Z 2025-03-14T05:10:00.6958151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6959862Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6959941Z 2025-03-14T05:10:00.6960230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6960358Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:10:00.6960428Z 2025-03-14T05:10:00.6960673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6961150Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6961215Z 2025-03-14T05:10:00.6961477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6963203Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6963284Z 2025-03-14T05:10:00.6963594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6963736Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T05:10:00.6963808Z 2025-03-14T05:10:00.6964079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6964226Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:10:00.6964290Z 2025-03-14T05:10:00.6964539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6965003Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6965073Z 2025-03-14T05:10:00.6965336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6967060Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6967152Z 2025-03-14T05:10:00.6967439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6967570Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T05:10:00.6967644Z 2025-03-14T05:10:00.6967885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6968360Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6968424Z 2025-03-14T05:10:00.6968687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6970430Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6970525Z 2025-03-14T05:10:00.6970809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6970941Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:10:00.6971014Z 2025-03-14T05:10:00.6971255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6971736Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6971800Z 2025-03-14T05:10:00.6972060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6973790Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6973874Z 2025-03-14T05:10:00.6974153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6974297Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T05:10:00.6974369Z 2025-03-14T05:10:00.6974643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6974789Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:10:00.6974851Z 2025-03-14T05:10:00.6975099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6975565Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6975655Z 2025-03-14T05:10:00.6975914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6977664Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6977740Z 2025-03-14T05:10:00.6978019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6978165Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T05:10:00.6978228Z 2025-03-14T05:10:00.6978476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6978947Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6979035Z 2025-03-14T05:10:00.6979301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6981028Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6981102Z 2025-03-14T05:10:00.6981381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6981791Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:10:00.6981870Z 2025-03-14T05:10:00.6982117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6982681Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6982747Z 2025-03-14T05:10:00.6983062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6984881Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6984965Z 2025-03-14T05:10:00.6985256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6985411Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T05:10:00.6985488Z 2025-03-14T05:10:00.6985775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6985956Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:10:00.6986022Z 2025-03-14T05:10:00.6986282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6986758Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6986833Z 2025-03-14T05:10:00.6987095Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6988877Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6988968Z 2025-03-14T05:10:00.6989260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6989416Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T05:10:00.6989484Z 2025-03-14T05:10:00.6989788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6990273Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.6990351Z 2025-03-14T05:10:00.6990640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6992417Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6992510Z 2025-03-14T05:10:00.6992794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6992943Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T05:10:00.6993009Z 2025-03-14T05:10:00.6993268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6993758Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.6993832Z 2025-03-14T05:10:00.6994102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6995879Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.6995971Z 2025-03-14T05:10:00.6996256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.6996453Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T05:10:00.6996528Z 2025-03-14T05:10:00.6996812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.6996963Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T05:10:00.6997030Z 2025-03-14T05:10:00.6997286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.6997777Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.6997854Z 2025-03-14T05:10:00.6998154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.6999961Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7000057Z 2025-03-14T05:10:00.7000343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7000488Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T05:10:00.7000553Z 2025-03-14T05:10:00.7000811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7001304Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7001377Z 2025-03-14T05:10:00.7001643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7003582Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7003675Z 2025-03-14T05:10:00.7003960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7004107Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T05:10:00.7004176Z 2025-03-14T05:10:00.7004430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7004916Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7004991Z 2025-03-14T05:10:00.7005252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7007049Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7007143Z 2025-03-14T05:10:00.7007426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7007589Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T05:10:00.7007657Z 2025-03-14T05:10:00.7007949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7008092Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T05:10:00.7008164Z 2025-03-14T05:10:00.7008415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7008905Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7008995Z 2025-03-14T05:10:00.7009256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7012349Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7012475Z 2025-03-14T05:10:00.7012784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7012931Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T05:10:00.7012997Z 2025-03-14T05:10:00.7013258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7013747Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7013845Z 2025-03-14T05:10:00.7014110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7015908Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7015989Z 2025-03-14T05:10:00.7016279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7016427Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T05:10:00.7016491Z 2025-03-14T05:10:00.7016749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7017252Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7017328Z 2025-03-14T05:10:00.7017622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7019414Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7019491Z 2025-03-14T05:10:00.7019771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7019928Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T05:10:00.7019991Z 2025-03-14T05:10:00.7020280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7020439Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T05:10:00.7020512Z 2025-03-14T05:10:00.7020759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7021248Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7021313Z 2025-03-14T05:10:00.7021579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7024747Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7024888Z 2025-03-14T05:10:00.7025225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7025379Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T05:10:00.7025458Z 2025-03-14T05:10:00.7025755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7026258Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7026330Z 2025-03-14T05:10:00.7026594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7028392Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7028468Z 2025-03-14T05:10:00.7028777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7028923Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T05:10:00.7028990Z 2025-03-14T05:10:00.7029247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7029735Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7029810Z 2025-03-14T05:10:00.7030073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7032818Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7032950Z 2025-03-14T05:10:00.7033587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7033810Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T05:10:00.7033881Z 2025-03-14T05:10:00.7034180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7034325Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T05:10:00.7034443Z 2025-03-14T05:10:00.7034706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7035195Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7035261Z 2025-03-14T05:10:00.7035537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7037322Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7037408Z 2025-03-14T05:10:00.7037695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7037830Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T05:10:00.7037901Z 2025-03-14T05:10:00.7038143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7038625Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7038691Z 2025-03-14T05:10:00.7038957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7040722Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7040814Z 2025-03-14T05:10:00.7041101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7041243Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T05:10:00.7041305Z 2025-03-14T05:10:00.7041549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7042032Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7042101Z 2025-03-14T05:10:00.7042355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7044079Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7044166Z 2025-03-14T05:10:00.7044440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7044595Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T05:10:00.7044659Z 2025-03-14T05:10:00.7044941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7045082Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T05:10:00.7045155Z 2025-03-14T05:10:00.7045396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7045872Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7045951Z 2025-03-14T05:10:00.7046218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7047972Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7048042Z 2025-03-14T05:10:00.7048336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7048473Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T05:10:00.7048543Z 2025-03-14T05:10:00.7048792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7050679Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7050817Z 2025-03-14T05:10:00.7051111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7052888Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7052955Z 2025-03-14T05:10:00.7053246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7053380Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T05:10:00.7053453Z 2025-03-14T05:10:00.7053699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7054198Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7054276Z 2025-03-14T05:10:00.7054564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7056313Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7056381Z 2025-03-14T05:10:00.7056659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7056815Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T05:10:00.7056880Z 2025-03-14T05:10:00.7057167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7057309Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T05:10:00.7057397Z 2025-03-14T05:10:00.7057642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7058148Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7058214Z 2025-03-14T05:10:00.7058481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7060254Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7060346Z 2025-03-14T05:10:00.7060640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7060779Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T05:10:00.7060849Z 2025-03-14T05:10:00.7061169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7061660Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7061724Z 2025-03-14T05:10:00.7061991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7063799Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7063867Z 2025-03-14T05:10:00.7064253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7064404Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T05:10:00.7064481Z 2025-03-14T05:10:00.7064749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7065274Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7065346Z 2025-03-14T05:10:00.7065631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7067453Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7067543Z 2025-03-14T05:10:00.7067826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7068004Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T05:10:00.7068081Z 2025-03-14T05:10:00.7068362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7068511Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T05:10:00.7068576Z 2025-03-14T05:10:00.7068831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7069318Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7069383Z 2025-03-14T05:10:00.7069652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7071449Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7071546Z 2025-03-14T05:10:00.7071836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7071971Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T05:10:00.7072042Z 2025-03-14T05:10:00.7072287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7072777Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7072843Z 2025-03-14T05:10:00.7073108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7074943Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7075044Z 2025-03-14T05:10:00.7075333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7075471Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T05:10:00.7075543Z 2025-03-14T05:10:00.7075790Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7076286Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7076350Z 2025-03-14T05:10:00.7076611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7078383Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7078477Z 2025-03-14T05:10:00.7078754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7078898Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T05:10:00.7078969Z 2025-03-14T05:10:00.7079240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7079388Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T05:10:00.7079450Z 2025-03-14T05:10:00.7079699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7080160Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7080248Z 2025-03-14T05:10:00.7080503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7082523Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7082606Z 2025-03-14T05:10:00.7082884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7083025Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T05:10:00.7083090Z 2025-03-14T05:10:00.7083340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7083820Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7083909Z 2025-03-14T05:10:00.7084176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7085905Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7085982Z 2025-03-14T05:10:00.7086273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7086404Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T05:10:00.7086474Z 2025-03-14T05:10:00.7086717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7087224Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7087289Z 2025-03-14T05:10:00.7087581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7090323Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7090457Z 2025-03-14T05:10:00.7090781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7090939Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T05:10:00.7091014Z 2025-03-14T05:10:00.7091300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7091452Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T05:10:00.7091538Z 2025-03-14T05:10:00.7091795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7092278Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7092352Z 2025-03-14T05:10:00.7092611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7094382Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7094477Z 2025-03-14T05:10:00.7094760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7094913Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T05:10:00.7094978Z 2025-03-14T05:10:00.7095267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7095758Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7095832Z 2025-03-14T05:10:00.7096099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7097902Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7097978Z 2025-03-14T05:10:00.7098280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7098446Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T05:10:00.7098510Z 2025-03-14T05:10:00.7098765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7099266Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7099331Z 2025-03-14T05:10:00.7099604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7101385Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7101474Z 2025-03-14T05:10:00.7101761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7101968Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T05:10:00.7102040Z 2025-03-14T05:10:00.7102319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7102476Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T05:10:00.7102540Z 2025-03-14T05:10:00.7102793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7103280Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7103354Z 2025-03-14T05:10:00.7103615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7105513Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7105640Z 2025-03-14T05:10:00.7105924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7106070Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T05:10:00.7106135Z 2025-03-14T05:10:00.7106389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7106884Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7106957Z 2025-03-14T05:10:00.7107219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7109026Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7109118Z 2025-03-14T05:10:00.7109406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7109552Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T05:10:00.7109617Z 2025-03-14T05:10:00.7109883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7110371Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7110442Z 2025-03-14T05:10:00.7110702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7112430Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7112519Z 2025-03-14T05:10:00.7112791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7112958Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T05:10:00.7113030Z 2025-03-14T05:10:00.7113304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7113456Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T05:10:00.7113521Z 2025-03-14T05:10:00.7113770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7114240Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7114325Z 2025-03-14T05:10:00.7114579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7116364Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7116441Z 2025-03-14T05:10:00.7116718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7116859Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T05:10:00.7116947Z 2025-03-14T05:10:00.7117197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7117673Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7117761Z 2025-03-14T05:10:00.7118016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7119764Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7119836Z 2025-03-14T05:10:00.7120113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7120252Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T05:10:00.7120315Z 2025-03-14T05:10:00.7120564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7121065Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7121138Z 2025-03-14T05:10:00.7121424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7123167Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7123242Z 2025-03-14T05:10:00.7123513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7123677Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T05:10:00.7123743Z 2025-03-14T05:10:00.7124027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7124169Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T05:10:00.7124256Z 2025-03-14T05:10:00.7124498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7126143Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7126251Z 2025-03-14T05:10:00.7126530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7128275Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7128416Z 2025-03-14T05:10:00.7128702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7128848Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T05:10:00.7128914Z 2025-03-14T05:10:00.7129219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7129718Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7129790Z 2025-03-14T05:10:00.7130062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7132394Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7132477Z 2025-03-14T05:10:00.7132800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7132949Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T05:10:00.7133016Z 2025-03-14T05:10:00.7133284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7133787Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7133864Z 2025-03-14T05:10:00.7134136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7135929Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7136022Z 2025-03-14T05:10:00.7136307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7136507Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T05:10:00.7136575Z 2025-03-14T05:10:00.7136872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7137018Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T05:10:00.7137094Z 2025-03-14T05:10:00.7137351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7137847Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7137915Z 2025-03-14T05:10:00.7138227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7140041Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7140128Z 2025-03-14T05:10:00.7140422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7140560Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T05:10:00.7140635Z 2025-03-14T05:10:00.7140886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7141388Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7141461Z 2025-03-14T05:10:00.7141722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7143533Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7143626Z 2025-03-14T05:10:00.7143911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7144056Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T05:10:00.7144180Z 2025-03-14T05:10:00.7144458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7144963Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7145035Z 2025-03-14T05:10:00.7145314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7147189Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7147284Z 2025-03-14T05:10:00.7147567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7147735Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T05:10:00.7147801Z 2025-03-14T05:10:00.7148093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7148239Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T05:10:00.7148312Z 2025-03-14T05:10:00.7148561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7149050Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7149147Z 2025-03-14T05:10:00.7149423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7152467Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7152567Z 2025-03-14T05:10:00.7152882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7153026Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T05:10:00.7153105Z 2025-03-14T05:10:00.7153357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7153862Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7153969Z 2025-03-14T05:10:00.7154237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7156008Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7156075Z 2025-03-14T05:10:00.7156365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7156500Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T05:10:00.7156571Z 2025-03-14T05:10:00.7156814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7157343Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7157417Z 2025-03-14T05:10:00.7157711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7159452Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7159527Z 2025-03-14T05:10:00.7159770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7160257Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.7160323Z 2025-03-14T05:10:00.7160586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7162388Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7162463Z 2025-03-14T05:10:00.7162747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7162893Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T05:10:00.7162965Z 2025-03-14T05:10:00.7163237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7163386Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T05:10:00.7163468Z 2025-03-14T05:10:00.7163718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7164216Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7164291Z 2025-03-14T05:10:00.7164551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7166349Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7166429Z 2025-03-14T05:10:00.7166706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7166847Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T05:10:00.7166909Z 2025-03-14T05:10:00.7167162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7167654Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7167725Z 2025-03-14T05:10:00.7167980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7169712Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7169788Z 2025-03-14T05:10:00.7170063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7170259Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T05:10:00.7170324Z 2025-03-14T05:10:00.7170574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7171098Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7171168Z 2025-03-14T05:10:00.7171436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7173201Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7173278Z 2025-03-14T05:10:00.7173565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7173742Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T05:10:00.7173816Z 2025-03-14T05:10:00.7174912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7175110Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T05:10:00.7175181Z 2025-03-14T05:10:00.7175453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7175933Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7176012Z 2025-03-14T05:10:00.7176276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7178061Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7178172Z 2025-03-14T05:10:00.7178503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7178648Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T05:10:00.7178713Z 2025-03-14T05:10:00.7178967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7179448Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7179524Z 2025-03-14T05:10:00.7179786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7181795Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7181951Z 2025-03-14T05:10:00.7182242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7182387Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T05:10:00.7182455Z 2025-03-14T05:10:00.7182713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7183210Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7183286Z 2025-03-14T05:10:00.7183556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7185570Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7185679Z 2025-03-14T05:10:00.7185965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7186140Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T05:10:00.7186205Z 2025-03-14T05:10:00.7186499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7186656Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T05:10:00.7186721Z 2025-03-14T05:10:00.7186981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7187554Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:10:00.7187629Z 2025-03-14T05:10:00.7187879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7188436Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:10:00.7188519Z 2025-03-14T05:10:00.7188942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.7189212Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T05:10:00.7189289Z 2025-03-14T05:10:00.7189537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7190113Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:10:00.7190192Z 2025-03-14T05:10:00.7190826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.7191097Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T05:10:00.7191167Z 2025-03-14T05:10:00.7191435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7192025Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:10:00.7192103Z 2025-03-14T05:10:00.7192576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.7192908Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:10:00.7192975Z 2025-03-14T05:10:00.7193234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7193810Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:10:00.7193885Z 2025-03-14T05:10:00.7194234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.7194443Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T05:10:00.7194513Z 2025-03-14T05:10:00.7194758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7195334Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:10:00.7195417Z 2025-03-14T05:10:00.7195823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.7196146Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:10:00.7196224Z 2025-03-14T05:10:00.7196481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7197054Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:10:00.7197119Z 2025-03-14T05:10:00.7197458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.7197669Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T05:10:00.7197749Z 2025-03-14T05:10:00.7197998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7198621Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:10:00.7198696Z 2025-03-14T05:10:00.7199050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:10:00.7199266Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:10:00.7199334Z 2025-03-14T05:10:00.7199766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7199919Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:10:00.7199993Z 2025-03-14T05:10:00.7200284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7200432Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:10:00.7200496Z 2025-03-14T05:10:00.7200927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7203281Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:10:00.7203378Z 2025-03-14T05:10:00.7203675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7203826Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:10:00.7203892Z 2025-03-14T05:10:00.7204273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.7204453Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:10:00.7204564Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:10:00.7204687Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:10:00.7204763Z 2025-03-14T05:10:00.7205126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.7205254Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:10:00.7205326Z 2025-03-14T05:10:00.7208059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.7208285Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:10:00.7208354Z 2025-03-14T05:10:00.7209311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.7209600Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:10:00.7209677Z 2025-03-14T05:10:00.7210097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.7210246Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:10:00.7210673Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:10:00.7210797Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:10:00.7210925Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:10:00.7210990Z 2025-03-14T05:10:00.7211429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7211582Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:10:00.7211653Z 2025-03-14T05:10:00.7211944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7212093Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:10:00.7212157Z 2025-03-14T05:10:00.7212588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7212817Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:10:00.7212907Z 2025-03-14T05:10:00.7213189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7213332Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:10:00.7213399Z 2025-03-14T05:10:00.7213765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.7213958Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:10:00.7214071Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:10:00.7214196Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:10:00.7214273Z 2025-03-14T05:10:00.7214591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.7214727Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:10:00.7214792Z 2025-03-14T05:10:00.7215116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.7215239Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:10:00.7215311Z 2025-03-14T05:10:00.7215676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.7215925Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:10:00.7215989Z 2025-03-14T05:10:00.7216402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.7216554Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:10:00.7216961Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:10:00.7217089Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:10:00.7217206Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:10:00.7217278Z 2025-03-14T05:10:00.7217693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7217848Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:10:00.7217917Z 2025-03-14T05:10:00.7218219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7218358Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:10:00.7218431Z 2025-03-14T05:10:00.7218857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7219041Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:10:00.7219122Z 2025-03-14T05:10:00.7219426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7219564Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:10:00.7219637Z 2025-03-14T05:10:00.7220014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.7220219Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:10:00.7220325Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:10:00.7220457Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:10:00.7220522Z 2025-03-14T05:10:00.7220857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.7220982Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:10:00.7221060Z 2025-03-14T05:10:00.7221384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.7221514Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:10:00.7221580Z 2025-03-14T05:10:00.7221969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.7222196Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:10:00.7222270Z 2025-03-14T05:10:00.7222707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.7222836Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:10:00.7223259Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:10:00.7223382Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:10:00.7223570Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:10:00.7223642Z 2025-03-14T05:10:00.7224089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7224337Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:10:00.7224417Z 2025-03-14T05:10:00.7224718Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7224864Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:10:00.7224931Z 2025-03-14T05:10:00.7225406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7225564Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:10:00.7225637Z 2025-03-14T05:10:00.7225958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7226094Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:10:00.7226167Z 2025-03-14T05:10:00.7226536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.7226732Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:10:00.7226846Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:10:00.7226968Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:10:00.7227033Z 2025-03-14T05:10:00.7227354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.7227477Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:10:00.7227552Z 2025-03-14T05:10:00.7227870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.7227997Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:10:00.7228061Z 2025-03-14T05:10:00.7228446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.7228674Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:10:00.7228748Z 2025-03-14T05:10:00.7229172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.7229310Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:10:00.7229724Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:10:00.7229855Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:10:00.7229970Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:10:00.7230044Z 2025-03-14T05:10:00.7230475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7230619Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:00.7230693Z 2025-03-14T05:10:00.7230980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7231123Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:10:00.7231188Z 2025-03-14T05:10:00.7231636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.7231804Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:00.7231878Z 2025-03-14T05:10:00.7232164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7232308Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:10:00.7233896Z 2025-03-14T05:10:00.7234348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.7234549Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:10:00.7234673Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:10:00.7234799Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:10:00.7234875Z 2025-03-14T05:10:00.7235201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.7235336Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:10:00.7235403Z 2025-03-14T05:10:00.7235733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.7235854Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:10:00.7235926Z 2025-03-14T05:10:00.7236337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.7236554Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:10:00.7236620Z 2025-03-14T05:10:00.7237057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.7237184Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:10:00.7237607Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:10:00.7237731Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:10:00.7237853Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:10:00.7237919Z 2025-03-14T05:10:00.7238220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:00.7238362Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T05:10:00.7238492Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T05:10:00.7238623Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T05:10:00.7238746Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T05:10:00.7238873Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T05:10:00.7238940Z 2025-03-14T05:10:00.7239225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7239754Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T05:10:00.7239832Z 2025-03-14T05:10:00.7240110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.7240321Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T05:10:00.7240385Z 2025-03-14T05:10:00.7240774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.7241292Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.7241367Z 2025-03-14T05:10:00.7241725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.7242251Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T05:10:00.7242335Z 2025-03-14T05:10:00.7242597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7243099Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T05:10:00.7243166Z 2025-03-14T05:10:00.7243445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.7243638Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T05:10:00.7243710Z 2025-03-14T05:10:00.7244082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.7244598Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.7244663Z 2025-03-14T05:10:00.7245027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.7245518Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T05:10:00.7245591Z 2025-03-14T05:10:00.7245850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7246352Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T05:10:00.7246421Z 2025-03-14T05:10:00.7246685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.7246874Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T05:10:00.7246940Z 2025-03-14T05:10:00.7247305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.7247792Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.7247862Z 2025-03-14T05:10:00.7248588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.7249735Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T05:10:00.7249845Z 2025-03-14T05:10:00.7250125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7250603Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T05:10:00.7250679Z 2025-03-14T05:10:00.7250949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.7251137Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T05:10:00.7251202Z 2025-03-14T05:10:00.7251575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.7252066Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.7252129Z 2025-03-14T05:10:00.7252484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.7252963Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T05:10:00.7253055Z 2025-03-14T05:10:00.7253318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7254060Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:10:00.7254125Z 2025-03-14T05:10:00.7254397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.7254569Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T05:10:00.7254641Z 2025-03-14T05:10:00.7255006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.7255826Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:10:00.7255901Z 2025-03-14T05:10:00.7256268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.7257089Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:10:00.7257154Z 2025-03-14T05:10:00.7257496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:10:00.7257671Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:10:00.7257822Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:10:00.7258028Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:10:00.7258184Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:10:00.7258352Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:10:00.7258492Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:10:00.7258644Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:10:00.7258779Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:10:00.7258932Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:10:00.7259097Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:10:00.7259186Z 2025-03-14T05:10:00.7259618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:10:00.7259810Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T05:10:00.7260003Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:10:00.7260195Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:10:00.7260363Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T05:10:00.7260555Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:10:00.7260731Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:10:00.7260893Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T05:10:00.7261061Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:10:00.7261239Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:10:00.7261386Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T05:10:00.7261555Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:10:00.7261756Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:10:00.7261907Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T05:10:00.7262074Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:10:00.7262254Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:10:00.7262327Z 2025-03-14T05:10:00.7262730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.7262942Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:10:00.7263010Z 2025-03-14T05:10:00.7263459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.7263614Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:10:00.7263774Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:10:00.7263917Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:10:00.7263991Z 2025-03-14T05:10:00.7264439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.7264630Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:10:00.7264700Z 2025-03-14T05:10:00.7265051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.7265213Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:10:00.7265287Z 2025-03-14T05:10:00.7265629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.7265769Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:00.7265897Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7266062Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:00.7266128Z 2025-03-14T05:10:00.7266466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.7266596Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:00.7266729Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:00.7266887Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:10:00.7266960Z 2025-03-14T05:10:00.7267273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.7267405Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7267498Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:10:00.7267634Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:10:00.7267720Z 2025-03-14T05:10:00.7268040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.7268190Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:00.7268290Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:10:00.7268440Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:10:00.7268516Z 2025-03-14T05:10:00.7268854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.7269021Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.7269137Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:10:00.7269210Z 2025-03-14T05:10:00.7269517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.7269671Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.7269795Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:10:00.7269862Z 2025-03-14T05:10:00.7270165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.7270314Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.7270436Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:10:00.7270502Z 2025-03-14T05:10:00.7270810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.7271025Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:00.7271145Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:10:00.7271210Z 2025-03-14T05:10:00.7271550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.7271691Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:00.7271761Z 2025-03-14T05:10:00.7272089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.7272231Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:00.7272296Z 2025-03-14T05:10:00.7272645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.7272782Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:00.7272920Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:10:00.7273072Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:00.7273222Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:10:00.7273286Z 2025-03-14T05:10:00.7273639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.7273798Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:00.7273931Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:10:00.7274080Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:00.7274242Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:10:00.7274310Z 2025-03-14T05:10:00.7274662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.7275725Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:00.7275912Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:00.7276053Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:10:00.7276133Z 2025-03-14T05:10:00.7276475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.7276603Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:00.7276783Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:00.7276919Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:10:00.7276993Z 2025-03-14T05:10:00.7277308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.7277419Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:00.7277537Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:00.7277681Z 2025-03-14T05:10:00.7278008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.7278115Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:00.7278234Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:00.7278306Z 2025-03-14T05:10:00.7278606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.7278730Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:00.7278861Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:00.7278936Z 2025-03-14T05:10:00.7279243Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.7279365Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:00.7279490Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:00.7279561Z 2025-03-14T05:10:00.7279900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.7280085Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:00.7280147Z 2025-03-14T05:10:00.7280479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.7280657Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:10:00.7280729Z 2025-03-14T05:10:00.7281091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.7281297Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:10:00.7281362Z 2025-03-14T05:10:00.7282118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.7282329Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:10:00.7282406Z 2025-03-14T05:10:00.7282826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.7282990Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:10:00.7283142Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:10:00.7283290Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:10:00.7283353Z 2025-03-14T05:10:00.7283725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.7283891Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:10:00.7283966Z 2025-03-14T05:10:00.7284341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.7284519Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:10:00.7284592Z 2025-03-14T05:10:00.7284896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.7285035Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:10:00.7285163Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7285317Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:10:00.7285380Z 2025-03-14T05:10:00.7285695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.7285818Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:10:00.7285947Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:10:00.7286098Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:10:00.7286170Z 2025-03-14T05:10:00.7286467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.7286597Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7286691Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:10:00.7286830Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:10:00.7286920Z 2025-03-14T05:10:00.7287229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.7287378Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:10:00.7287479Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:10:00.7287635Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:10:00.7287707Z 2025-03-14T05:10:00.7288007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.7288166Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.7288279Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:10:00.7288351Z 2025-03-14T05:10:00.7288642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.7288796Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.7288906Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:10:00.7288980Z 2025-03-14T05:10:00.7289264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.7289415Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.7289522Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:10:00.7289597Z 2025-03-14T05:10:00.7289903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.7290109Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:10:00.7290216Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:10:00.7290288Z 2025-03-14T05:10:00.7290610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.7290754Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:10:00.7290818Z 2025-03-14T05:10:00.7291144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.7291287Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:10:00.7291352Z 2025-03-14T05:10:00.7291689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.7291824Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:10:00.7291957Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:10:00.7292110Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:10:00.7292258Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:10:00.7292324Z 2025-03-14T05:10:00.7292666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.7292820Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:10:00.7292954Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:10:00.7293105Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:10:00.7293267Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:10:00.7293332Z 2025-03-14T05:10:00.7293661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.7293774Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:10:00.7293941Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:10:00.7294079Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:10:00.7294152Z 2025-03-14T05:10:00.7294467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.7294588Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:10:00.7294750Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:10:00.7294888Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:10:00.7294953Z 2025-03-14T05:10:00.7295254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.7295354Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:10:00.7295494Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:10:00.7295572Z 2025-03-14T05:10:00.7295898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.7295994Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:10:00.7296117Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:10:00.7296180Z 2025-03-14T05:10:00.7296480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.7296594Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:10:00.7296737Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:10:00.7296802Z 2025-03-14T05:10:00.7297099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.7297212Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:10:00.7297349Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:10:00.7297412Z 2025-03-14T05:10:00.7297749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.7297936Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:10:00.7298008Z 2025-03-14T05:10:00.7298351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.7298523Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:10:00.7298595Z 2025-03-14T05:10:00.7298984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.7299168Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:10:00.7299233Z 2025-03-14T05:10:00.7299627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.7299831Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:10:00.7299902Z 2025-03-14T05:10:00.7300335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.7300497Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:10:00.7300647Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:10:00.7300793Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:10:00.7300860Z 2025-03-14T05:10:00.7301238Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.7301424Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:10:00.7301514Z 2025-03-14T05:10:00.7301828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.7301981Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:10:00.7302047Z 2025-03-14T05:10:00.7303537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.7303680Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:10:00.7303817Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7303971Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:10:00.7304053Z 2025-03-14T05:10:00.7304462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.7304608Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:10:00.7304733Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:10:00.7304899Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:10:00.7304967Z 2025-03-14T05:10:00.7305301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.7305428Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7305565Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:10:00.7305698Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:10:00.7305775Z 2025-03-14T05:10:00.7306083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.7306236Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:10:00.7306347Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:10:00.7306485Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:10:00.7306550Z 2025-03-14T05:10:00.7306862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.7307020Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.7307138Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:10:00.7307214Z 2025-03-14T05:10:00.7307512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.7307668Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.7307781Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:10:00.7307854Z 2025-03-14T05:10:00.7308150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.7308308Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.7308419Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:10:00.7308493Z 2025-03-14T05:10:00.7308810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.7309016Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:10:00.7309129Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:10:00.7309202Z 2025-03-14T05:10:00.7309531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.7309675Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:10:00.7309739Z 2025-03-14T05:10:00.7310074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.7310215Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:10:00.7310291Z 2025-03-14T05:10:00.7310627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.7310773Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:10:00.7310897Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:10:00.7311056Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:10:00.7311196Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:10:00.7311286Z 2025-03-14T05:10:00.7311633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.7311779Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:10:00.7311900Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:10:00.7312076Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:10:00.7312215Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:10:00.7312286Z 2025-03-14T05:10:00.7312610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.7312734Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:10:00.7312905Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:10:00.7313042Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:10:00.7313115Z 2025-03-14T05:10:00.7313444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.7313563Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:10:00.7313728Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:10:00.7313866Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:10:00.7313930Z 2025-03-14T05:10:00.7314244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.7314376Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:10:00.7314527Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:10:00.7314593Z 2025-03-14T05:10:00.7314910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.7315005Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:10:00.7315124Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:10:00.7315188Z 2025-03-14T05:10:00.7315494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.7315609Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:10:00.7315753Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:10:00.7315819Z 2025-03-14T05:10:00.7316126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.7316240Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:10:00.7316377Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:10:00.7316443Z 2025-03-14T05:10:00.7316794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.7316980Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:10:00.7317071Z 2025-03-14T05:10:00.7317400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.7317570Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:10:00.7317636Z 2025-03-14T05:10:00.7318036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.7318211Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:10:00.7318283Z 2025-03-14T05:10:00.7318678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.7318906Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:10:00.7318969Z 2025-03-14T05:10:00.7319395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.7319542Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:10:00.7319695Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:10:00.7319836Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:10:00.7319898Z 2025-03-14T05:10:00.7320261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.7320445Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:10:00.7320530Z 2025-03-14T05:10:00.7320837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.7320984Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:10:00.7321047Z 2025-03-14T05:10:00.7321361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.7321486Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:10:00.7321614Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7321761Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:10:00.7321833Z 2025-03-14T05:10:00.7322147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.7322275Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:10:00.7322394Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:10:00.7322552Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:10:00.7322614Z 2025-03-14T05:10:00.7322926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.7323046Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7323165Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:10:00.7323299Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:10:00.7323372Z 2025-03-14T05:10:00.7323676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.7323847Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:10:00.7323944Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:10:00.7324083Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:10:00.7324147Z 2025-03-14T05:10:00.7324462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.7324613Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.7324731Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:10:00.7324797Z 2025-03-14T05:10:00.7325096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.7325246Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.7325365Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:10:00.7325428Z 2025-03-14T05:10:00.7325737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.7325880Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.7325998Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:10:00.7326078Z 2025-03-14T05:10:00.7326399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.7326585Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:10:00.7326694Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:10:00.7326763Z 2025-03-14T05:10:00.7327084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.7327226Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:10:00.7327290Z 2025-03-14T05:10:00.7327620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.7327754Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:10:00.7327825Z 2025-03-14T05:10:00.7328159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.7328306Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:10:00.7329835Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:10:00.7330021Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:10:00.7330161Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:10:00.7330275Z 2025-03-14T05:10:00.7330617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.7330759Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:10:00.7330898Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:10:00.7331056Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:10:00.7331191Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:10:00.7331263Z 2025-03-14T05:10:00.7331584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.7331705Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:10:00.7331867Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:10:00.7332014Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:10:00.7332079Z 2025-03-14T05:10:00.7332425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.7332535Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:10:00.7332705Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:10:00.7332832Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:10:00.7332906Z 2025-03-14T05:10:00.7333227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.7333347Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:10:00.7333462Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:10:00.7333534Z 2025-03-14T05:10:00.7334657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.7334767Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:10:00.7334884Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:10:00.7334957Z 2025-03-14T05:10:00.7335253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.7335378Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:10:00.7335511Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:10:00.7335590Z 2025-03-14T05:10:00.7335885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.7336008Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:10:00.7336135Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:10:00.7336207Z 2025-03-14T05:10:00.7336540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.7336732Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:10:00.7336827Z 2025-03-14T05:10:00.7337148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.7337316Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:10:00.7337379Z 2025-03-14T05:10:00.7337776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.7337944Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:10:00.7338016Z 2025-03-14T05:10:00.7338402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.7338615Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:10:00.7338680Z 2025-03-14T05:10:00.7339111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.7339256Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:10:00.7339410Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:10:00.7339545Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:10:00.7339621Z 2025-03-14T05:10:00.7340009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.7340204Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:10:00.7340271Z 2025-03-14T05:10:00.7340589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.7340734Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:10:00.7340810Z 2025-03-14T05:10:00.7341116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.7341251Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:10:00.7341377Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7341532Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:10:00.7341598Z 2025-03-14T05:10:00.7341919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.7342043Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:10:00.7342170Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:10:00.7342319Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:10:00.7342391Z 2025-03-14T05:10:00.7342694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.7342841Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:00.7342934Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:10:00.7343071Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:10:00.7343136Z 2025-03-14T05:10:00.7343463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.7343610Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:10:00.7343709Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:10:00.7343842Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:10:00.7343908Z 2025-03-14T05:10:00.7344302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.7344467Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.7344594Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:10:00.7344664Z 2025-03-14T05:10:00.7344978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.7345141Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.7345263Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:10:00.7345328Z 2025-03-14T05:10:00.7345633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.7345781Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.7345920Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:10:00.7346002Z 2025-03-14T05:10:00.7346316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.7346500Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:10:00.7346616Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:10:00.7346681Z 2025-03-14T05:10:00.7347028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.7347165Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:10:00.7347242Z 2025-03-14T05:10:00.7347583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.7347727Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:10:00.7347793Z 2025-03-14T05:10:00.7348145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.7348283Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:10:00.7348416Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:10:00.7348571Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:10:00.7348734Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:10:00.7348799Z 2025-03-14T05:10:00.7350426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.7350627Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:10:00.7350844Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:10:00.7351016Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:10:00.7351155Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:10:00.7351227Z 2025-03-14T05:10:00.7351569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.7351700Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:10:00.7351861Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:10:00.7352001Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:10:00.7352066Z 2025-03-14T05:10:00.7352412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.7352528Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:10:00.7352700Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:10:00.7352831Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:10:00.7352907Z 2025-03-14T05:10:00.7353255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.7353381Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:10:00.7353498Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:10:00.7353573Z 2025-03-14T05:10:00.7353882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.7353987Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:10:00.7354320Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:10:00.7354421Z 2025-03-14T05:10:00.7354803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.7354975Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:10:00.7355123Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:10:00.7355203Z 2025-03-14T05:10:00.7355505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.7355628Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:10:00.7355755Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:10:00.7355830Z 2025-03-14T05:10:00.7356175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.7356398Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:10:00.7356465Z 2025-03-14T05:10:00.7356807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.7356966Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:10:00.7357057Z 2025-03-14T05:10:00.7357441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.7357621Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:10:00.7357685Z 2025-03-14T05:10:00.7358169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:10:00.7358306Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:10:00.7358380Z 2025-03-14T05:10:00.7358673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7358826Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:10:00.7358892Z 2025-03-14T05:10:00.7359343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.7359479Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:10:00.7359584Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:10:00.7359718Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:10:00.7359796Z 2025-03-14T05:10:00.7360250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.7360384Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.7360615Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:10:00.7360682Z 2025-03-14T05:10:00.7361131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.7361298Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.7361370Z 2025-03-14T05:10:00.7361655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7361784Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:10:00.7361850Z 2025-03-14T05:10:00.7362277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.7362393Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:10:00.7362509Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:10:00.7362649Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:10:00.7362721Z 2025-03-14T05:10:00.7363175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.7363313Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.7363838Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:10:00.7363914Z 2025-03-14T05:10:00.7364355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.7364527Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.7364591Z 2025-03-14T05:10:00.7364887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7365011Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:10:00.7365083Z 2025-03-14T05:10:00.7365502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.7365621Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:10:00.7365727Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:10:00.7365850Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:10:00.7365916Z 2025-03-14T05:10:00.7366378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.7366529Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.7366758Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:10:00.7366827Z 2025-03-14T05:10:00.7368221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.7368413Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.7368483Z 2025-03-14T05:10:00.7368782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7368908Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:10:00.7368981Z 2025-03-14T05:10:00.7369395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.7369516Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:10:00.7369621Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:10:00.7369742Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:10:00.7369806Z 2025-03-14T05:10:00.7370249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.7370405Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.7370638Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:10:00.7370720Z 2025-03-14T05:10:00.7371168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.7371328Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.7371402Z 2025-03-14T05:10:00.7371689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7371820Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:10:00.7371885Z 2025-03-14T05:10:00.7372306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.7372418Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:10:00.7372529Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:10:00.7372642Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:10:00.7372716Z 2025-03-14T05:10:00.7373152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.7373339Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:10:00.7373587Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:10:00.7373653Z 2025-03-14T05:10:00.7374096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.7374253Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.7374325Z 2025-03-14T05:10:00.7374606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.7374735Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:10:00.7374801Z 2025-03-14T05:10:00.7375080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.7375446Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:10:00.7375519Z 2025-03-14T05:10:00.7375787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.7376238Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:10:00.7376320Z 2025-03-14T05:10:00.7376592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.7376851Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:10:00.7376925Z 2025-03-14T05:10:00.7377305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:10:00.7377451Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:10:00.7377515Z 2025-03-14T05:10:00.7377811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:00.7377956Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:10:00.7378031Z 2025-03-14T05:10:00.7378404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:10:00.7378538Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:10:00.7378608Z 2025-03-14T05:10:00.7379075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:10:00.7379217Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:10:00.7379337Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:00.7379510Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:10:00.7379654Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:10:00.7379723Z 2025-03-14T05:10:00.7380075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:10:00.7380195Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:10:00.7380260Z 2025-03-14T05:10:00.7380272Z 2025-03-14T05:10:00.7380370Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:00.7502461Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:10:00.7503535Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:10:00.7503972Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7504500Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7505005Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7505436Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7505784Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7506139Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7506569Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7506987Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7507377Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7507745Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7508096Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7508498Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7508901Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7509282Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7509668Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7510033Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7510434Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7510838Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7511212Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7511587Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7511950Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.7512359Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7512773Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7513186Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7513588Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7513928Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7514331Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7514735Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7515108Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7515480Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7515821Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7516283Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7516695Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7517076Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7517450Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7517792Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7518196Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7518584Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7518962Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7519348Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7519692Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7520110Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7520499Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7520883Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7521247Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7521595Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7521989Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7522404Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7522799Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7523168Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7523510Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7523904Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7524302Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7524674Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7525047Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7525391Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7525799Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7526210Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7526580Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7526952Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7527299Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7527697Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7528093Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7528464Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7528850Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7530534Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7530979Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7531392Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7531778Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7532153Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7532516Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.7532941Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7533376Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7533781Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7534182Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7534522Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7534925Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7535314Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7536212Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7536582Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7536927Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7537360Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7537784Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7538167Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7538529Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7538878Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7539273Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7539670Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7540050Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7540432Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7540798Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7541194Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7541592Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7541968Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7542345Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7542689Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7543085Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7543498Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7543894Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7544362Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7544745Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7545198Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7545643Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7546060Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7546474Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7546859Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7547334Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7547795Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7548220Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7548637Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7549019Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7549470Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7549907Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7550332Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7550756Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7551158Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7551610Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7552041Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7552464Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7552830Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7553177Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7553572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7553984Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7554376Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7554740Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7555089Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7555484Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7555884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7556266Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7556630Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7556997Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7557405Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7557802Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7558169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7558539Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7558900Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.7559306Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7559717Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7560103Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7560508Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7560860Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7561264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7561658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7562031Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7562404Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7562743Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7563140Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7563549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7563948Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7564318Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7564656Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7565060Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7565453Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7566521Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7566949Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7567344Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7568111Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7568568Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7568999Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7569380Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7569744Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7570186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7570627Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7571078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7571525Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7571909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7572372Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7572815Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7573228Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7573639Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7574002Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7574460Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7574916Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7575348Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7575759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7576148Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7576593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7577034Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7577444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7577845Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7578242Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7578720Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7579139Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7579536Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7579917Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7580263Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7580673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7581067Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7582237Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7582632Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7583050Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7583465Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7583869Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7584323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7584706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7585078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7585513Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7585985Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7586399Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7586779Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7587123Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7587519Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7587922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7588299Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7588663Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7589039Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7589456Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7589855Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7590227Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7590604Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7590955Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7591352Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7591745Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7592131Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7592516Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7592862Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7593279Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7593676Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7594050Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7594419Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7594753Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7595154Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7595563Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7595955Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7596360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7599080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7599555Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7599955Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7600761Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7601142Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7601566Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7602038Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7602431Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7602812Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7603181Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7603531Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7603927Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7604328Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7604732Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7605100Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7605464Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7605859Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7606260Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7606631Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7607002Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7607347Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7607760Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7608169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7608541Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7608908Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7609245Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7609647Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7610044Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7610413Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7610778Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7611132Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7611549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7611940Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7612317Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7612689Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7613030Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7613430Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7613818Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7614212Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7614589Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7614933Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7615330Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7615723Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7616098Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7616465Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7616815Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7617209Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7617637Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7618036Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7618399Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7618748Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7619147Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7619548Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7619931Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7620296Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7620660Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7621072Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7621471Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7621844Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7622221Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7622570Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7622970Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7623367Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7623762Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7624219Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7624584Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7625003Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7625418Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7625807Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7626182Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7626524Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7626948Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7627355Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7627738Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7628117Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7628461Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7628867Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7629265Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7629652Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7630038Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7630391Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7630832Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7631223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7631606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7631974Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7632320Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7632710Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7633106Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7633499Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7633884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7634231Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7634686Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7635095Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7635473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7635848Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7636801Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7637279Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7637698Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7638078Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7638453Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7638798Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7639208Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7639606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7639981Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7640373Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7640736Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7641146Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7641540Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7641927Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7642301Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7642644Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7643048Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7643456Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7643846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7644237Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7644580Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7644991Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7645388Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7645775Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7646142Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7646493Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7646933Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7647344Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7647727Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7648092Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7648444Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7648841Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7649236Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7649617Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7650005Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7650371Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7650770Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7651171Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7651547Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7651925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7652274Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7652667Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7653082Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7653472Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7653846Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7654187Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7654594Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7654994Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7655370Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7655746Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7656101Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7656507Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7656913Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7657297Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7657672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7658012Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7658411Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7658798Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7659190Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7659572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7659922Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7660325Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7660713Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7661097Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7661463Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7661810Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7662202Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7662618Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7663018Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7663385Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7664379Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7664799Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7665211Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7665606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7665980Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7666364Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7666781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7667177Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7667555Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7667933Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7668282Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7668680Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7669077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7669473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7669849Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7670205Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7670612Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7671013Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7671394Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7671775Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7672118Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7672542Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7672948Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7673332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7673706Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7674045Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7674445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7674838Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7675221Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7675587Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7675958Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7676380Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7676769Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7677150Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7677517Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7677867Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7678259Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7678660Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7679066Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7679458Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7679809Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7680201Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7680605Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7680982Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7681356Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7681909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7682380Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7682781Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7683194Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7683572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7683914Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7684323Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7684726Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7685102Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7685502Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7685864Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7686269Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7686658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7687042Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7687419Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7687759Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7688163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7688554Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7688957Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7689345Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7689693Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7690097Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7690492Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7691341Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7691716Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7692067Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7692492Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7692909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7693293Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7693660Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7694010Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7694409Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7694856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7695244Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7695648Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7695994Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7696400Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7696795Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7697170Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7697541Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7697887Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7698282Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7698696Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7699089Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7699462Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7699803Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7700204Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7700604Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7700981Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7701354Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7702290Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:10:00.7702859Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7703294Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7703697Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7704092Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7704501Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7704922Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7705327Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7705715Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7706138Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7706518Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7706920Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7707307Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7707701Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7708077Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7708433Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7708832Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7709254Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7709644Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7710032Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7710387Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:10:00.7710792Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7711202Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7711585Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7711966Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7712321Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:10:00.7712738Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7713160Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7713542Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7713922Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7714270Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:10:00.7714680Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:10:00.7715085Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:10:00.7715464Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:10:00.7715871Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:10:00.7716104Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:10:00.7716345Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:10:00.7716569Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:10:00.7716789Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:10:00.7717011Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:10:00.7717237Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:10:00.7717457Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:10:00.7717673Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:10:00.7717901Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:10:00.7718113Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:10:00.7718337Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:10:00.7718546Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:10:00.7718789Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:10:00.7719018Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:10:00.7719244Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:10:00.7719460Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:10:00.7719816Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:10:00.7720155Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:10:00.7720499Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:10:00.7720835Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:10:00.7721176Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:10:00.7721495Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:10:00.7721816Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:10:00.7722190Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:10:00.7722557Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:10:00.7722911Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:10:00.7723246Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:10:00.7723328Z 2025-03-14T05:10:00.7723628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7724200Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7724277Z 2025-03-14T05:10:00.7724556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7726263Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7726349Z 2025-03-14T05:10:00.7726646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:10:00.7726793Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:10:00.7726869Z 2025-03-14T05:10:00.7727239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:10:00.7727493Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:10:00.7727567Z 2025-03-14T05:10:00.7727827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7728327Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7728409Z 2025-03-14T05:10:00.7728686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7730474Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7730553Z 2025-03-14T05:10:00.7730851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7730993Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:10:00.7731067Z 2025-03-14T05:10:00.7731319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7731833Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7731917Z 2025-03-14T05:10:00.7732190Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7733962Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7734031Z 2025-03-14T05:10:00.7734325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7734465Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:10:00.7734535Z 2025-03-14T05:10:00.7734787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7735291Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7735374Z 2025-03-14T05:10:00.7735653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7738430Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7738516Z 2025-03-14T05:10:00.7738802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7739310Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.7739383Z 2025-03-14T05:10:00.7739659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7741508Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7741586Z 2025-03-14T05:10:00.7741861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7742015Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:10:00.7742077Z 2025-03-14T05:10:00.7742362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7742515Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:10:00.7742578Z 2025-03-14T05:10:00.7742853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7743341Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7743430Z 2025-03-14T05:10:00.7743694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7745604Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7745688Z 2025-03-14T05:10:00.7745992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7746144Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:10:00.7746212Z 2025-03-14T05:10:00.7746495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7746994Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7747067Z 2025-03-14T05:10:00.7747322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7749108Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7749185Z 2025-03-14T05:10:00.7749473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7749635Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:10:00.7749700Z 2025-03-14T05:10:00.7749955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7750459Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7750536Z 2025-03-14T05:10:00.7750802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7752577Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7752654Z 2025-03-14T05:10:00.7752927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7753121Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:10:00.7753203Z 2025-03-14T05:10:00.7753487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7753632Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:10:00.7753706Z 2025-03-14T05:10:00.7753947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7754423Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7754497Z 2025-03-14T05:10:00.7754754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7756480Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7756560Z 2025-03-14T05:10:00.7756859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7757004Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:10:00.7757067Z 2025-03-14T05:10:00.7757317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7757792Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7757865Z 2025-03-14T05:10:00.7758121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7759865Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7759951Z 2025-03-14T05:10:00.7760232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7760375Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:10:00.7760438Z 2025-03-14T05:10:00.7760687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7761166Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7761237Z 2025-03-14T05:10:00.7761493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7763236Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7763327Z 2025-03-14T05:10:00.7763603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7763766Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:10:00.7763830Z 2025-03-14T05:10:00.7764111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7764263Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:10:00.7764336Z 2025-03-14T05:10:00.7764579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7765063Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7765126Z 2025-03-14T05:10:00.7765392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7767151Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7767231Z 2025-03-14T05:10:00.7767514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7767657Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:10:00.7767729Z 2025-03-14T05:10:00.7767968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7768451Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7768521Z 2025-03-14T05:10:00.7768777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7770533Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7770601Z 2025-03-14T05:10:00.7770886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7771034Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:10:00.7771096Z 2025-03-14T05:10:00.7771350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7771833Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7771905Z 2025-03-14T05:10:00.7772178Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7773918Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7773990Z 2025-03-14T05:10:00.7774235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7774725Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.7774788Z 2025-03-14T05:10:00.7775048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7776859Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7776941Z 2025-03-14T05:10:00.7777225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7777373Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:10:00.7777446Z 2025-03-14T05:10:00.7777723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7777876Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:10:00.7777939Z 2025-03-14T05:10:00.7778187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7778672Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7778762Z 2025-03-14T05:10:00.7779020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7780747Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7780822Z 2025-03-14T05:10:00.7781104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7781252Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:10:00.7781316Z 2025-03-14T05:10:00.7781741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7782234Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7782366Z 2025-03-14T05:10:00.7782636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7784468Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7784554Z 2025-03-14T05:10:00.7784841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7784988Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:10:00.7785061Z 2025-03-14T05:10:00.7785311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7785838Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7785929Z 2025-03-14T05:10:00.7786208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7788000Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7788078Z 2025-03-14T05:10:00.7788365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7788522Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:10:00.7788611Z 2025-03-14T05:10:00.7788894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7789050Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:10:00.7789116Z 2025-03-14T05:10:00.7789374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7789946Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7790021Z 2025-03-14T05:10:00.7790284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7792068Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7792142Z 2025-03-14T05:10:00.7792445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7792608Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:10:00.7792673Z 2025-03-14T05:10:00.7792933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7793420Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7793494Z 2025-03-14T05:10:00.7793763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7795541Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7795634Z 2025-03-14T05:10:00.7795922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7796072Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:10:00.7796152Z 2025-03-14T05:10:00.7796412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7796903Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7796977Z 2025-03-14T05:10:00.7797249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7799035Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7799125Z 2025-03-14T05:10:00.7799412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7799568Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:10:00.7799640Z 2025-03-14T05:10:00.7799916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7800072Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:10:00.7800137Z 2025-03-14T05:10:00.7800395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7800879Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7800951Z 2025-03-14T05:10:00.7801234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7803002Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7803092Z 2025-03-14T05:10:00.7803379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7803528Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:10:00.7803592Z 2025-03-14T05:10:00.7803849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7804344Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7804414Z 2025-03-14T05:10:00.7804670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7806399Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7806492Z 2025-03-14T05:10:00.7806770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7806916Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:10:00.7806982Z 2025-03-14T05:10:00.7807232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7807720Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7807793Z 2025-03-14T05:10:00.7808059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7809824Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7809948Z 2025-03-14T05:10:00.7810221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7810383Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:10:00.7810451Z 2025-03-14T05:10:00.7810739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7810890Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:10:00.7810964Z 2025-03-14T05:10:00.7811209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7811688Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7811780Z 2025-03-14T05:10:00.7812052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7813799Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7813873Z 2025-03-14T05:10:00.7814153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7814294Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:10:00.7814357Z 2025-03-14T05:10:00.7814609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7815079Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7815175Z 2025-03-14T05:10:00.7815434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7817191Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7817265Z 2025-03-14T05:10:00.7817545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7828127Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:10:00.7828250Z 2025-03-14T05:10:00.7828557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7829117Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7829217Z 2025-03-14T05:10:00.7829488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7831273Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7831349Z 2025-03-14T05:10:00.7831599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7832097Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.7832182Z 2025-03-14T05:10:00.7832454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7834315Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7834385Z 2025-03-14T05:10:00.7834681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7834820Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:10:00.7834894Z 2025-03-14T05:10:00.7835175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7835326Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:10:00.7835392Z 2025-03-14T05:10:00.7835666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7836165Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7836230Z 2025-03-14T05:10:00.7836501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7838694Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7838775Z 2025-03-14T05:10:00.7839061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7839194Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:10:00.7839285Z 2025-03-14T05:10:00.7839532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7840025Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7840089Z 2025-03-14T05:10:00.7840355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7842079Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7842153Z 2025-03-14T05:10:00.7842438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7842586Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:10:00.7842671Z 2025-03-14T05:10:00.7842915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7843396Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7843460Z 2025-03-14T05:10:00.7843722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7845439Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7845507Z 2025-03-14T05:10:00.7845806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7845951Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:10:00.7846022Z 2025-03-14T05:10:00.7846297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7846458Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:10:00.7846522Z 2025-03-14T05:10:00.7846773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7847233Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7847307Z 2025-03-14T05:10:00.7847567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7849311Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7849410Z 2025-03-14T05:10:00.7849690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7849830Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:10:00.7849894Z 2025-03-14T05:10:00.7850147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7850624Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7850698Z 2025-03-14T05:10:00.7850965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7852689Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7852780Z 2025-03-14T05:10:00.7853082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7853214Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:10:00.7853286Z 2025-03-14T05:10:00.7853533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7854016Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7854080Z 2025-03-14T05:10:00.7854346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7856070Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7856159Z 2025-03-14T05:10:00.7856440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7856582Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:10:00.7856652Z 2025-03-14T05:10:00.7856951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7857100Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:10:00.7857164Z 2025-03-14T05:10:00.7857415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7857876Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7857949Z 2025-03-14T05:10:00.7858204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7859958Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7860046Z 2025-03-14T05:10:00.7860326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7860463Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:10:00.7860527Z 2025-03-14T05:10:00.7860780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7861255Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7861328Z 2025-03-14T05:10:00.7861584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7863337Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7863426Z 2025-03-14T05:10:00.7863708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7863853Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:10:00.7863922Z 2025-03-14T05:10:00.7864255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7864775Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7864852Z 2025-03-14T05:10:00.7865166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7867012Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7867089Z 2025-03-14T05:10:00.7867370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7867522Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:10:00.7867598Z 2025-03-14T05:10:00.7867878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7868025Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:10:00.7868088Z 2025-03-14T05:10:00.7868339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7868845Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7868932Z 2025-03-14T05:10:00.7869195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7870971Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7871045Z 2025-03-14T05:10:00.7871326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7871469Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:10:00.7871534Z 2025-03-14T05:10:00.7871791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7872298Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7872370Z 2025-03-14T05:10:00.7872650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7874411Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7874484Z 2025-03-14T05:10:00.7874766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7874905Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:10:00.7874970Z 2025-03-14T05:10:00.7875251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7875749Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7875823Z 2025-03-14T05:10:00.7876084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7877863Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7877939Z 2025-03-14T05:10:00.7878218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7878384Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:10:00.7878448Z 2025-03-14T05:10:00.7878750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7878888Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:10:00.7878959Z 2025-03-14T05:10:00.7879214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7879683Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7879756Z 2025-03-14T05:10:00.7880012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7881987Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7882082Z 2025-03-14T05:10:00.7882372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7882513Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:10:00.7882579Z 2025-03-14T05:10:00.7882832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7883298Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7883373Z 2025-03-14T05:10:00.7883632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7885357Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7885451Z 2025-03-14T05:10:00.7885727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7885888Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:10:00.7885951Z 2025-03-14T05:10:00.7886202Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7886668Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7886740Z 2025-03-14T05:10:00.7886997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7888777Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7888863Z 2025-03-14T05:10:00.7910591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7910856Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:10:00.7910934Z 2025-03-14T05:10:00.7911264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7911416Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:10:00.7911505Z 2025-03-14T05:10:00.7911791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7912317Z x_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7912387Z 2025-03-14T05:10:00.7912683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7914636Z x_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7914746Z 2025-03-14T05:10:00.7915050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7915194Z out_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:10:00.7915273Z 2025-03-14T05:10:00.7915534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7916043Z x_90: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7916120Z 2025-03-14T05:10:00.7916387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7918194Z x_91: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7918293Z 2025-03-14T05:10:00.7918592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7918741Z out_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:10:00.7918809Z 2025-03-14T05:10:00.7919073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7940072Z x_92: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7940206Z 2025-03-14T05:10:00.7940512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7942455Z x_93: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_6_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7942540Z 2025-03-14T05:10:00.7942864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7943026Z x_93 += out_51; out_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_93; x_93 = out_51 = None 2025-03-14T05:10:00.7943095Z 2025-03-14T05:10:00.7943402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7943550Z out_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:10:00.7943628Z 2025-03-14T05:10:00.7943887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7944492Z x_94: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7944912Z 2025-03-14T05:10:00.7945196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7946974Z x_95: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7947045Z 2025-03-14T05:10:00.7947351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7947494Z out_56: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_95); x_95 = None 2025-03-14T05:10:00.7947569Z 2025-03-14T05:10:00.7947830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7948328Z x_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7948413Z 2025-03-14T05:10:00.7948689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7950487Z x_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7950558Z 2025-03-14T05:10:00.7951672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7951817Z out_57: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:10:00.7951890Z 2025-03-14T05:10:00.7952136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7952650Z x_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7952741Z 2025-03-14T05:10:00.7953000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7954737Z x_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_7_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7954805Z 2025-03-14T05:10:00.7955088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7955235Z x_99 += out_55; out_58: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_99; x_99 = out_55 = None 2025-03-14T05:10:00.7955307Z 2025-03-14T05:10:00.7955600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7955749Z out_59: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:10:00.7955823Z 2025-03-14T05:10:00.7956067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7956560Z x_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7956626Z 2025-03-14T05:10:00.7956891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7958694Z x_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7959438Z 2025-03-14T05:10:00.7959814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7959992Z out_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_101); x_101 = None 2025-03-14T05:10:00.7960068Z 2025-03-14T05:10:00.7960322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7960812Z x_102: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7960878Z 2025-03-14T05:10:00.7961144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7963489Z x_103: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7963588Z 2025-03-14T05:10:00.7963957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7964097Z out_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:10:00.7964172Z 2025-03-14T05:10:00.7964436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7964921Z x_104: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7964988Z 2025-03-14T05:10:00.7965257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7967015Z x_105: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_8_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7967098Z 2025-03-14T05:10:00.7967378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7967530Z x_105 += out_59; out_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_105; x_105 = out_59 = None 2025-03-14T05:10:00.7967601Z 2025-03-14T05:10:00.7967877Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7968024Z out_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:10:00.7968087Z 2025-03-14T05:10:00.7968339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7968806Z x_106: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7968876Z 2025-03-14T05:10:00.7969141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7970927Z x_107: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7971017Z 2025-03-14T05:10:00.7971295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7971441Z out_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_107); x_107 = None 2025-03-14T05:10:00.7971513Z 2025-03-14T05:10:00.7971757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7972237Z x_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7972300Z 2025-03-14T05:10:00.7972564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7974321Z x_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7974410Z 2025-03-14T05:10:00.7974694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7974830Z out_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_109); x_109 = None 2025-03-14T05:10:00.7974902Z 2025-03-14T05:10:00.7975146Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7975629Z x_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_65, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_65 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7975693Z 2025-03-14T05:10:00.7975956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7977703Z x_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_110, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_110 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_9_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7977785Z 2025-03-14T05:10:00.7978101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7978258Z x_111 += out_63; out_66: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_111; x_111 = out_63 = None 2025-03-14T05:10:00.7978329Z 2025-03-14T05:10:00.7978601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7978747Z out_67: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_66); out_66 = None 2025-03-14T05:10:00.7978809Z 2025-03-14T05:10:00.7979058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7979526Z x_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_67, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7979601Z 2025-03-14T05:10:00.7979876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7981836Z x_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7981920Z 2025-03-14T05:10:00.7982199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7982341Z out_68: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_113); x_113 = None 2025-03-14T05:10:00.7982405Z 2025-03-14T05:10:00.7982666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7983149Z x_114: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7983303Z 2025-03-14T05:10:00.7983574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7985464Z x_115: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_114, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_114 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7985545Z 2025-03-14T05:10:00.7985843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7985978Z out_69: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_115); x_115 = None 2025-03-14T05:10:00.7986052Z 2025-03-14T05:10:00.7986303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7986821Z x_116: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_69, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_69 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7986913Z 2025-03-14T05:10:00.7987185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7988976Z x_117: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_10_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7989056Z 2025-03-14T05:10:00.7989346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.7989496Z x_117 += out_67; out_70: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_117; x_117 = out_67 = None 2025-03-14T05:10:00.7989569Z 2025-03-14T05:10:00.7989853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7990022Z out_71: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_70); out_70 = None 2025-03-14T05:10:00.7990088Z 2025-03-14T05:10:00.7990348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7990842Z x_118: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_71, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.7990915Z 2025-03-14T05:10:00.7991179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7992963Z x_119: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_118, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_118 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7993039Z 2025-03-14T05:10:00.7993337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7993506Z out_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_119); x_119 = None 2025-03-14T05:10:00.7993571Z 2025-03-14T05:10:00.7993828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7994317Z x_120: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.7994389Z 2025-03-14T05:10:00.7994649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7996424Z x_121: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_120, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_120 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7996516Z 2025-03-14T05:10:00.7996798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.7996943Z out_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_121); x_121 = None 2025-03-14T05:10:00.7997008Z 2025-03-14T05:10:00.7997283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.7997787Z x_122: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_73, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_73 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.7997851Z 2025-03-14T05:10:00.7998122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.7999890Z x_123: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_122, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_122 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_11_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.7999980Z 2025-03-14T05:10:00.8000262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8000413Z x_123 += out_71; out_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_123; x_123 = out_71 = None 2025-03-14T05:10:00.8000486Z 2025-03-14T05:10:00.8000759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8000906Z out_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_74); out_74 = None 2025-03-14T05:10:00.8000969Z 2025-03-14T05:10:00.8001219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8001685Z x_124: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_75, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8001758Z 2025-03-14T05:10:00.8002014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8003752Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_124, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_124 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8003840Z 2025-03-14T05:10:00.8004118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8004257Z out_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_125); x_125 = None 2025-03-14T05:10:00.8004319Z 2025-03-14T05:10:00.8004572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8005040Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8005113Z 2025-03-14T05:10:00.8005366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8007115Z x_127: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_126, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_126 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8007206Z 2025-03-14T05:10:00.8007485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8007624Z out_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_127); x_127 = None 2025-03-14T05:10:00.8007688Z 2025-03-14T05:10:00.8007941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8008413Z x_128: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_77, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_77 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8008483Z 2025-03-14T05:10:00.8008740Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8010474Z x_129: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_128, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_128 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_12_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8010561Z 2025-03-14T05:10:00.8010833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8010987Z x_129 += out_75; out_78: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_129; x_129 = out_75 = None 2025-03-14T05:10:00.8011053Z 2025-03-14T05:10:00.8011335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8011470Z out_79: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_78); out_78 = None 2025-03-14T05:10:00.8011554Z 2025-03-14T05:10:00.8014156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8014662Z x_130: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_79, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8014749Z 2025-03-14T05:10:00.8015057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8016829Z x_131: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_130, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_130 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8016906Z 2025-03-14T05:10:00.8017189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8017337Z out_80: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_131); x_131 = None 2025-03-14T05:10:00.8017403Z 2025-03-14T05:10:00.8017659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8018182Z x_132: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8018284Z 2025-03-14T05:10:00.8018552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8020345Z x_133: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_132, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_132 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8020424Z 2025-03-14T05:10:00.8020712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8020855Z out_81: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_133); x_133 = None 2025-03-14T05:10:00.8020919Z 2025-03-14T05:10:00.8021174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8021722Z x_134: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_81, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_81 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8021814Z 2025-03-14T05:10:00.8022074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8023920Z x_135: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_134, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_134 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_13_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8024023Z 2025-03-14T05:10:00.8024404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8024568Z x_135 += out_79; out_82: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_135; x_135 = out_79 = None 2025-03-14T05:10:00.8024635Z 2025-03-14T05:10:00.8024928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8025097Z out_83: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_82); out_82 = None 2025-03-14T05:10:00.8025173Z 2025-03-14T05:10:00.8025424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8025930Z x_136: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_83, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8026005Z 2025-03-14T05:10:00.8026266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8028048Z x_137: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_136, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_136 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8028114Z 2025-03-14T05:10:00.8028404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8028561Z out_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_137); x_137 = None 2025-03-14T05:10:00.8028641Z 2025-03-14T05:10:00.8028896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8040635Z x_138: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8040748Z 2025-03-14T05:10:00.8041023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8042783Z x_139: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_138, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_138 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8042928Z 2025-03-14T05:10:00.8043214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8043357Z out_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_139); x_139 = None 2025-03-14T05:10:00.8043423Z 2025-03-14T05:10:00.8043704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8044177Z x_140: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_85, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_85 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8044248Z 2025-03-14T05:10:00.8044507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8047153Z x_141: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_140, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_140 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_14_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8047286Z 2025-03-14T05:10:00.8047622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8047782Z x_141 += out_83; out_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_141; x_141 = out_83 = None 2025-03-14T05:10:00.8047848Z 2025-03-14T05:10:00.8048137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8048276Z out_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_86); out_86 = None 2025-03-14T05:10:00.8048346Z 2025-03-14T05:10:00.8048588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8049075Z x_142: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_87, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8049141Z 2025-03-14T05:10:00.8049409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8053299Z x_143: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_142, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_142 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8053416Z 2025-03-14T05:10:00.8053744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8053888Z out_88: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_143); x_143 = None 2025-03-14T05:10:00.8053964Z 2025-03-14T05:10:00.8054219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8054715Z x_144: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_88, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_88 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8054790Z 2025-03-14T05:10:00.8055056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8056906Z x_145: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_144, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_144 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8056999Z 2025-03-14T05:10:00.8057283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8057428Z out_89: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_145); x_145 = None 2025-03-14T05:10:00.8057494Z 2025-03-14T05:10:00.8057751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8058274Z x_146: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_89, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_89 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8058349Z 2025-03-14T05:10:00.8058610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8061428Z x_147: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_146, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_146 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_15_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8061553Z 2025-03-14T05:10:00.8061862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8062026Z x_147 += out_87; out_90: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_147; x_147 = out_87 = None 2025-03-14T05:10:00.8062094Z 2025-03-14T05:10:00.8062385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8062528Z out_91: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_90); out_90 = None 2025-03-14T05:10:00.8062602Z 2025-03-14T05:10:00.8062848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8063341Z x_148: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_91, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8063408Z 2025-03-14T05:10:00.8063692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8065607Z x_149: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_148, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_148 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8065682Z 2025-03-14T05:10:00.8065978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8066117Z out_92: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_149); x_149 = None 2025-03-14T05:10:00.8066191Z 2025-03-14T05:10:00.8066443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8066944Z x_150: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_92, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_92 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8067034Z 2025-03-14T05:10:00.8067313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8069125Z x_151: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_150, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_150 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8069196Z 2025-03-14T05:10:00.8069495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8069632Z out_93: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_151); x_151 = None 2025-03-14T05:10:00.8069704Z 2025-03-14T05:10:00.8069959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8070483Z x_152: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_93, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_93 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8070572Z 2025-03-14T05:10:00.8070841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8072647Z x_153: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_152, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_152 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_16_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8072723Z 2025-03-14T05:10:00.8073009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8073168Z x_153 += out_91; out_94: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_153; x_153 = out_91 = None 2025-03-14T05:10:00.8073233Z 2025-03-14T05:10:00.8073528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8073687Z out_95: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_94); out_94 = None 2025-03-14T05:10:00.8073763Z 2025-03-14T05:10:00.8074015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8074524Z x_154: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_95, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8074589Z 2025-03-14T05:10:00.8074853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8076572Z x_155: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_154, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_154 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8076645Z 2025-03-14T05:10:00.8076929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8077082Z out_96: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_155); x_155 = None 2025-03-14T05:10:00.8077168Z 2025-03-14T05:10:00.8077414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8077891Z x_156: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_96, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_96 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8077955Z 2025-03-14T05:10:00.8078217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8079936Z x_157: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_156, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_156 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8080018Z 2025-03-14T05:10:00.8080310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8080443Z out_97: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_157); x_157 = None 2025-03-14T05:10:00.8080514Z 2025-03-14T05:10:00.8080772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8081289Z x_158: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_97, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_97 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8081357Z 2025-03-14T05:10:00.8081825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8083570Z x_159: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_158, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_158 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_17_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8083707Z 2025-03-14T05:10:00.8084016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8084162Z x_159 += out_95; out_98: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_159; x_159 = out_95 = None 2025-03-14T05:10:00.8084234Z 2025-03-14T05:10:00.8084507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8084651Z out_99: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_98); out_98 = None 2025-03-14T05:10:00.8084713Z 2025-03-14T05:10:00.8084962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8085438Z x_160: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_99, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8085503Z 2025-03-14T05:10:00.8085769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8106009Z x_161: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_160, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_160 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8106232Z 2025-03-14T05:10:00.8106607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8106774Z out_100: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_161); x_161 = None 2025-03-14T05:10:00.8106864Z 2025-03-14T05:10:00.8107181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8107772Z x_162: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_100, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_100 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8107855Z 2025-03-14T05:10:00.8108201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8110263Z x_163: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_162, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_162 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8110434Z 2025-03-14T05:10:00.8110806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8110966Z out_101: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_163); x_163 = None 2025-03-14T05:10:00.8111055Z 2025-03-14T05:10:00.8111378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8111997Z x_164: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_101, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_101 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8112077Z 2025-03-14T05:10:00.8112422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8114434Z x_165: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_164, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_164 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_18_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8114545Z 2025-03-14T05:10:00.8114905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8115087Z x_165 += out_99; out_102: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_165; x_165 = out_99 = None 2025-03-14T05:10:00.8115176Z 2025-03-14T05:10:00.8115532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8115701Z out_103: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_102); out_102 = None 2025-03-14T05:10:00.8115768Z 2025-03-14T05:10:00.8116064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8116640Z x_166: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_103, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8116720Z 2025-03-14T05:10:00.8117047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8118858Z x_167: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_166, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_166 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8118936Z 2025-03-14T05:10:00.8119213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8119358Z out_104: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_167); x_167 = None 2025-03-14T05:10:00.8119427Z 2025-03-14T05:10:00.8119669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8120161Z x_168: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_104, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_104 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8120240Z 2025-03-14T05:10:00.8120508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8122303Z x_169: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_168, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_168 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8122380Z 2025-03-14T05:10:00.8122667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8122805Z out_105: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_169); x_169 = None 2025-03-14T05:10:00.8122876Z 2025-03-14T05:10:00.8123119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8123625Z x_170: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_105, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_105 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8123704Z 2025-03-14T05:10:00.8123975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8125800Z x_171: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_170, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_170 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_19_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8125870Z 2025-03-14T05:10:00.8126159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8126328Z x_171 += out_103; out_106: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_171; x_171 = out_103 = None 2025-03-14T05:10:00.8126399Z 2025-03-14T05:10:00.8126673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8126840Z out_107: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_106); out_106 = None 2025-03-14T05:10:00.8126906Z 2025-03-14T05:10:00.8127164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8127661Z x_172: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_107, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8127738Z 2025-03-14T05:10:00.8127995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8129766Z x_173: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_172, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_172 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8129840Z 2025-03-14T05:10:00.8130115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8130274Z out_108: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_173); x_173 = None 2025-03-14T05:10:00.8130360Z 2025-03-14T05:10:00.8130612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8131097Z x_174: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_108, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_108 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8131167Z 2025-03-14T05:10:00.8131436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8133215Z x_175: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_174, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_174 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8133307Z 2025-03-14T05:10:00.8133613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8133749Z out_109: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_175); x_175 = None 2025-03-14T05:10:00.8133819Z 2025-03-14T05:10:00.8134076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8134570Z x_176: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_109, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_109 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8134634Z 2025-03-14T05:10:00.8134895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8136660Z x_177: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_176, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_176 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_20_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8136749Z 2025-03-14T05:10:00.8137045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8137202Z x_177 += out_107; out_110: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_177; x_177 = out_107 = None 2025-03-14T05:10:00.8137275Z 2025-03-14T05:10:00.8137550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8137699Z out_111: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_110); out_110 = None 2025-03-14T05:10:00.8137762Z 2025-03-14T05:10:00.8138013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8138490Z x_178: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_111, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8138564Z 2025-03-14T05:10:00.8138821Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8140675Z x_179: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_178, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_178 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8140771Z 2025-03-14T05:10:00.8141048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8141194Z out_112: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_179); x_179 = None 2025-03-14T05:10:00.8141257Z 2025-03-14T05:10:00.8141508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8141996Z x_180: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_112, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_112 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8142071Z 2025-03-14T05:10:00.8142330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8144212Z x_181: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_180, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_180 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8144314Z 2025-03-14T05:10:00.8144604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8144753Z out_113: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_181); x_181 = None 2025-03-14T05:10:00.8144820Z 2025-03-14T05:10:00.8145080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8145602Z x_182: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_113, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_113 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8145666Z 2025-03-14T05:10:00.8145934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8147804Z x_183: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_182, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_182 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_21_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8147896Z 2025-03-14T05:10:00.8148184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8148346Z x_183 += out_111; out_114: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_183; x_183 = out_111 = None 2025-03-14T05:10:00.8148418Z 2025-03-14T05:10:00.8148703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8148857Z out_115: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_114); out_114 = None 2025-03-14T05:10:00.8148923Z 2025-03-14T05:10:00.8149181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8149676Z x_184: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_115, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8149749Z 2025-03-14T05:10:00.8150033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8151901Z x_185: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_184, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_184 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8151977Z 2025-03-14T05:10:00.8152268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8152417Z out_116: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_185); x_185 = None 2025-03-14T05:10:00.8152482Z 2025-03-14T05:10:00.8152742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8153242Z x_186: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_116, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_116 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8153336Z 2025-03-14T05:10:00.8153605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8155467Z x_187: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_186, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_186 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8155545Z 2025-03-14T05:10:00.8155832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8155980Z out_117: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_187); x_187 = None 2025-03-14T05:10:00.8156046Z 2025-03-14T05:10:00.8156305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8156831Z x_188: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_117, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_117 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8156920Z 2025-03-14T05:10:00.8157189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8159031Z x_189: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_188, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_188 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_22_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8159109Z 2025-03-14T05:10:00.8159399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8159559Z x_189 += out_115; out_118: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_189; x_189 = out_115 = None 2025-03-14T05:10:00.8159621Z 2025-03-14T05:10:00.8159908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8160077Z out_119: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_118); out_118 = None 2025-03-14T05:10:00.8160142Z 2025-03-14T05:10:00.8160386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8160886Z x_190: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8160957Z 2025-03-14T05:10:00.8161222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8162973Z x_191: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_190, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_190 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8163047Z 2025-03-14T05:10:00.8163326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8163523Z out_120: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_191); x_191 = None 2025-03-14T05:10:00.8163603Z 2025-03-14T05:10:00.8163852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8164334Z x_192: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_120, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_120 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8164404Z 2025-03-14T05:10:00.8164662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8168400Z x_193: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_192, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_192 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8168559Z 2025-03-14T05:10:00.8168875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8174309Z out_121: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_193); x_193 = None 2025-03-14T05:10:00.8174402Z 2025-03-14T05:10:00.8174748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8175254Z x_194: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_121, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_121 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8175329Z 2025-03-14T05:10:00.8175594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8177898Z x_195: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_194, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_194 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8177992Z 2025-03-14T05:10:00.8178280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8178819Z x_196: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:10:00.8178887Z 2025-03-14T05:10:00.8179158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8181042Z x_197: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_196, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_196 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8181112Z 2025-03-14T05:10:00.8181404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8181839Z x_195 += x_197; out_122: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_195; x_195 = x_197 = None 2025-03-14T05:10:00.8181919Z 2025-03-14T05:10:00.8182210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8182429Z out_123: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_122); out_122 = None 2025-03-14T05:10:00.8182496Z 2025-03-14T05:10:00.8182760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8188134Z x_198: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_123, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8188222Z 2025-03-14T05:10:00.8188526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8190424Z x_199: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_198, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_198 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8190525Z 2025-03-14T05:10:00.8190829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8190971Z out_124: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_199); x_199 = None 2025-03-14T05:10:00.8191044Z 2025-03-14T05:10:00.8191303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8191808Z x_200: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_124, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_124 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8191877Z 2025-03-14T05:10:00.8192149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8193905Z x_201: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_200, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_200 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8194030Z 2025-03-14T05:10:00.8194333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8194470Z out_125: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_201); x_201 = None 2025-03-14T05:10:00.8194540Z 2025-03-14T05:10:00.8194786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8195287Z x_202: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_125, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_125 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8195354Z 2025-03-14T05:10:00.8195621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8197402Z x_203: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_202, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_202 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8197480Z 2025-03-14T05:10:00.8197767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8197928Z x_203 += out_123; out_126: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_203; x_203 = out_123 = None 2025-03-14T05:10:00.8198001Z 2025-03-14T05:10:00.8198279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8198431Z out_127: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_126); out_126 = None 2025-03-14T05:10:00.8198497Z 2025-03-14T05:10:00.8198749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8199228Z x_204: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_127, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:10:00.8199300Z 2025-03-14T05:10:00.8199565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8201353Z x_205: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_204, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_204 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8201443Z 2025-03-14T05:10:00.8201724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8201867Z out_128: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_205); x_205 = None 2025-03-14T05:10:00.8201930Z 2025-03-14T05:10:00.8202180Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8202673Z x_206: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_128, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_128 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:10:00.8202736Z 2025-03-14T05:10:00.8203001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8204759Z x_207: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_206, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_206 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8204849Z 2025-03-14T05:10:00.8205145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8205280Z out_129: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_207); x_207 = None 2025-03-14T05:10:00.8205348Z 2025-03-14T05:10:00.8205594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8206092Z x_208: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_129, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_129 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:10:00.8206158Z 2025-03-14T05:10:00.8206438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:10:00.8208213Z x_209: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_208, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_208 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:10:00.8208289Z 2025-03-14T05:10:00.8208571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:10:00.8208727Z x_209 += out_127; out_130: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_209; x_209 = out_127 = None 2025-03-14T05:10:00.8208800Z 2025-03-14T05:10:00.8249420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:10:00.8249708Z out_131: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_130); out_130 = None 2025-03-14T05:10:00.8249789Z 2025-03-14T05:10:00.8250123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8250906Z x_210: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_131, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_131 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:10:00.8251070Z 2025-03-14T05:10:00.8251407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8252028Z x_211: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_210, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:10:00.8252117Z 2025-03-14T05:10:00.8252576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.8252911Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_210, scale_factor = 2.0, mode = 'nearest'); x_210 = None 2025-03-14T05:10:00.8253001Z 2025-03-14T05:10:00.8253314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8253940Z x_212: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_119, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_119 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:10:00.8254071Z 2025-03-14T05:10:00.8254482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.8254737Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_212 + top_down_features; x_212 = top_down_features = None 2025-03-14T05:10:00.8254826Z 2025-03-14T05:10:00.8255150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8255808Z x_213: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:10:00.8255884Z 2025-03-14T05:10:00.8256370Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.8256761Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:10:00.8256849Z 2025-03-14T05:10:00.8257129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8257771Z x_214: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:10:00.8257852Z 2025-03-14T05:10:00.8258306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.8258573Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_214 + top_down_features_1; x_214 = top_down_features_1 = None 2025-03-14T05:10:00.8258660Z 2025-03-14T05:10:00.8258956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8259612Z x_215: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:10:00.8259681Z 2025-03-14T05:10:00.8260143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:10:00.8260497Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:10:00.8260565Z 2025-03-14T05:10:00.8260849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8261450Z x_216: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:10:00.8261540Z 2025-03-14T05:10:00.8261881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:10:00.8262118Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_216 + top_down_features_2; x_216 = top_down_features_2 = None 2025-03-14T05:10:00.8262183Z 2025-03-14T05:10:00.8262442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8263072Z x_217: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:10:00.8263147Z 2025-03-14T05:10:00.8263514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:10:00.8263738Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_211, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:10:00.8263803Z 2025-03-14T05:10:00.8264345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8264520Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:10:00.8264590Z 2025-03-14T05:10:00.8264919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8265092Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:10:00.8265165Z 2025-03-14T05:10:00.8265600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8265765Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:10:00.8265830Z 2025-03-14T05:10:00.8266130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8266273Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:10:00.8266347Z 2025-03-14T05:10:00.8266725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.8266915Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:10:00.8267017Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:10:00.8267149Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:10:00.8267215Z 2025-03-14T05:10:00.8267552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.8267684Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:10:00.8267756Z 2025-03-14T05:10:00.8268112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.8268241Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:10:00.8268305Z 2025-03-14T05:10:00.8268712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.8268926Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:10:00.8268999Z 2025-03-14T05:10:00.8269422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.8269560Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:10:00.8269993Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:10:00.8270131Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:10:00.8270253Z x_218: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:10:00.8270325Z 2025-03-14T05:10:00.8270753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8270912Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:10:00.8270985Z 2025-03-14T05:10:00.8271292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8271452Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:10:00.8271517Z 2025-03-14T05:10:00.8271952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8272100Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:10:00.8272172Z 2025-03-14T05:10:00.8272462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8272608Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:10:00.8272674Z 2025-03-14T05:10:00.8273059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.8273256Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:10:00.8273371Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:10:00.8273500Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:10:00.8273572Z 2025-03-14T05:10:00.8273900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.8274040Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:10:00.8274120Z 2025-03-14T05:10:00.8274456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.8274585Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:10:00.8274709Z 2025-03-14T05:10:00.8275114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.8275340Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:10:00.8275406Z 2025-03-14T05:10:00.8275834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.8275969Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:10:00.8276401Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:10:00.8276528Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:10:00.8276655Z x_219: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:10:00.8276720Z 2025-03-14T05:10:00.8277160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8277317Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:10:00.8277385Z 2025-03-14T05:10:00.8277700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8277860Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:10:00.8277933Z 2025-03-14T05:10:00.8278359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8278511Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:10:00.8278576Z 2025-03-14T05:10:00.8278871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8279008Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:10:00.8279081Z 2025-03-14T05:10:00.8279452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.8279655Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:10:00.8279756Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:10:00.8279886Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:10:00.8279949Z 2025-03-14T05:10:00.8280279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.8280407Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:10:00.8280492Z 2025-03-14T05:10:00.8280816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.8280947Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:10:00.8281011Z 2025-03-14T05:10:00.8281410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.8281857Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:10:00.8281937Z 2025-03-14T05:10:00.8282352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.8282495Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:10:00.8282916Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:10:00.8283048Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:10:00.8283163Z x_220: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:10:00.8283235Z 2025-03-14T05:10:00.8283660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8283816Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:10:00.8283943Z 2025-03-14T05:10:00.8284257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8284401Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:10:00.8284466Z 2025-03-14T05:10:00.8284904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8285049Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:10:00.8285122Z 2025-03-14T05:10:00.8285415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8285562Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:10:00.8285628Z 2025-03-14T05:10:00.8286007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.8286202Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:10:00.8286314Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:10:00.8286435Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:10:00.8286509Z 2025-03-14T05:10:00.8286837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.8286990Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:10:00.8287056Z 2025-03-14T05:10:00.8287391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.8287512Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:10:00.8287585Z 2025-03-14T05:10:00.8287984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.8288206Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:10:00.8288271Z 2025-03-14T05:10:00.8288696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.8288826Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:10:00.8289252Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:10:00.8289375Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:10:00.8289498Z x_221: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:10:00.8289564Z 2025-03-14T05:10:00.8290001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8290171Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:00.8290254Z 2025-03-14T05:10:00.8290556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8290696Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:10:00.8290771Z 2025-03-14T05:10:00.8291199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:00.8291352Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:00.8291416Z 2025-03-14T05:10:00.8291720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8291859Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:10:00.8291931Z 2025-03-14T05:10:00.8292300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:00.8292503Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:10:00.8292606Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:10:00.8292730Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:10:00.8292796Z 2025-03-14T05:10:00.8293132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:00.8293276Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:10:00.8293351Z 2025-03-14T05:10:00.8293671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:00.8293800Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:10:00.8293878Z 2025-03-14T05:10:00.8294267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:00.8294474Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:10:00.8294548Z 2025-03-14T05:10:00.8294959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:00.8295092Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:10:00.8295509Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:10:00.8295637Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:10:00.8295751Z x_222: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:10:00.8295822Z 2025-03-14T05:10:00.8296123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:00.8296314Z tensor: "f32[269952, 4][4, 1]cpu" = x_218.to(torch.float32); x_218 = None 2025-03-14T05:10:00.8296457Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_219.to(torch.float32); x_219 = None 2025-03-14T05:10:00.8296588Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_220.to(torch.float32); x_220 = None 2025-03-14T05:10:00.8296709Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_221.to(torch.float32); x_221 = None 2025-03-14T05:10:00.8296838Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_222.to(torch.float32); x_222 = None 2025-03-14T05:10:00.8296902Z 2025-03-14T05:10:00.8297167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8297685Z x_223: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_217, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_217 = None 2025-03-14T05:10:00.8297751Z 2025-03-14T05:10:00.8298034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.8298233Z x_224: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_223, inplace = False); x_223 = None 2025-03-14T05:10:00.8298308Z 2025-03-14T05:10:00.8298695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.8299213Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.8299293Z 2025-03-14T05:10:00.8299654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.8300185Z x_233: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_224, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_224 = None 2025-03-14T05:10:00.8300258Z 2025-03-14T05:10:00.8300508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8301000Z x_225: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_215, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_215 = None 2025-03-14T05:10:00.8301074Z 2025-03-14T05:10:00.8301345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.8301545Z x_226: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_225, inplace = False); x_225 = None 2025-03-14T05:10:00.8301612Z 2025-03-14T05:10:00.8301998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.8302522Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.8302595Z 2025-03-14T05:10:00.8302979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.8306660Z x_234: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_226, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_226 = None 2025-03-14T05:10:00.8306766Z 2025-03-14T05:10:00.8307067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8307569Z x_227: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_213, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_213 = None 2025-03-14T05:10:00.8307648Z 2025-03-14T05:10:00.8307923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.8308121Z x_228: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_227, inplace = False); x_227 = None 2025-03-14T05:10:00.8308195Z 2025-03-14T05:10:00.8308571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.8309091Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.8309213Z 2025-03-14T05:10:00.8309582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.8310116Z x_235: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_228, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_228 = None 2025-03-14T05:10:00.8310194Z 2025-03-14T05:10:00.8310460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8310931Z x_229: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_211, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_211 = None 2025-03-14T05:10:00.8311000Z 2025-03-14T05:10:00.8311282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.8311465Z x_230: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_229, inplace = False); x_229 = None 2025-03-14T05:10:00.8311540Z 2025-03-14T05:10:00.8311911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.8312416Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:00.8312504Z 2025-03-14T05:10:00.8312920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.8313436Z x_236: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_230, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_230 = None 2025-03-14T05:10:00.8313502Z 2025-03-14T05:10:00.8313759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:00.8314531Z x_231: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:10:00.8314608Z 2025-03-14T05:10:00.8314894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:00.8315075Z x_232: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_231, inplace = False); x_231 = None 2025-03-14T05:10:00.8315140Z 2025-03-14T05:10:00.8315518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:00.8316412Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:10:00.8316496Z 2025-03-14T05:10:00.8316861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:00.8317693Z x_237: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_232, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_232 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:10:00.8317770Z 2025-03-14T05:10:00.8318111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:10:00.8318292Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:10:00.8318446Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:10:00.8318614Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:10:00.8318769Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:10:00.8318926Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:10:00.8319087Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:10:00.8319253Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:10:00.8319395Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:10:00.8319542Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:10:00.8319684Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:10:00.8319750Z 2025-03-14T05:10:00.8320181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:10:00.8320365Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_233.view(4, -1, 4, 296, 304); x_233 = None 2025-03-14T05:10:00.8320559Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:10:00.8320762Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:10:00.8320937Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_234.view(4, -1, 4, 148, 152); x_234 = None 2025-03-14T05:10:00.8321112Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:10:00.8321292Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:10:00.8321443Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_235.view(4, -1, 4, 74, 76); x_235 = None 2025-03-14T05:10:00.8321636Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:10:00.8321805Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:10:00.8321960Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_236.view(4, -1, 4, 37, 38); x_236 = None 2025-03-14T05:10:00.8322137Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:10:00.8322316Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:10:00.8322456Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_237.view(4, -1, 4, 19, 19); x_237 = None 2025-03-14T05:10:00.8322625Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:10:00.8322802Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:10:00.8322871Z 2025-03-14T05:10:00.8323284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.8323492Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:10:00.8323566Z 2025-03-14T05:10:00.8324001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.8324166Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:10:00.8324318Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:10:00.8324480Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:10:00.8324562Z 2025-03-14T05:10:00.8324951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.8325125Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:10:00.8325198Z 2025-03-14T05:10:00.8325515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.8325669Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:10:00.8325735Z 2025-03-14T05:10:00.8326060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.8326194Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:00.8326330Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8326488Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:00.8326561Z 2025-03-14T05:10:00.8326878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.8327016Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:00.8327140Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:00.8327329Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:10:00.8327394Z 2025-03-14T05:10:00.8327716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.8327842Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8327939Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:10:00.8328098Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:10:00.8328173Z 2025-03-14T05:10:00.8328489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.8328648Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:00.8328739Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:10:00.8328880Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:10:00.8328945Z 2025-03-14T05:10:00.8329292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.8329450Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.8329573Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:10:00.8329637Z 2025-03-14T05:10:00.8329948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.8330109Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.8330223Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:10:00.8330297Z 2025-03-14T05:10:00.8330610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.8330785Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.8330896Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:10:00.8330970Z 2025-03-14T05:10:00.8331271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.8331462Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:00.8331573Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:10:00.8331647Z 2025-03-14T05:10:00.8331984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.8332136Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:00.8332200Z 2025-03-14T05:10:00.8332543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.8332680Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:00.8332751Z 2025-03-14T05:10:00.8333092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.8333241Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:00.8333387Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:10:00.8333551Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:00.8333694Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:10:00.8333768Z 2025-03-14T05:10:00.8334147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.8334298Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:00.8334422Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:10:00.8334583Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:00.8334723Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:10:00.8334799Z 2025-03-14T05:10:00.8335130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.8335259Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:00.8335422Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:00.8335562Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:10:00.8335626Z 2025-03-14T05:10:00.8335968Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.8336092Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:00.8336276Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:00.8336432Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:10:00.8336497Z 2025-03-14T05:10:00.8336816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.8336916Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:00.8337046Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:00.8337111Z 2025-03-14T05:10:00.8337422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.8337516Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:00.8337641Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:00.8337707Z 2025-03-14T05:10:00.8338034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.8338155Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:00.8338290Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:00.8338352Z 2025-03-14T05:10:00.8338653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.8338763Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:00.8338892Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:00.8338971Z 2025-03-14T05:10:00.8339324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.8339508Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:00.8339580Z 2025-03-14T05:10:00.8339930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.8340103Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:10:00.8340169Z 2025-03-14T05:10:00.8340558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.8340738Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:10:00.8340810Z 2025-03-14T05:10:00.8341203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.8341420Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:10:00.8341484Z 2025-03-14T05:10:00.8341916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.8342071Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:10:00.8342229Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:10:00.8342385Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:10:00.8342473Z 2025-03-14T05:10:00.8342844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.8343020Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:10:00.8343084Z 2025-03-14T05:10:00.8343400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.8343545Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:10:00.8343616Z 2025-03-14T05:10:00.8343926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.8344068Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:10:00.8344291Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8344453Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:10:00.8344528Z 2025-03-14T05:10:00.8344851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.8344988Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:10:00.8345125Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:10:00.8345308Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:10:00.8345373Z 2025-03-14T05:10:00.8345694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.8345820Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8345923Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:10:00.8346075Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:10:00.8346148Z 2025-03-14T05:10:00.8346468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.8346622Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:10:00.8346717Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:10:00.8346850Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:10:00.8346917Z 2025-03-14T05:10:00.8347218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.8347368Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.8347492Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:10:00.8347555Z 2025-03-14T05:10:00.8347850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.8347997Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.8348117Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:10:00.8348180Z 2025-03-14T05:10:00.8348495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.8348658Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.8348777Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:10:00.8348841Z 2025-03-14T05:10:00.8349141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.8349323Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:10:00.8349441Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:10:00.8349508Z 2025-03-14T05:10:00.8349842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.8349981Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:10:00.8350052Z 2025-03-14T05:10:00.8350373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.8350513Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:10:00.8350584Z 2025-03-14T05:10:00.8350914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.8351083Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:10:00.8351210Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:10:00.8351369Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:10:00.8351510Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:10:00.8351579Z 2025-03-14T05:10:00.8351930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.8352074Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:10:00.8352195Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:10:00.8352352Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:10:00.8352491Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:10:00.8352561Z 2025-03-14T05:10:00.8352882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.8353002Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:10:00.8353159Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:10:00.8353298Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:10:00.8353361Z 2025-03-14T05:10:00.8353688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.8353802Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:10:00.8353989Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:10:00.8354139Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:10:00.8354210Z 2025-03-14T05:10:00.8354510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.8354616Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:10:00.8354732Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:10:00.8354804Z 2025-03-14T05:10:00.8355097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.8355197Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:10:00.8355312Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:10:00.8355384Z 2025-03-14T05:10:00.8355676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.8355798Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:10:00.8355930Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:10:00.8356377Z 2025-03-14T05:10:00.8356697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.8356863Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:10:00.8357043Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:10:00.8357145Z 2025-03-14T05:10:00.8357530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.8357805Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:10:00.8357933Z 2025-03-14T05:10:00.8358311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.8358493Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:10:00.8358608Z 2025-03-14T05:10:00.8359013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.8359242Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:10:00.8359328Z 2025-03-14T05:10:00.8359771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.8359984Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:10:00.8360121Z 2025-03-14T05:10:00.8360567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.8360762Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:10:00.8360974Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:10:00.8361135Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:10:00.8361280Z 2025-03-14T05:10:00.8361669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.8361881Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:10:00.8361967Z 2025-03-14T05:10:00.8362306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.8362485Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:10:00.8362635Z 2025-03-14T05:10:00.8362962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.8363145Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:10:00.8363290Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8363497Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:10:00.8363590Z 2025-03-14T05:10:00.8363941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.8364083Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:10:00.8364266Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:10:00.8364430Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:10:00.8364581Z 2025-03-14T05:10:00.8364904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.8365086Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8365200Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:10:00.8365375Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:10:00.8365476Z 2025-03-14T05:10:00.8365838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.8366006Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:10:00.8366136Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:10:00.8421054Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:10:00.8421280Z 2025-03-14T05:10:00.8421779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.8422003Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.8422138Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:10:00.8422222Z 2025-03-14T05:10:00.8422623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.8422817Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.8423154Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:10:00.8423293Z 2025-03-14T05:10:00.8423695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.8423853Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.8423978Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:10:00.8424047Z 2025-03-14T05:10:00.8424502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.8424698Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:10:00.8424824Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:10:00.8424891Z 2025-03-14T05:10:00.8425252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.8425401Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:10:00.8425476Z 2025-03-14T05:10:00.8425852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.8425998Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:10:00.8426074Z 2025-03-14T05:10:00.8426472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.8426664Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:10:00.8426797Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:10:00.8426966Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:10:00.8427159Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:10:00.8427230Z 2025-03-14T05:10:00.8427620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.8427769Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:10:00.8427896Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:10:00.8428063Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:10:00.8428206Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:10:00.8428278Z 2025-03-14T05:10:00.8428654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.8428783Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:10:00.8428951Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:10:00.8429104Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:10:00.8429169Z 2025-03-14T05:10:00.8429555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.8429695Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:10:00.8429892Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:10:00.8430028Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:10:00.8430101Z 2025-03-14T05:10:00.8430437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.8430547Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:10:00.8430735Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:10:00.8430813Z 2025-03-14T05:10:00.8431156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.8431267Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:10:00.8431386Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:10:00.8431457Z 2025-03-14T05:10:00.8431783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.8431906Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:10:00.8432041Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:10:00.8432116Z 2025-03-14T05:10:00.8432417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.8432557Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:10:00.8432689Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:10:00.8432763Z 2025-03-14T05:10:00.8433111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.8433331Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:10:00.8433395Z 2025-03-14T05:10:00.8433738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.8433902Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:10:00.8433974Z 2025-03-14T05:10:00.8434358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.8434547Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:10:00.8434619Z 2025-03-14T05:10:00.8435020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.8435236Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:10:00.8435301Z 2025-03-14T05:10:00.8435738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.8435908Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:10:00.8436085Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:10:00.8436223Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:10:00.8436294Z 2025-03-14T05:10:00.8436664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.8436836Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:10:00.8436899Z 2025-03-14T05:10:00.8437213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.8437359Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:10:00.8437431Z 2025-03-14T05:10:00.8437744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.8437880Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:10:00.8438007Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8438164Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:10:00.8438228Z 2025-03-14T05:10:00.8438548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.8438671Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:10:00.8438820Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:10:00.8438974Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:10:00.8439044Z 2025-03-14T05:10:00.8439354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.8439503Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8439596Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:10:00.8439734Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:10:00.8439797Z 2025-03-14T05:10:00.8440115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.8440263Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:10:00.8440369Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:10:00.8440497Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:10:00.8440569Z 2025-03-14T05:10:00.8440876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.8441036Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.8441147Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:10:00.8441219Z 2025-03-14T05:10:00.8441523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.8441673Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.8441806Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:10:00.8441884Z 2025-03-14T05:10:00.8442185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.8442336Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.8442451Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:10:00.8442513Z 2025-03-14T05:10:00.8442817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.8443000Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:10:00.8443117Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:10:00.8443181Z 2025-03-14T05:10:00.8443519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.8443659Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:10:00.8443728Z 2025-03-14T05:10:00.8444054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.8444190Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:10:00.8444253Z 2025-03-14T05:10:00.8446069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.8446315Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:10:00.8446455Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:10:00.8446613Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:10:00.8446783Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:10:00.8446853Z 2025-03-14T05:10:00.8447209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.8447352Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:10:00.8447479Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:10:00.8447628Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:10:00.8447771Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:10:00.8447835Z 2025-03-14T05:10:00.8448161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.8448276Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:10:00.8448439Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:10:00.8448576Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:10:00.8448640Z 2025-03-14T05:10:00.8448991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.8449683Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:10:00.8449863Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:10:00.8449999Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:10:00.8450073Z 2025-03-14T05:10:00.8450385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.8450486Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:10:00.8450603Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:10:00.8450673Z 2025-03-14T05:10:00.8450974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.8451076Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:10:00.8451190Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:10:00.8451259Z 2025-03-14T05:10:00.8451555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.8451674Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:10:00.8451806Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:10:00.8451876Z 2025-03-14T05:10:00.8452174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.8452315Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:10:00.8452443Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:10:00.8452513Z 2025-03-14T05:10:00.8452854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.8453064Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:10:00.8453130Z 2025-03-14T05:10:00.8453469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.8453632Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:10:00.8453705Z 2025-03-14T05:10:00.8454084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.8454266Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:10:00.8454330Z 2025-03-14T05:10:00.8454735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:00.8454938Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:10:00.8455007Z 2025-03-14T05:10:00.8455429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:00.8455602Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:10:00.8455767Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:10:00.8455906Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:10:00.8455975Z 2025-03-14T05:10:00.8456353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:00.8456515Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:10:00.8456584Z 2025-03-14T05:10:00.8456883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:00.8457031Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:10:00.8457094Z 2025-03-14T05:10:00.8457398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:00.8457529Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:10:00.8457649Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8457798Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:10:00.8457859Z 2025-03-14T05:10:00.8458269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:00.8458423Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:10:00.8458546Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:10:00.8458703Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:10:00.8458770Z 2025-03-14T05:10:00.8459086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:00.8459208Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:00.8459296Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:10:00.8459425Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:10:00.8459487Z 2025-03-14T05:10:00.8459794Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:00.8459940Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:10:00.8460033Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:10:00.8460153Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:10:00.8460218Z 2025-03-14T05:10:00.8460521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:00.8460678Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:00.8460790Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:10:00.8460861Z 2025-03-14T05:10:00.8461152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:00.8461321Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:00.8461450Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:10:00.8461522Z 2025-03-14T05:10:00.8461809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:00.8461962Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:00.8462068Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:10:00.8462143Z 2025-03-14T05:10:00.8462434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:00.8462624Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:10:00.8462731Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:10:00.8462802Z 2025-03-14T05:10:00.8463129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:00.8463276Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:10:00.8463340Z 2025-03-14T05:10:00.8463673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:00.8463804Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:10:00.8463877Z 2025-03-14T05:10:00.8464296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:00.8464449Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:10:00.8464580Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:10:00.8464752Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:10:00.8464901Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:10:00.8464969Z 2025-03-14T05:10:00.8465330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:00.8465467Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:10:00.8465599Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:10:00.8465754Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:10:00.8465902Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:10:00.8465969Z 2025-03-14T05:10:00.8466310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:00.8466430Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:10:00.8466609Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:10:00.8466741Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:10:00.8466815Z 2025-03-14T05:10:00.8467158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:00.8467310Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:10:00.8467475Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:10:00.8467613Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:10:00.8467678Z 2025-03-14T05:10:00.8467988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:00.8468088Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:10:00.8468210Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:10:00.8468277Z 2025-03-14T05:10:00.8468591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:00.8468685Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:10:00.8468803Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:10:00.8468867Z 2025-03-14T05:10:00.8469177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:00.8469290Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:10:00.8469430Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:10:00.8469494Z 2025-03-14T05:10:00.8469799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:00.8469933Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:10:00.8470072Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:10:00.8470137Z 2025-03-14T05:10:00.8470514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:00.8470702Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:10:00.8470776Z 2025-03-14T05:10:00.8471102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:00.8471268Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:10:00.8471335Z 2025-03-14T05:10:00.8471716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:00.8471887Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:10:00.8471959Z 2025-03-14T05:10:00.8472444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:10:00.8472579Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:10:00.8472650Z 2025-03-14T05:10:00.8472943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8473113Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:10:00.8473195Z 2025-03-14T05:10:00.8473633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.8473748Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:10:00.8473858Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:10:00.8473972Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:10:00.8474046Z 2025-03-14T05:10:00.8474505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.8474647Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.8474880Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:10:00.8474951Z 2025-03-14T05:10:00.8475403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.8475578Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.8475643Z 2025-03-14T05:10:00.8475948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8476086Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:10:00.8476162Z 2025-03-14T05:10:00.8476592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.8476719Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:10:00.8476845Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:10:00.8476975Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:10:00.8477039Z 2025-03-14T05:10:00.8477500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.8477632Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.8477875Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:10:00.8477941Z 2025-03-14T05:10:00.8478395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.8478568Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.8478633Z 2025-03-14T05:10:00.8478932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8479057Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:10:00.8479132Z 2025-03-14T05:10:00.8479575Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.8479717Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:10:00.8479822Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:10:00.8479948Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:10:00.8480013Z 2025-03-14T05:10:00.8480469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.8480603Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.8480845Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:10:00.8480911Z 2025-03-14T05:10:00.8481368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.8481810Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.8481889Z 2025-03-14T05:10:00.8482176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8482306Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:10:00.8482371Z 2025-03-14T05:10:00.8482791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.8482963Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:10:00.8483072Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:10:00.8483186Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:10:00.8483290Z 2025-03-14T05:10:00.8483727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.8483864Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:00.8484092Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:10:00.8484179Z 2025-03-14T05:10:00.8484621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.8484779Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.8484852Z 2025-03-14T05:10:00.8485134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8485262Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:10:00.8485324Z 2025-03-14T05:10:00.8485742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:00.8485877Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:10:00.8486011Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:10:00.8486124Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:10:00.8486196Z 2025-03-14T05:10:00.8486628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:00.8486795Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:10:00.8487018Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:10:00.8487091Z 2025-03-14T05:10:00.8487521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:00.8487689Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:00.8487752Z 2025-03-14T05:10:00.8488040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:00.8488160Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:10:00.8488230Z 2025-03-14T05:10:00.8488496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.8488890Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:10:00.8488955Z 2025-03-14T05:10:00.8489235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.8489705Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:10:00.8489770Z 2025-03-14T05:10:00.8490041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:00.8490233Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:10:00.8490307Z 2025-03-14T05:10:00.8490675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:10:00.8490820Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:10:00.8490887Z 2025-03-14T05:10:00.8491182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:00.8491324Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:10:00.8491393Z 2025-03-14T05:10:00.8491753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:10:00.8491917Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:10:00.8492000Z 2025-03-14T05:10:00.8492478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:10:00.8492617Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:10:00.8492747Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:00.8492902Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:10:00.8493043Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:10:00.8493108Z 2025-03-14T05:10:00.8493478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:10:00.8493597Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:10:00.8493672Z 2025-03-14T05:10:12.1201377Z 2025-03-14T05:10:12.1206077Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:12.1210619Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:10:12.1213283Z l_features_p2_ = L_features_p2_ 2025-03-14T05:10:12.1217575Z l_features_p3_ = L_features_p3_ 2025-03-14T05:10:12.1218009Z l_features_p4_ = L_features_p4_ 2025-03-14T05:10:12.1218281Z l_features_p5_ = L_features_p5_ 2025-03-14T05:10:12.1218632Z l_features_p6_ = L_features_p6_ 2025-03-14T05:10:12.1219696Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:10:12.1220454Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:10:12.1221046Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:10:12.1221670Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:10:12.1222240Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:10:12.1222782Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:10:12.1223495Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:10:12.1224098Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:10:12.1224826Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:10:12.1225388Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:10:12.1225927Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:10:12.1226292Z 2025-03-14T05:10:12.1226884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1227566Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:10:12.1227839Z 2025-03-14T05:10:12.1228235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1228740Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:10:12.1229003Z 2025-03-14T05:10:12.1229528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1230164Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:10:12.1230475Z 2025-03-14T05:10:12.1230862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1231364Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:10:12.1231628Z 2025-03-14T05:10:12.1232121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1232729Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:10:12.1233068Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:10:12.1233343Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:10:12.1233581Z 2025-03-14T05:10:12.1233995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1234510Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:10:12.1234761Z 2025-03-14T05:10:12.1235182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1235685Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:10:12.1235929Z 2025-03-14T05:10:12.1236396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1237041Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:10:12.1237373Z 2025-03-14T05:10:12.1237903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1238531Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:10:12.1239034Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:10:12.1239525Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:10:12.1239858Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:10:12.1240092Z 2025-03-14T05:10:12.1240617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1241263Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:10:12.1241541Z 2025-03-14T05:10:12.1241927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1242431Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:10:12.1242697Z 2025-03-14T05:10:12.1243215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1243841Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:10:12.1244133Z 2025-03-14T05:10:12.1244523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1244999Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:10:12.1245258Z 2025-03-14T05:10:12.1245724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1246327Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:10:12.1246674Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:10:12.1246952Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:10:12.1247194Z 2025-03-14T05:10:12.1247599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1248104Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:10:12.1248348Z 2025-03-14T05:10:12.1248751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1249250Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:10:12.1249495Z 2025-03-14T05:10:12.1249947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1250573Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:10:12.1250902Z 2025-03-14T05:10:12.1251415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1252035Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:10:12.1252539Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:10:12.1253036Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:10:12.1253344Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:10:12.1253587Z 2025-03-14T05:10:12.1254114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1254756Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:10:12.1255031Z 2025-03-14T05:10:12.1255418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1255910Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:10:12.1256175Z 2025-03-14T05:10:12.1256689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1257318Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:10:12.1257599Z 2025-03-14T05:10:12.1257969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1258438Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:10:12.1258692Z 2025-03-14T05:10:12.1259151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1259757Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:10:12.1260105Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:10:12.1260374Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:10:12.1260613Z 2025-03-14T05:10:12.1261022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1261526Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:10:12.1261769Z 2025-03-14T05:10:12.1262166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1262673Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:10:12.1262918Z 2025-03-14T05:10:12.1263389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1264037Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:10:12.1264472Z 2025-03-14T05:10:12.1264989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1265605Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:10:12.1266109Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:10:12.1266601Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:10:12.1266896Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:10:12.1267129Z 2025-03-14T05:10:12.1267641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1268261Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:10:12.1268522Z 2025-03-14T05:10:12.1268893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1269376Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:10:12.1269633Z 2025-03-14T05:10:12.1270144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1270777Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:10:12.1271079Z 2025-03-14T05:10:12.1271450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1271929Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:10:12.1272180Z 2025-03-14T05:10:12.1272648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1273250Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:10:12.1273593Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:10:12.1273861Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:10:12.1274099Z 2025-03-14T05:10:12.1274503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1275001Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:10:12.1275246Z 2025-03-14T05:10:12.1275647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1276141Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:10:12.1276383Z 2025-03-14T05:10:12.1276833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1277452Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:10:12.1277775Z 2025-03-14T05:10:12.1278272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1278867Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:10:12.1279356Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:10:12.1279840Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:10:12.1280131Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:10:12.1280366Z 2025-03-14T05:10:12.1280871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1281729Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:12.1282009Z 2025-03-14T05:10:12.1282392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1282876Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:10:12.1283141Z 2025-03-14T05:10:12.1283653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1284278Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:12.1284602Z 2025-03-14T05:10:12.1284975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1285453Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:10:12.1285709Z 2025-03-14T05:10:12.1288224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1289140Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:10:12.1289738Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:10:12.1290030Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:10:12.1290484Z 2025-03-14T05:10:12.1290913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1291604Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:10:12.1292021Z 2025-03-14T05:10:12.1292427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1293118Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:10:12.1293546Z 2025-03-14T05:10:12.1294027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1294847Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:10:12.1295185Z 2025-03-14T05:10:12.1295783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1298469Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:10:12.1298982Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:10:12.1299474Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:10:12.1299780Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:10:12.1300022Z 2025-03-14T05:10:12.1300419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:12.1300904Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:10:12.1301218Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:10:12.1301529Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:10:12.1301830Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:10:12.1302134Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:10:12.1302377Z 2025-03-14T05:10:12.1302733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1303485Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:10:12.1304074Z 2025-03-14T05:10:12.1304560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1305104Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:10:12.1305432Z 2025-03-14T05:10:12.1306074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1306930Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1307459Z 2025-03-14T05:10:12.1307918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1308756Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:10:12.1309284Z 2025-03-14T05:10:12.1309631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1310351Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:10:12.1310879Z 2025-03-14T05:10:12.1311231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1311754Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:10:12.1312077Z 2025-03-14T05:10:12.1312537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1313357Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1313869Z 2025-03-14T05:10:12.1314314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1315121Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:10:12.1315632Z 2025-03-14T05:10:12.1315973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1316669Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:10:12.1317171Z 2025-03-14T05:10:12.1317528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1318038Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:10:12.1318331Z 2025-03-14T05:10:12.1318783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1319598Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1320097Z 2025-03-14T05:10:12.1320556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1321345Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:10:12.1321850Z 2025-03-14T05:10:12.1322177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1322864Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:10:12.1323359Z 2025-03-14T05:10:12.1323711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1324204Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:10:12.1324504Z 2025-03-14T05:10:12.1325024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1325884Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1326378Z 2025-03-14T05:10:12.1326812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1327584Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:10:12.1328076Z 2025-03-14T05:10:12.1328408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1329266Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:10:12.1329934Z 2025-03-14T05:10:12.1330282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1330764Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:10:12.1331066Z 2025-03-14T05:10:12.1331517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1332556Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:10:12.1333279Z 2025-03-14T05:10:12.1333711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1334696Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:10:12.1335388Z 2025-03-14T05:10:12.1335810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:10:12.1336355Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:10:12.1336709Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:10:12.1337072Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:10:12.1337434Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:10:12.1337797Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:10:12.1338158Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:10:12.1338502Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:10:12.1338846Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:10:12.1339187Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:10:12.1339518Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:10:12.1339778Z 2025-03-14T05:10:12.1340284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:10:12.1340917Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:10:12.1341329Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:10:12.1341737Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:10:12.1342129Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:10:12.1342515Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:10:12.1342914Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:10:12.1343294Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:10:12.1343655Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:10:12.1344051Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:10:12.1344551Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:10:12.1344919Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:10:12.1345339Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:10:12.1345698Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:10:12.1346059Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:10:12.1346444Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:10:12.1346734Z 2025-03-14T05:10:12.1347242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1347911Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:10:12.1348238Z 2025-03-14T05:10:12.1348763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1349409Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:10:12.1349786Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:10:12.1350146Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:10:12.1350410Z 2025-03-14T05:10:12.1350874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1351474Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:10:12.1351762Z 2025-03-14T05:10:12.1352175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1352689Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:10:12.1352955Z 2025-03-14T05:10:12.1353359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1353872Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1354190Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1354521Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:12.1354794Z 2025-03-14T05:10:12.1355206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1355705Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1356012Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1356366Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:10:12.1356644Z 2025-03-14T05:10:12.1357052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1357555Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1357850Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:10:12.1358119Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:10:12.1358361Z 2025-03-14T05:10:12.1358751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1359250Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:12.1359541Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:10:12.1359813Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:10:12.1360063Z 2025-03-14T05:10:12.1360469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1360972Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1361297Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:10:12.1361531Z 2025-03-14T05:10:12.1361915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1362412Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1362736Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:10:12.1362973Z 2025-03-14T05:10:12.1363368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1363887Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1364207Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:10:12.1364440Z 2025-03-14T05:10:12.1364820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1365343Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:12.1365685Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:10:12.1365919Z 2025-03-14T05:10:12.1366336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1366859Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:12.1367116Z 2025-03-14T05:10:12.1367527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1368040Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:12.1368294Z 2025-03-14T05:10:12.1368712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1369260Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:12.1369582Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:10:12.1369922Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:12.1370269Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:10:12.1370534Z 2025-03-14T05:10:12.1370984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1371514Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:12.1371828Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:10:12.1372157Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:12.1372503Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:10:12.1372753Z 2025-03-14T05:10:12.1373165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1373663Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:12.1373989Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:12.1374332Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:10:12.1374588Z 2025-03-14T05:10:12.1375005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1375500Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:12.1375859Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:12.1376229Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:10:12.1376491Z 2025-03-14T05:10:12.1376893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1377357Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:12.1377633Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:12.1377871Z 2025-03-14T05:10:12.1378264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1378724Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:12.1378994Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:12.1379234Z 2025-03-14T05:10:12.1379621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1380095Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:12.1380397Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:12.1380655Z 2025-03-14T05:10:12.1381041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1381719Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:12.1382019Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:12.1382313Z 2025-03-14T05:10:12.1382743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1383323Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:12.1383625Z 2025-03-14T05:10:12.1384079Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1385490Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:10:12.1385795Z 2025-03-14T05:10:12.1386276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1386901Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:10:12.1387228Z 2025-03-14T05:10:12.1387713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1388376Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:10:12.1388708Z 2025-03-14T05:10:12.1389225Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1389866Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:10:12.1390280Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:10:12.1390662Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:10:12.1390931Z 2025-03-14T05:10:12.1391399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1391996Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:10:12.1392290Z 2025-03-14T05:10:12.1392704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1393216Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:10:12.1393478Z 2025-03-14T05:10:12.1393878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1394378Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1394698Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1395042Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:10:12.1395318Z 2025-03-14T05:10:12.1395730Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1396240Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1396552Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1396913Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:10:12.1397198Z 2025-03-14T05:10:12.1397597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1398090Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1398392Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:10:12.1398680Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:10:12.1398940Z 2025-03-14T05:10:12.1399343Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1399868Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:10:12.1400170Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:10:12.1400446Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:10:12.1400698Z 2025-03-14T05:10:12.1401099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1401601Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1401927Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:10:12.1402166Z 2025-03-14T05:10:12.1402550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1403055Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1403388Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:10:12.1403652Z 2025-03-14T05:10:12.1404058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1404566Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1404895Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:10:12.1405137Z 2025-03-14T05:10:12.1405528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1406071Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:10:12.1406426Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:10:12.1406665Z 2025-03-14T05:10:12.1407091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1407636Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:10:12.1407894Z 2025-03-14T05:10:12.1408308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1408825Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:10:12.1409080Z 2025-03-14T05:10:12.1409503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1410051Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:10:12.1410375Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:10:12.1410717Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:10:12.1411097Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:10:12.1411362Z 2025-03-14T05:10:12.1411791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1412344Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:10:12.1412669Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:10:12.1413002Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:10:12.1413359Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:10:12.1413621Z 2025-03-14T05:10:12.1414042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1414547Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:10:12.1414884Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:10:12.1415246Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:10:12.1415515Z 2025-03-14T05:10:12.1415948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1416469Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:10:12.1416826Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:10:12.1417188Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:10:12.1417448Z 2025-03-14T05:10:12.1417848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1418310Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:10:12.1418595Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:10:12.1418842Z 2025-03-14T05:10:12.1419237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1419695Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:10:12.1419965Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:10:12.1420206Z 2025-03-14T05:10:12.1420603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1421082Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:10:12.1421394Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:10:12.1421650Z 2025-03-14T05:10:12.1422039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1422516Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:10:12.1422847Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:10:12.1423102Z 2025-03-14T05:10:12.1423538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1424247Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:10:12.1424579Z 2025-03-14T05:10:12.1425031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1425591Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:10:12.1425887Z 2025-03-14T05:10:12.1426367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1426981Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:10:12.1427284Z 2025-03-14T05:10:12.1427770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1428430Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:10:12.1428759Z 2025-03-14T05:10:12.1429276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1429938Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:10:12.1430322Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:10:12.1430672Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:10:12.1430929Z 2025-03-14T05:10:12.1431390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1431982Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:10:12.1432272Z 2025-03-14T05:10:12.1432671Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1433179Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:10:12.1433449Z 2025-03-14T05:10:12.1433844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1434347Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1434658Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1434992Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:10:12.1435265Z 2025-03-14T05:10:12.1435677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1436174Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1436501Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1436835Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:10:12.1437107Z 2025-03-14T05:10:12.1437502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1438002Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1438278Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:10:12.1438559Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:10:12.1438818Z 2025-03-14T05:10:12.1439219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1439740Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:10:12.1440044Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:10:12.1440325Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:10:12.1440574Z 2025-03-14T05:10:12.1440972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1441490Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1441822Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:10:12.1442063Z 2025-03-14T05:10:12.1442455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1442967Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1443316Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:10:12.1443576Z 2025-03-14T05:10:12.1443963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1444470Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1444788Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:10:12.1445025Z 2025-03-14T05:10:12.1445413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1445952Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:10:12.1446305Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:10:12.1446537Z 2025-03-14T05:10:12.1446958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1447489Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:10:12.1447754Z 2025-03-14T05:10:12.1448174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1448701Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:10:12.1448963Z 2025-03-14T05:10:12.1449395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1449950Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:10:12.1450271Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:10:12.1450611Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:10:12.1450981Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:10:12.1451250Z 2025-03-14T05:10:12.1451693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1452234Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:10:12.1452557Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:10:12.1452885Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:10:12.1453232Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:10:12.1453495Z 2025-03-14T05:10:12.1453925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1454441Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:10:12.1454775Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:10:12.1455130Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:10:12.1455391Z 2025-03-14T05:10:12.1455841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1456361Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:10:12.1456696Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:10:12.1457055Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:10:12.1457317Z 2025-03-14T05:10:12.1457716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1458178Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:10:12.1458450Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:10:12.1458690Z 2025-03-14T05:10:12.1459089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1459549Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:10:12.1459812Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:10:12.1460048Z 2025-03-14T05:10:12.1460439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1460920Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:10:12.1461224Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:10:12.1461479Z 2025-03-14T05:10:12.1461866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1462358Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:10:12.1462662Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:10:12.1462918Z 2025-03-14T05:10:12.1463353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1463956Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:10:12.1464351Z 2025-03-14T05:10:12.1464777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1465334Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:10:12.1465631Z 2025-03-14T05:10:12.1466101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1466709Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:10:12.1467007Z 2025-03-14T05:10:12.1467492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1468150Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:10:12.1468479Z 2025-03-14T05:10:12.1468996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1469653Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:10:12.1470024Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:10:12.1470363Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:10:12.1470623Z 2025-03-14T05:10:12.1471083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1471651Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:10:12.1471930Z 2025-03-14T05:10:12.1472312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1472810Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:10:12.1473073Z 2025-03-14T05:10:12.1473453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1473934Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1474235Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1474558Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:10:12.1474825Z 2025-03-14T05:10:12.1475221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1475732Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1476029Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1476355Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:10:12.1476620Z 2025-03-14T05:10:12.1477020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1477495Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1477757Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:10:12.1478024Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:10:12.1478269Z 2025-03-14T05:10:12.1478655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1479159Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:10:12.1479451Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:10:12.1479718Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:10:12.1479962Z 2025-03-14T05:10:12.1480348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1480838Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1481158Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:10:12.1481390Z 2025-03-14T05:10:12.1481940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1482477Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1482826Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:10:12.1483062Z 2025-03-14T05:10:12.1483440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1483933Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1484252Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:10:12.1484486Z 2025-03-14T05:10:12.1484865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1485392Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:10:12.1485734Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:10:12.1485965Z 2025-03-14T05:10:12.1486379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1486901Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:10:12.1487157Z 2025-03-14T05:10:12.1487566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1488076Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:10:12.1488357Z 2025-03-14T05:10:12.1488785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1489322Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:10:12.1489643Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:10:12.1490007Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:10:12.1490350Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:10:12.1490607Z 2025-03-14T05:10:12.1491030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1491557Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:10:12.1491870Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:10:12.1492187Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:10:12.1492523Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:10:12.1492777Z 2025-03-14T05:10:12.1493188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1493673Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:10:12.1494000Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:10:12.1494342Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:10:12.1494595Z 2025-03-14T05:10:12.1495021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1495521Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:10:12.1495845Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:10:12.1496189Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:10:12.1496441Z 2025-03-14T05:10:12.1496828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1497277Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:10:12.1497540Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:10:12.1497772Z 2025-03-14T05:10:12.1498157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1498606Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:10:12.1498869Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:10:12.1499101Z 2025-03-14T05:10:12.1499490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1499957Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:10:12.1500255Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:10:12.1500508Z 2025-03-14T05:10:12.1500886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1501366Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:10:12.1501665Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:10:12.1501914Z 2025-03-14T05:10:12.1502386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1502961Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:10:12.1503258Z 2025-03-14T05:10:12.1503661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1504273Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:10:12.1504575Z 2025-03-14T05:10:12.1505073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1505692Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:10:12.1505984Z 2025-03-14T05:10:12.1506458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1507114Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:10:12.1507442Z 2025-03-14T05:10:12.1507987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1508640Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:10:12.1509001Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:10:12.1509352Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:10:12.1509615Z 2025-03-14T05:10:12.1510077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1510666Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:10:12.1510955Z 2025-03-14T05:10:12.1511356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1511868Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:10:12.1512126Z 2025-03-14T05:10:12.1512527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1513033Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1513340Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1513669Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:10:12.1513939Z 2025-03-14T05:10:12.1514348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1514868Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1515174Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1515506Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:10:12.1515779Z 2025-03-14T05:10:12.1516196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1516683Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1516950Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:10:12.1517230Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:10:12.1517482Z 2025-03-14T05:10:12.1517884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1518395Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:10:12.1518695Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:10:12.1518973Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:10:12.1519217Z 2025-03-14T05:10:12.1519606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1520099Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1520415Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:10:12.1520646Z 2025-03-14T05:10:12.1521017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1521524Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1521866Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:10:12.1522095Z 2025-03-14T05:10:12.1522480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1522969Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1523280Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:10:12.1523508Z 2025-03-14T05:10:12.1523887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1524411Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:10:12.1524745Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:10:12.1524974Z 2025-03-14T05:10:12.1525386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1525895Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:10:12.1526145Z 2025-03-14T05:10:12.1526552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1527061Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:10:12.1527328Z 2025-03-14T05:10:12.1527749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1528271Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:10:12.1528582Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:10:12.1528924Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:10:12.1529269Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:10:12.1529516Z 2025-03-14T05:10:12.1529944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1530469Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:10:12.1530778Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:10:12.1531099Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:10:12.1531438Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:10:12.1531692Z 2025-03-14T05:10:12.1532108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1532601Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:10:12.1532919Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:10:12.1533262Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:10:12.1533514Z 2025-03-14T05:10:12.1533944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1534448Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:10:12.1534768Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:10:12.1535109Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:10:12.1535353Z 2025-03-14T05:10:12.1535743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1536195Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:10:12.1536452Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:10:12.1536684Z 2025-03-14T05:10:12.1537068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1537512Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:10:12.1537771Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:10:12.1538007Z 2025-03-14T05:10:12.1538393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1538861Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:10:12.1539159Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:10:12.1539409Z 2025-03-14T05:10:12.1539791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1540271Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:10:12.1540565Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:10:12.1540809Z 2025-03-14T05:10:12.1541244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1541817Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:10:12.1542113Z 2025-03-14T05:10:12.1542519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1543051Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:10:12.1543327Z 2025-03-14T05:10:12.1543781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1547181Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:10:12.1547507Z 2025-03-14T05:10:12.1548106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:10:12.1548830Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:10:12.1549093Z 2025-03-14T05:10:12.1549492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1550041Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:10:12.1550332Z 2025-03-14T05:10:12.1550869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1551485Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:10:12.1551760Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:10:12.1552037Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:10:12.1552282Z 2025-03-14T05:10:12.1552835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1553490Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1553919Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:10:12.1554267Z 2025-03-14T05:10:12.1554815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1555497Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1555785Z 2025-03-14T05:10:12.1556175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1556673Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:10:12.1556919Z 2025-03-14T05:10:12.1557439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1558055Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:10:12.1558344Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:10:12.1558621Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:10:12.1558858Z 2025-03-14T05:10:12.1559401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1560033Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1560452Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:10:12.1560796Z 2025-03-14T05:10:12.1561335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1561992Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1562274Z 2025-03-14T05:10:12.1562650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1563118Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:10:12.1563359Z 2025-03-14T05:10:12.1563892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1564491Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:10:12.1564768Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:10:12.1565040Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:10:12.1565277Z 2025-03-14T05:10:12.1565805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1566435Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1566860Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:10:12.1567207Z 2025-03-14T05:10:12.1567735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1568387Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1568668Z 2025-03-14T05:10:12.1569042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1569512Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:10:12.1569778Z 2025-03-14T05:10:12.1570283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1570861Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:10:12.1571132Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:10:12.1571420Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:10:12.1571656Z 2025-03-14T05:10:12.1572191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1572812Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1573233Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:10:12.1573582Z 2025-03-14T05:10:12.1574107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1574763Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1575039Z 2025-03-14T05:10:12.1575410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1575877Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:10:12.1576120Z 2025-03-14T05:10:12.1576657Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1577261Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:10:12.1577530Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:10:12.1577802Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:10:12.1578040Z 2025-03-14T05:10:12.1578569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1579225Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:10:12.1579671Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:10:12.1580023Z 2025-03-14T05:10:12.1580548Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1581200Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1581671Z 2025-03-14T05:10:12.1582054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1582518Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:10:12.1582748Z 2025-03-14T05:10:12.1583105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:12.1583866Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:10:12.1584409Z 2025-03-14T05:10:12.1584770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:12.1585643Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:10:12.1586215Z 2025-03-14T05:10:12.1586574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:12.1587109Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:10:12.1587433Z 2025-03-14T05:10:12.1587894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:10:12.1588490Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:10:12.1588754Z 2025-03-14T05:10:12.1589138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:12.1589639Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:10:12.1589912Z 2025-03-14T05:10:12.1590405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:10:12.1590996Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:10:12.1591252Z 2025-03-14T05:10:12.1591822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:10:12.1592486Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:10:12.1592804Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:12.1593144Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:10:12.1593485Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:10:12.1593745Z 2025-03-14T05:10:12.1594200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:10:12.1594740Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:10:12.1594975Z 2025-03-14T05:10:12.1595269Z 2025-03-14T05:10:12.1595363Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:12.1597573Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:10:12.1599821Z l_features_p2_ = L_features_p2_ 2025-03-14T05:10:12.1600046Z l_features_p3_ = L_features_p3_ 2025-03-14T05:10:12.1600262Z l_features_p4_ = L_features_p4_ 2025-03-14T05:10:12.1600470Z l_features_p5_ = L_features_p5_ 2025-03-14T05:10:12.1600678Z l_features_p6_ = L_features_p6_ 2025-03-14T05:10:12.1601058Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:10:12.1601608Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:10:12.1602147Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:10:12.1602682Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:10:12.1603216Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:10:12.1603726Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:10:12.1604224Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:10:12.1604776Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:10:12.1605357Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:10:12.1605915Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:10:12.1606452Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:10:12.1606811Z 2025-03-14T05:10:12.1607357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1608001Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:10:12.1608272Z 2025-03-14T05:10:12.1608655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1609143Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:10:12.1609400Z 2025-03-14T05:10:12.1609919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1610588Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:10:12.1610859Z 2025-03-14T05:10:12.1611235Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1611716Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:10:12.1611972Z 2025-03-14T05:10:12.1612448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1613042Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:10:12.1613370Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:10:12.1613636Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:10:12.1613871Z 2025-03-14T05:10:12.1614286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1614788Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:10:12.1615031Z 2025-03-14T05:10:12.1615435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1615930Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:10:12.1616168Z 2025-03-14T05:10:12.1616621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1617247Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:10:12.1617568Z 2025-03-14T05:10:12.1618086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1618679Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:10:12.1619166Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:10:12.1620276Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:10:12.1620588Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:10:12.1621074Z 2025-03-14T05:10:12.1621815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1622671Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:10:12.1622944Z 2025-03-14T05:10:12.1623565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1624359Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:10:12.1624816Z 2025-03-14T05:10:12.1625519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1626319Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:10:12.1626630Z 2025-03-14T05:10:12.1627183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1627952Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:10:12.1628221Z 2025-03-14T05:10:12.1628882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1629675Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:10:12.1630191Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:10:12.1630486Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:10:12.1630723Z 2025-03-14T05:10:12.1631336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1631844Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:10:12.1632093Z 2025-03-14T05:10:12.1632498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1632994Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:10:12.1633242Z 2025-03-14T05:10:12.1633701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1634329Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:10:12.1634652Z 2025-03-14T05:10:12.1635201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1635806Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:10:12.1636293Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:10:12.1636771Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:10:12.1637065Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:10:12.1637299Z 2025-03-14T05:10:12.1637810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1638438Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:10:12.1638701Z 2025-03-14T05:10:12.1639072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1639546Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:10:12.1639800Z 2025-03-14T05:10:12.1640302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1640914Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:10:12.1641191Z 2025-03-14T05:10:12.1641560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1642028Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:10:12.1642279Z 2025-03-14T05:10:12.1642735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1643334Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:10:12.1643674Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:10:12.1643940Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:10:12.1644180Z 2025-03-14T05:10:12.1644589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1645092Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:10:12.1645332Z 2025-03-14T05:10:12.1645741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1646235Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:10:12.1646478Z 2025-03-14T05:10:12.1646933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1647561Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:10:12.1647887Z 2025-03-14T05:10:12.1648397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1649001Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:10:12.1649487Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:10:12.1649961Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:10:12.1650254Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:10:12.1650487Z 2025-03-14T05:10:12.1650992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1651606Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:10:12.1651869Z 2025-03-14T05:10:12.1652247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1652722Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:10:12.1652973Z 2025-03-14T05:10:12.1653470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1654079Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:10:12.1654362Z 2025-03-14T05:10:12.1654728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1655195Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:10:12.1655446Z 2025-03-14T05:10:12.1655826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1656023Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:10:12.1656122Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:10:12.1656248Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:10:12.1656316Z 2025-03-14T05:10:12.1656643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1656767Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:10:12.1656840Z 2025-03-14T05:10:12.1657154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1657280Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:10:12.1657346Z 2025-03-14T05:10:12.1657723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1657926Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:10:12.1657999Z 2025-03-14T05:10:12.1658428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1658578Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:10:12.1658877Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:10:12.1659004Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:10:12.1659114Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:10:12.1659185Z 2025-03-14T05:10:12.1659596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1659746Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:12.1659810Z 2025-03-14T05:10:12.1660096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1660228Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:10:12.1660300Z 2025-03-14T05:10:12.1660710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:10:12.1660857Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:10:12.1660943Z 2025-03-14T05:10:12.1661223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1661361Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:10:12.1661424Z 2025-03-14T05:10:12.1661805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:10:12.1661992Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:10:12.1662097Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:10:12.1662213Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:10:12.1662286Z 2025-03-14T05:10:12.1662603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:10:12.1662732Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:10:12.1662796Z 2025-03-14T05:10:12.1663117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:10:12.1663239Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:10:12.1663311Z 2025-03-14T05:10:12.1663676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:10:12.1663892Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:10:12.1663959Z 2025-03-14T05:10:12.1664499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:10:12.1664653Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:10:12.1664969Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:10:12.1665094Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:10:12.1665219Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:10:12.1665292Z 2025-03-14T05:10:12.1665592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:12.1665716Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:10:12.1665852Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:10:12.1665972Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:10:12.1666103Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:10:12.1666219Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:10:12.1666298Z 2025-03-14T05:10:12.1666567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1666991Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:10:12.1667088Z 2025-03-14T05:10:12.1667371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1667565Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:10:12.1667646Z 2025-03-14T05:10:12.1668027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1668419Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1668497Z 2025-03-14T05:10:12.1668842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1669244Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:10:12.1669310Z 2025-03-14T05:10:12.1669571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1669957Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:10:12.1670031Z 2025-03-14T05:10:12.1670314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1670534Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:10:12.1670598Z 2025-03-14T05:10:12.1670976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1671365Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1671436Z 2025-03-14T05:10:12.1671795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1672184Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:10:12.1672258Z 2025-03-14T05:10:12.1672513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1672901Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:10:12.1672964Z 2025-03-14T05:10:12.1673242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1673432Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:10:12.1673508Z 2025-03-14T05:10:12.1673869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1674279Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1674344Z 2025-03-14T05:10:12.1674697Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1675073Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:10:12.1675145Z 2025-03-14T05:10:12.1675388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1675769Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:10:12.1675841Z 2025-03-14T05:10:12.1676105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1676284Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:10:12.1676348Z 2025-03-14T05:10:12.1676727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1677127Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:10:12.1677200Z 2025-03-14T05:10:12.1677545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1677923Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:10:12.1677989Z 2025-03-14T05:10:12.1678241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:10:12.1678797Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:10:12.1678868Z 2025-03-14T05:10:12.1679137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:10:12.1679305Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:10:12.1679396Z 2025-03-14T05:10:12.1679758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:10:12.1680388Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:10:12.1680453Z 2025-03-14T05:10:12.1680799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:10:12.1681367Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:10:12.1681605Z 2025-03-14T05:10:12.1681947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:10:12.1682119Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:10:12.1682261Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:10:12.1682431Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:10:12.1682576Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:10:12.1682779Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:10:12.1682945Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:10:12.1683092Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:10:12.1683233Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:10:12.1683375Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:10:12.1683514Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:10:12.1683579Z 2025-03-14T05:10:12.1684003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:10:12.1684178Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:10:12.1684371Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:10:12.1684548Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:10:12.1684718Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:10:12.1684891Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:10:12.1685067Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:10:12.1685290Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:10:12.1685460Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:10:12.1685624Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:10:12.1685798Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:10:12.1685958Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:10:12.1686130Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:10:12.1686270Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:10:12.1686434Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:10:12.1686593Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:10:12.1686667Z 2025-03-14T05:10:12.1687065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1687278Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:10:12.1687347Z 2025-03-14T05:10:12.1687773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1687933Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:10:12.1688094Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:10:12.1688261Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:10:12.1688323Z 2025-03-14T05:10:12.1688692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1688857Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:10:12.1688928Z 2025-03-14T05:10:12.1689231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1689382Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:10:12.1689446Z 2025-03-14T05:10:12.1689756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1689888Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1690022Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1690170Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:12.1690243Z 2025-03-14T05:10:12.1690549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1690677Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1690814Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1690975Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:10:12.1691040Z 2025-03-14T05:10:12.1691360Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1691495Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1691594Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:10:12.1691719Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:10:12.1691791Z 2025-03-14T05:10:12.1692090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1692246Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:12.1692336Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:10:12.1692472Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:10:12.1692537Z 2025-03-14T05:10:12.1692866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1693022Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1693147Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:10:12.1693210Z 2025-03-14T05:10:12.1693508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1693657Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1693793Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:10:12.1693872Z 2025-03-14T05:10:12.1694169Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1694326Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1694435Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:10:12.1694506Z 2025-03-14T05:10:12.1694803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1694988Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:12.1695099Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:10:12.1695171Z 2025-03-14T05:10:12.1695501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1695649Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:12.1695712Z 2025-03-14T05:10:12.1696040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1696172Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:12.1696243Z 2025-03-14T05:10:12.1696576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1696739Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:12.1696864Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:10:12.1697021Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:12.1697175Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:10:12.1697248Z 2025-03-14T05:10:12.1697591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1697738Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:12.1697861Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:10:12.1698017Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:12.1698153Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:10:12.1698227Z 2025-03-14T05:10:12.1698553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1698678Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:12.1698833Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:12.1698972Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:10:12.1699035Z 2025-03-14T05:10:12.1699364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1699492Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:12.1699679Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:12.1699812Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:10:12.1699886Z 2025-03-14T05:10:12.1700188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1700293Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:12.1700409Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:12.1700483Z 2025-03-14T05:10:12.1700781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1700885Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:12.1701007Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:12.1701073Z 2025-03-14T05:10:12.1701374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1701485Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:12.1701621Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:12.1701684Z 2025-03-14T05:10:12.1701981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1702092Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:12.1702245Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:12.1702311Z 2025-03-14T05:10:12.1702652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1702844Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:12.1702915Z 2025-03-14T05:10:12.1703236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1703402Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:10:12.1703465Z 2025-03-14T05:10:12.1703847Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1704036Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:10:12.1705024Z 2025-03-14T05:10:12.1705603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1705831Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:10:12.1705901Z 2025-03-14T05:10:12.1706333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1706492Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:10:12.1706708Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:10:12.1706874Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:10:12.1706951Z 2025-03-14T05:10:12.1707310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1707486Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:10:12.1707551Z 2025-03-14T05:10:12.1707858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1708004Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:10:12.1708077Z 2025-03-14T05:10:12.1708381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1708523Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1708658Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1708816Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:10:12.1708881Z 2025-03-14T05:10:12.1709197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1709327Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1709472Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1709631Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:10:12.1709698Z 2025-03-14T05:10:12.1710002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1710140Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1710241Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:10:12.1710370Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:10:12.1710440Z 2025-03-14T05:10:12.1710741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1710897Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:10:12.1710992Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:10:12.1711125Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:10:12.1711191Z 2025-03-14T05:10:12.1711496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1711651Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1711773Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:10:12.1711837Z 2025-03-14T05:10:12.1712133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1712283Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1712431Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:10:12.1712513Z 2025-03-14T05:10:12.1712816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1712967Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1713086Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:10:12.1713149Z 2025-03-14T05:10:12.1713451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1713631Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:10:12.1713751Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:10:12.1713815Z 2025-03-14T05:10:12.1714155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1714295Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:10:12.1714368Z 2025-03-14T05:10:12.1714694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1714840Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:10:12.1714904Z 2025-03-14T05:10:12.1715249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1715410Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:10:12.1715536Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:10:12.1715699Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:10:12.1715853Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:10:12.1715924Z 2025-03-14T05:10:12.1716260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1716405Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:10:12.1716526Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:10:12.1716684Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:10:12.1716823Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:10:12.1716896Z 2025-03-14T05:10:12.1717217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1717340Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:10:12.1717497Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:10:12.1717639Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:10:12.1717702Z 2025-03-14T05:10:12.1718031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1718158Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:10:12.1718342Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:10:12.1718474Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:10:12.1718546Z 2025-03-14T05:10:12.1718845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1718952Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:10:12.1719069Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:10:12.1719140Z 2025-03-14T05:10:12.1719437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1719542Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:10:12.1719660Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:10:12.1719731Z 2025-03-14T05:10:12.1720028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1720151Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:10:12.1720281Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:10:12.1720353Z 2025-03-14T05:10:12.1720645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1720781Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:10:12.1720912Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:10:12.1720985Z 2025-03-14T05:10:12.1721317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1721527Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:10:12.1721592Z 2025-03-14T05:10:12.1721921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1722083Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:10:12.1722158Z 2025-03-14T05:10:12.1722527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1722706Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:10:12.1722769Z 2025-03-14T05:10:12.1723164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1723373Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:10:12.1723439Z 2025-03-14T05:10:12.1723861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1724024Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:10:12.1724197Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:10:12.1724333Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:10:12.1724403Z 2025-03-14T05:10:12.1724761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1724931Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:10:12.1724994Z 2025-03-14T05:10:12.1725301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1725442Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:10:12.1725512Z 2025-03-14T05:10:12.1725811Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1725945Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1726067Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1726219Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:10:12.1726284Z 2025-03-14T05:10:12.1726595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1727364Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1727493Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1727640Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:10:12.1727717Z 2025-03-14T05:10:12.1728035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1728163Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1728255Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:10:12.1728390Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:10:12.1728454Z 2025-03-14T05:10:12.1728767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1728915Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:10:12.1729020Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:10:12.1729147Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:10:12.1729220Z 2025-03-14T05:10:12.1729519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1729682Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1729794Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:10:12.1729867Z 2025-03-14T05:10:12.1730158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1730330Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1730466Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:10:12.1730530Z 2025-03-14T05:10:12.1730832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1730975Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1731089Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:10:12.1731154Z 2025-03-14T05:10:12.1731458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1731640Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:10:12.1731757Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:10:12.1731823Z 2025-03-14T05:10:12.1732157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1732293Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:10:12.1732363Z 2025-03-14T05:10:12.1732706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1732848Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:10:12.1732910Z 2025-03-14T05:10:12.1733271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1733404Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:10:12.1733535Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:10:12.1733708Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:10:12.1733857Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:10:12.1733921Z 2025-03-14T05:10:12.1734266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1734399Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:10:12.1734530Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:10:12.1734678Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:10:12.1734821Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:10:12.1734885Z 2025-03-14T05:10:12.1735217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1735330Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:10:12.1735495Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:10:12.1735628Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:10:12.1735703Z 2025-03-14T05:10:12.1736040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1736173Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:10:12.1736341Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:10:12.1736472Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:10:12.1736543Z 2025-03-14T05:10:12.1736842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1736945Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:10:12.1737057Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:10:12.1737130Z 2025-03-14T05:10:12.1737425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1737528Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:10:12.1737641Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:10:12.1737712Z 2025-03-14T05:10:12.1738009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1738129Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:10:12.1738258Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:10:12.1738329Z 2025-03-14T05:10:12.1738618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1738752Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:10:12.1738882Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:10:12.1738953Z 2025-03-14T05:10:12.1739303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1739495Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:10:12.1739560Z 2025-03-14T05:10:12.1739889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1740047Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:10:12.1740117Z 2025-03-14T05:10:12.1740483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1740662Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:10:12.1740727Z 2025-03-14T05:10:12.1741114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1741315Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:10:12.1741390Z 2025-03-14T05:10:12.1741822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1741994Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:10:12.1742139Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:10:12.1742282Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:10:12.1742345Z 2025-03-14T05:10:12.1742710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1742874Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:10:12.1742944Z 2025-03-14T05:10:12.1743248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1743403Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:10:12.1743467Z 2025-03-14T05:10:12.1743779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1743914Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1744042Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1744299Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:10:12.1744373Z 2025-03-14T05:10:12.1744706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1744857Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1744990Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1745140Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:10:12.1745215Z 2025-03-14T05:10:12.1745573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1745701Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1745790Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:10:12.1745924Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:10:12.1745988Z 2025-03-14T05:10:12.1746311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1746458Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:10:12.1746561Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:10:12.1746689Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:10:12.1746763Z 2025-03-14T05:10:12.1747072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1747231Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1747344Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:10:12.1747415Z 2025-03-14T05:10:12.1747719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1747890Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1748022Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:10:12.1748096Z 2025-03-14T05:10:12.1748403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1748560Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1748669Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:10:12.1748742Z 2025-03-14T05:10:12.1749047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1749244Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:10:12.1749356Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:10:12.1749427Z 2025-03-14T05:10:12.1749764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1749910Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:10:12.1749977Z 2025-03-14T05:10:12.1750318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1750460Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:10:12.1750543Z 2025-03-14T05:10:12.1750897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1751036Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:10:12.1751169Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:10:12.1751347Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:10:12.1751496Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:10:12.1751559Z 2025-03-14T05:10:12.1751915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1752054Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:10:12.1752182Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:10:12.1752332Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:10:12.1752475Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:10:12.1752540Z 2025-03-14T05:10:12.1752874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1752988Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:10:12.1753153Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:10:12.1753286Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:10:12.1753358Z 2025-03-14T05:10:12.1753699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1753836Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:10:12.1754001Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:10:12.1754141Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:10:12.1754205Z 2025-03-14T05:10:12.1754523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1754620Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:10:12.1754744Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:10:12.1754809Z 2025-03-14T05:10:12.1755125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1755222Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:10:12.1755344Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:10:12.1755410Z 2025-03-14T05:10:12.1755725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1755841Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:10:12.1755980Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:10:12.1756044Z 2025-03-14T05:10:12.1756381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1756498Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:10:12.1756636Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:10:12.1756703Z 2025-03-14T05:10:12.1757071Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1757262Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:10:12.1757335Z 2025-03-14T05:10:12.1757662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1757835Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:10:12.1757901Z 2025-03-14T05:10:12.1758291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1758465Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:10:12.1758529Z 2025-03-14T05:10:12.1758921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:12.1759123Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:10:12.1759196Z 2025-03-14T05:10:12.1759629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:12.1759797Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:10:12.1759941Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:10:12.1760082Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:10:12.1760146Z 2025-03-14T05:10:12.1760512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:12.1760675Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:10:12.1760747Z 2025-03-14T05:10:12.1761050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:12.1761196Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:10:12.1761259Z 2025-03-14T05:10:12.1761571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:12.1761698Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:10:12.1761826Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1761968Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:10:12.1762040Z 2025-03-14T05:10:12.1762348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:12.1762492Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:10:12.1762608Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:10:12.1762759Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:10:12.1762823Z 2025-03-14T05:10:12.1763147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:12.1763266Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:12.1763362Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:10:12.1763490Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:10:12.1763562Z 2025-03-14T05:10:12.1763863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:12.1764015Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:10:12.1764103Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:10:12.1764234Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:10:12.1764299Z 2025-03-14T05:10:12.1764598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:12.1764747Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:12.1764869Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:10:12.1764934Z 2025-03-14T05:10:12.1765249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:12.1765421Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:12.1765531Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:10:12.1765602Z 2025-03-14T05:10:12.1765897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:12.1766049Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:12.1766154Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:10:12.1766226Z 2025-03-14T05:10:12.1766518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:12.1766707Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:10:12.1766814Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:10:12.1766884Z 2025-03-14T05:10:12.1767205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:12.1767344Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:10:12.1767407Z 2025-03-14T05:10:12.1767731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:12.1767859Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:10:12.1767946Z 2025-03-14T05:10:12.1768278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:12.1768419Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:10:12.1768557Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:10:12.1768713Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:10:12.1768848Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:10:12.1768920Z 2025-03-14T05:10:12.1769253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:12.1769397Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:10:12.1769517Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:10:12.1769668Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:10:12.1769801Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:10:12.1769874Z 2025-03-14T05:10:12.1770192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:12.1770313Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:10:12.1771178Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:10:12.1771331Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:10:12.1771397Z 2025-03-14T05:10:12.1771758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:12.1771896Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:10:12.1772061Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:10:12.1772196Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:10:12.1772260Z 2025-03-14T05:10:12.1772580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:12.1772676Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:10:12.1772797Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:10:12.1772861Z 2025-03-14T05:10:12.1773171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:12.1773266Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:10:12.1773387Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:10:12.1773453Z 2025-03-14T05:10:12.1773759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:12.1773871Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:10:12.1774005Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:10:12.1774087Z 2025-03-14T05:10:12.1774392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:12.1774504Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:10:12.1774637Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:10:12.1774700Z 2025-03-14T05:10:12.1775057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:12.1775238Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:10:12.1775311Z 2025-03-14T05:10:12.1775631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:12.1775795Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:10:12.1775859Z 2025-03-14T05:10:12.1776236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:12.1776403Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:10:12.1776473Z 2025-03-14T05:10:12.1776943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:10:12.1777082Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:10:12.1777149Z 2025-03-14T05:10:12.1777461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1777660Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:10:12.1777732Z 2025-03-14T05:10:12.1778154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1778275Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:10:12.1778378Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:10:12.1778495Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:10:12.1778559Z 2025-03-14T05:10:12.1779014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1779146Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1779377Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:10:12.1779453Z 2025-03-14T05:10:12.1779891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1780062Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1780126Z 2025-03-14T05:10:12.1780417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1780557Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:10:12.1780631Z 2025-03-14T05:10:12.1781046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1781187Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:10:12.1781294Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:10:12.1782139Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:10:12.1782215Z 2025-03-14T05:10:12.1782672Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1782807Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1783046Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:10:12.1783111Z 2025-03-14T05:10:12.1783906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1784072Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1784188Z 2025-03-14T05:10:12.1784485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1784621Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:10:12.1784746Z 2025-03-14T05:10:12.1785196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1785306Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:10:12.1785423Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:10:12.1785538Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:10:12.1785614Z 2025-03-14T05:10:12.1786060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1786201Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1786433Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:10:12.1786507Z 2025-03-14T05:10:12.1786962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1787124Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1787195Z 2025-03-14T05:10:12.1787483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1787613Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:10:12.1787711Z 2025-03-14T05:10:12.1788134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1788246Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:10:12.1788358Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:10:12.1788496Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:10:12.1788569Z 2025-03-14T05:10:12.1789006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1789146Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:12.1789377Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:10:12.1789451Z 2025-03-14T05:10:12.1789893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1790058Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1790124Z 2025-03-14T05:10:12.1790419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1790537Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:10:12.1790613Z 2025-03-14T05:10:12.1791047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:12.1791178Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:10:12.1791281Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:10:12.1791401Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:10:12.1791465Z 2025-03-14T05:10:12.1791912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:12.1792070Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:10:12.1792299Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:10:12.1792367Z 2025-03-14T05:10:12.1792815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:12.1792982Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:12.1793046Z 2025-03-14T05:10:12.1793338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:12.1793458Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:10:12.1793529Z 2025-03-14T05:10:12.1793819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:12.1794205Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:10:12.1794269Z 2025-03-14T05:10:12.1794561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:12.1795002Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:10:12.1795073Z 2025-03-14T05:10:12.1795339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:12.1795545Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:10:12.1795611Z 2025-03-14T05:10:12.1795993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:10:12.1796132Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:10:12.1796206Z 2025-03-14T05:10:12.1796493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:12.1796646Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:10:12.1796713Z 2025-03-14T05:10:12.1797099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:10:12.1797243Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:10:12.1797317Z 2025-03-14T05:10:12.1797782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:10:12.1797923Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:10:12.1798051Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:12.1798202Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:10:12.1798339Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:10:12.1798403Z 2025-03-14T05:10:12.1798766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:10:12.1798882Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:10:12.1798953Z 2025-03-14T05:10:13.4127429Z 2025-03-14T05:10:13.4132677Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:13.4136289Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 269952, 4][1079808, 4, 1]cpu", L_anchors_0_tensor: "f32[269952, 4][4, 1]cpu", L_pred_anchor_deltas_1_: "f32[4, 67488, 4][269952, 4, 1]cpu", L_anchors_1_tensor: "f32[67488, 4][4, 1]cpu", L_pred_anchor_deltas_2_: "f32[4, 16872, 4][67488, 4, 1]cpu", L_anchors_2_tensor: "f32[16872, 4][4, 1]cpu", L_pred_anchor_deltas_3_: "f32[4, 4218, 4][16872, 4, 1]cpu", L_anchors_3_tensor: "f32[4218, 4][4, 1]cpu", L_pred_anchor_deltas_4_: "f32[4, 1083, 4][4332, 4, 1]cpu", L_anchors_4_tensor: "f32[1083, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 269952][269952, 1]cpu", L_pred_objectness_logits_1_: "f32[4, 67488][67488, 1]cpu", L_pred_objectness_logits_2_: "f32[4, 16872][16872, 1]cpu", L_pred_objectness_logits_3_: "f32[4, 4218][4218, 1]cpu", L_pred_objectness_logits_4_: "f32[4, 1083][1083, 1]cpu"): 2025-03-14T05:10:13.4138760Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:10:13.4144045Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:10:13.4148547Z l_pred_anchor_deltas_1_ = L_pred_anchor_deltas_1_ 2025-03-14T05:10:13.4152627Z l_anchors_1_tensor = L_anchors_1_tensor 2025-03-14T05:10:13.4156789Z l_pred_anchor_deltas_2_ = L_pred_anchor_deltas_2_ 2025-03-14T05:10:13.4157142Z l_anchors_2_tensor = L_anchors_2_tensor 2025-03-14T05:10:13.4157411Z l_pred_anchor_deltas_3_ = L_pred_anchor_deltas_3_ 2025-03-14T05:10:13.4157707Z l_anchors_3_tensor = L_anchors_3_tensor 2025-03-14T05:10:13.4157964Z l_pred_anchor_deltas_4_ = L_pred_anchor_deltas_4_ 2025-03-14T05:10:13.4158226Z l_anchors_4_tensor = L_anchors_4_tensor 2025-03-14T05:10:13.4158498Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:10:13.4158790Z l_pred_objectness_logits_1_ = L_pred_objectness_logits_1_ 2025-03-14T05:10:13.4159071Z l_pred_objectness_logits_2_ = L_pred_objectness_logits_2_ 2025-03-14T05:10:13.4159353Z l_pred_objectness_logits_3_ = L_pred_objectness_logits_3_ 2025-03-14T05:10:13.4159631Z l_pred_objectness_logits_4_ = L_pred_objectness_logits_4_ 2025-03-14T05:10:13.4159870Z 2025-03-14T05:10:13.4160422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:13.4161191Z pred_anchor_deltas_i: "f32[1079808, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:10:13.4161534Z 2025-03-14T05:10:13.4162236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:13.4162998Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:10:13.4163410Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:10:13.4163767Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:10:13.4164041Z 2025-03-14T05:10:13.4164524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:13.4165235Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:10:13.4165587Z 2025-03-14T05:10:13.4166040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:13.4166566Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:10:13.4166837Z 2025-03-14T05:10:13.4167288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:13.4167792Z getitem: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:13.4168105Z getitem_1: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4168441Z widths: "f32[1079808][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:10:13.4168776Z 2025-03-14T05:10:13.4169189Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:13.4169693Z getitem_2: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:13.4170008Z getitem_3: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:13.4170372Z heights: "f32[1079808][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:10:13.4170650Z 2025-03-14T05:10:13.4171161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:13.4171641Z getitem_4: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4171912Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:10:13.4172187Z ctr_x: "f32[1079808][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:10:13.4172433Z 2025-03-14T05:10:13.4172837Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:13.4173360Z getitem_5: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:13.4173660Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:10:13.4173935Z ctr_y: "f32[1079808][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:10:13.4174187Z 2025-03-14T05:10:13.4174607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:13.4175134Z getitem_6: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:13.4175458Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:10:13.4175690Z 2025-03-14T05:10:13.4176094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:13.4176611Z getitem_7: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:13.4176931Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:10:13.4177159Z 2025-03-14T05:10:13.4177537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:13.4178035Z getitem_8: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:13.4178356Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:10:13.4178588Z 2025-03-14T05:10:13.4178973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:13.4179497Z getitem_9: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:13.4179838Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:10:13.4180069Z 2025-03-14T05:10:13.4180487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:13.4181008Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:13.4181264Z 2025-03-14T05:10:13.4181891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:13.4182451Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:13.4182708Z 2025-03-14T05:10:13.4183147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:13.4183725Z getitem_10: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:13.4184060Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:10:13.4184499Z getitem_11: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:13.4184867Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:10:13.4185149Z 2025-03-14T05:10:13.4185587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:13.4186134Z getitem_12: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:13.4186465Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:10:13.4186803Z getitem_13: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:13.4187146Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:10:13.4187409Z 2025-03-14T05:10:13.4187826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:13.4188332Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:13.4188668Z getitem_14: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:13.4189044Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:10:13.4189328Z 2025-03-14T05:10:13.4189748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:13.4190253Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:13.4190596Z getitem_15: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:13.4190958Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:10:13.4191220Z 2025-03-14T05:10:13.4191626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:13.4192094Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:13.4192367Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:13.4192606Z 2025-03-14T05:10:13.4192999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:13.4193462Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:13.4193726Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:13.4193962Z 2025-03-14T05:10:13.4194354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:13.4194832Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:13.4195136Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:13.4195410Z 2025-03-14T05:10:13.4195809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:13.4196287Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:13.4196590Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:13.4196858Z 2025-03-14T05:10:13.4197300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:13.4197889Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:13.4198190Z 2025-03-14T05:10:13.4198651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:13.4199209Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:10:13.4199497Z 2025-03-14T05:10:13.4199972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:13.4200584Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:10:13.4200887Z 2025-03-14T05:10:13.4201374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:13.4202042Z pred_anchor_deltas_i_1: "f32[269952, 4][4, 1]cpu" = l_pred_anchor_deltas_1_.reshape(-1, 4); l_pred_anchor_deltas_1_ = None 2025-03-14T05:10:13.4202375Z 2025-03-14T05:10:13.4202911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:13.4203607Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = l_anchors_1_tensor.unsqueeze(0); l_anchors_1_tensor = None 2025-03-14T05:10:13.4204011Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:10:13.4204367Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:10:13.4204632Z 2025-03-14T05:10:13.4205096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:13.4205695Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:10:13.4205991Z 2025-03-14T05:10:13.4206389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:13.4206906Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:10:13.4207177Z 2025-03-14T05:10:13.4207585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:13.4208091Z getitem_16: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:10:13.4208407Z getitem_17: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4208742Z widths_1: "f32[269952][1]cpu" = getitem_16 - getitem_17; getitem_16 = getitem_17 = None 2025-03-14T05:10:13.4209035Z 2025-03-14T05:10:13.4209433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:13.4209930Z getitem_18: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:10:13.4210239Z getitem_19: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:10:13.4210598Z heights_1: "f32[269952][1]cpu" = getitem_18 - getitem_19; getitem_18 = getitem_19 = None 2025-03-14T05:10:13.4210866Z 2025-03-14T05:10:13.4211257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:13.4211737Z getitem_20: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4212011Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:10:13.4212293Z ctr_x_1: "f32[269952][1]cpu" = getitem_20 + mul_10; getitem_20 = mul_10 = None 2025-03-14T05:10:13.4212555Z 2025-03-14T05:10:13.4212961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:13.4213480Z getitem_21: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:10:13.4213787Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:10:13.4214073Z ctr_y_1: "f32[269952][1]cpu" = getitem_21 + mul_11; getitem_21 = mul_11 = None 2025-03-14T05:10:13.4214331Z 2025-03-14T05:10:13.4214726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:13.4215238Z getitem_22: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:13.4215574Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_22 / 1.0; getitem_22 = None 2025-03-14T05:10:13.4215837Z 2025-03-14T05:10:13.4216261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:13.4216768Z getitem_23: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:13.4217097Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_23 / 1.0; getitem_23 = None 2025-03-14T05:10:13.4217339Z 2025-03-14T05:10:13.4217723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:13.4218233Z getitem_24: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:13.4218557Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_24 / 1.0; getitem_24 = None 2025-03-14T05:10:13.4218797Z 2025-03-14T05:10:13.4219187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:13.4219733Z getitem_25: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:10:13.4220087Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_25 / 1.0; getitem_25 = None 2025-03-14T05:10:13.4220323Z 2025-03-14T05:10:13.4220747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:13.4221282Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:10:13.4221546Z 2025-03-14T05:10:13.4221965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:13.4222517Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:10:13.4222787Z 2025-03-14T05:10:13.4223219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:13.4223774Z getitem_26: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:10:13.4224102Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_26; dx_1 = getitem_26 = None 2025-03-14T05:10:13.4224526Z getitem_27: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:10:13.4224892Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_27; mul_12 = getitem_27 = None 2025-03-14T05:10:13.4225162Z 2025-03-14T05:10:13.4225627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:13.4226173Z getitem_28: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:10:13.4226503Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_28; dy_1 = getitem_28 = None 2025-03-14T05:10:13.4226848Z getitem_29: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:10:13.4227205Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_29; mul_13 = getitem_29 = None 2025-03-14T05:10:13.4227468Z 2025-03-14T05:10:13.4227891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:13.4228402Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:10:13.4228769Z getitem_30: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:10:13.4229145Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_30; exp_2 = getitem_30 = None 2025-03-14T05:10:13.4229409Z 2025-03-14T05:10:13.4229838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:13.4230341Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:10:13.4230681Z getitem_31: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:10:13.4231041Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_31; exp_3 = getitem_31 = None 2025-03-14T05:10:13.4231303Z 2025-03-14T05:10:13.4231712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:13.4232186Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:10:13.4232460Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:10:13.4232701Z 2025-03-14T05:10:13.4233100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:13.4233565Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:10:13.4233830Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:10:13.4234070Z 2025-03-14T05:10:13.4234464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:13.4234953Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:10:13.4235292Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:10:13.4235553Z 2025-03-14T05:10:13.4235941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:13.4236416Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:10:13.4236737Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:10:13.4236998Z 2025-03-14T05:10:13.4237433Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:13.4238029Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:10:13.4238338Z 2025-03-14T05:10:13.4238766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:13.4239320Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:10:13.4239618Z 2025-03-14T05:10:13.4240076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:13.4240666Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:10:13.4240955Z 2025-03-14T05:10:13.4241425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:13.4242117Z pred_anchor_deltas_i_2: "f32[67488, 4][4, 1]cpu" = l_pred_anchor_deltas_2_.reshape(-1, 4); l_pred_anchor_deltas_2_ = None 2025-03-14T05:10:13.4242457Z 2025-03-14T05:10:13.4242957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:13.4243615Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = l_anchors_2_tensor.unsqueeze(0); l_anchors_2_tensor = None 2025-03-14T05:10:13.4244001Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:10:13.4244340Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:10:13.4244597Z 2025-03-14T05:10:13.4245052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:13.4245652Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_2.float(); pred_anchor_deltas_i_2 = None 2025-03-14T05:10:13.4245939Z 2025-03-14T05:10:13.4246322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:13.4246825Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:10:13.4247094Z 2025-03-14T05:10:13.4247489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:13.4247979Z getitem_32: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:10:13.4248284Z getitem_33: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4248644Z widths_2: "f32[67488][1]cpu" = getitem_32 - getitem_33; getitem_32 = getitem_33 = None 2025-03-14T05:10:13.4248913Z 2025-03-14T05:10:13.4249311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:13.4249811Z getitem_34: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:10:13.4250116Z getitem_35: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:10:13.4250443Z heights_2: "f32[67488][1]cpu" = getitem_34 - getitem_35; getitem_34 = getitem_35 = None 2025-03-14T05:10:13.4250708Z 2025-03-14T05:10:13.4251104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:13.4251587Z getitem_36: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4251852Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:10:13.4252127Z ctr_x_2: "f32[67488][1]cpu" = getitem_36 + mul_20; getitem_36 = mul_20 = None 2025-03-14T05:10:13.4252379Z 2025-03-14T05:10:13.4252774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:13.4253290Z getitem_37: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:10:13.4253594Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:10:13.4253881Z ctr_y_2: "f32[67488][1]cpu" = getitem_37 + mul_21; getitem_37 = mul_21 = None 2025-03-14T05:10:13.4254125Z 2025-03-14T05:10:13.4254510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:13.4255032Z getitem_38: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:13.4255369Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_38 / 1.0; getitem_38 = None 2025-03-14T05:10:13.4255605Z 2025-03-14T05:10:13.4255981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:13.4256474Z getitem_39: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:13.4256788Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_39 / 1.0; getitem_39 = None 2025-03-14T05:10:13.4257022Z 2025-03-14T05:10:13.4257398Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:13.4257895Z getitem_40: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:13.4258217Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_40 / 1.0; getitem_40 = None 2025-03-14T05:10:13.4258449Z 2025-03-14T05:10:13.4258827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:13.4259352Z getitem_41: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:10:13.4259692Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_41 / 1.0; getitem_41 = None 2025-03-14T05:10:13.4259926Z 2025-03-14T05:10:13.4260337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:13.4260860Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:10:13.4261149Z 2025-03-14T05:10:13.4261559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:13.4262074Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:10:13.4262328Z 2025-03-14T05:10:13.4262766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:13.4263296Z getitem_42: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:10:13.4263613Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_42; dx_2 = getitem_42 = None 2025-03-14T05:10:13.4263957Z getitem_43: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:10:13.4264396Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_43; mul_22 = getitem_43 = None 2025-03-14T05:10:13.4264664Z 2025-03-14T05:10:13.4265136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:13.4265680Z getitem_44: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:10:13.4266039Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_44; dy_2 = getitem_44 = None 2025-03-14T05:10:13.4266386Z getitem_45: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:10:13.4266739Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_45; mul_23 = getitem_45 = None 2025-03-14T05:10:13.4267008Z 2025-03-14T05:10:13.4267430Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:13.4267967Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:10:13.4268328Z getitem_46: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:10:13.4268688Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_46; exp_4 = getitem_46 = None 2025-03-14T05:10:13.4268960Z 2025-03-14T05:10:13.4269395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:13.4269902Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:10:13.4270245Z getitem_47: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:10:13.4270606Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_47; exp_5 = getitem_47 = None 2025-03-14T05:10:13.4270866Z 2025-03-14T05:10:13.4271295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:13.4271769Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:10:13.4272039Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:10:13.4272285Z 2025-03-14T05:10:13.4272683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:13.4273149Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:10:13.4273414Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:10:13.4273659Z 2025-03-14T05:10:13.4274055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:13.4274567Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:10:13.4274877Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:10:13.4275134Z 2025-03-14T05:10:13.4275527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:13.4276030Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:10:13.4276338Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:10:13.4276593Z 2025-03-14T05:10:13.4277030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:13.4277631Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:10:13.4277938Z 2025-03-14T05:10:13.4278384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:13.4278935Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:10:13.4279221Z 2025-03-14T05:10:13.4279690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:13.4280294Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:10:13.4280591Z 2025-03-14T05:10:13.4281098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:13.4282005Z pred_anchor_deltas_i_3: "f32[16872, 4][4, 1]cpu" = l_pred_anchor_deltas_3_.reshape(-1, 4); l_pred_anchor_deltas_3_ = None 2025-03-14T05:10:13.4282340Z 2025-03-14T05:10:13.4282865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:13.4283543Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = l_anchors_3_tensor.unsqueeze(0); l_anchors_3_tensor = None 2025-03-14T05:10:13.4283940Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:10:13.4284286Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:10:13.4284550Z 2025-03-14T05:10:13.4285003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:13.4285589Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:10:13.4285880Z 2025-03-14T05:10:13.4286262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:13.4286762Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:10:13.4287027Z 2025-03-14T05:10:13.4287418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:13.4287909Z getitem_48: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:10:13.4288271Z getitem_49: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4288602Z widths_3: "f32[16872][1]cpu" = getitem_48 - getitem_49; getitem_48 = getitem_49 = None 2025-03-14T05:10:13.4288867Z 2025-03-14T05:10:13.4289261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:13.4289780Z getitem_50: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:10:13.4290088Z getitem_51: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:10:13.4290417Z heights_3: "f32[16872][1]cpu" = getitem_50 - getitem_51; getitem_50 = getitem_51 = None 2025-03-14T05:10:13.4290687Z 2025-03-14T05:10:13.4291078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:13.4291557Z getitem_52: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4291825Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:10:13.4292097Z ctr_x_3: "f32[16872][1]cpu" = getitem_52 + mul_30; getitem_52 = mul_30 = None 2025-03-14T05:10:13.4292348Z 2025-03-14T05:10:13.4292739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:13.4293244Z getitem_53: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:10:13.4293539Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:10:13.4293813Z ctr_y_3: "f32[16872][1]cpu" = getitem_53 + mul_31; getitem_53 = mul_31 = None 2025-03-14T05:10:13.4294064Z 2025-03-14T05:10:13.4294451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:13.4294981Z getitem_54: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:13.4295330Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_54 / 1.0; getitem_54 = None 2025-03-14T05:10:13.4295569Z 2025-03-14T05:10:13.4295952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:13.4296445Z getitem_55: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:13.4296764Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_55 / 1.0; getitem_55 = None 2025-03-14T05:10:13.4296999Z 2025-03-14T05:10:13.4297383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:13.4297882Z getitem_56: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:13.4298196Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_56 / 1.0; getitem_56 = None 2025-03-14T05:10:13.4298426Z 2025-03-14T05:10:13.4298806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:13.4299338Z getitem_57: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:10:13.4299677Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_57 / 1.0; getitem_57 = None 2025-03-14T05:10:13.4299911Z 2025-03-14T05:10:13.4300322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:13.4300865Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:10:13.4301127Z 2025-03-14T05:10:13.4301544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:13.4302062Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:10:13.4302324Z 2025-03-14T05:10:13.4302767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:13.4303291Z getitem_58: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:10:13.4303606Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_58; dx_3 = getitem_58 = None 2025-03-14T05:10:13.4303939Z getitem_59: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:10:13.4304370Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_59; mul_32 = getitem_59 = None 2025-03-14T05:10:13.4304637Z 2025-03-14T05:10:13.4305073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:13.4305614Z getitem_60: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:10:13.4305937Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_60; dy_3 = getitem_60 = None 2025-03-14T05:10:13.4306273Z getitem_61: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:10:13.4306631Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_61; mul_33 = getitem_61 = None 2025-03-14T05:10:13.4306896Z 2025-03-14T05:10:13.4307349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:13.4307868Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:10:13.4308200Z getitem_62: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:10:13.4308555Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_62; exp_6 = getitem_62 = None 2025-03-14T05:10:13.4308835Z 2025-03-14T05:10:13.4309248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:13.4309745Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:10:13.4310081Z getitem_63: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:10:13.4310439Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_63; exp_7 = getitem_63 = None 2025-03-14T05:10:13.4310697Z 2025-03-14T05:10:13.4311097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:13.4311561Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:10:13.4311835Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:10:13.4312081Z 2025-03-14T05:10:13.4312474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:13.4312925Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:10:13.4313193Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:10:13.4313432Z 2025-03-14T05:10:13.4313852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:13.4314474Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:10:13.4315103Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:10:13.4315593Z 2025-03-14T05:10:13.4316094Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:13.4316662Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:10:13.4317044Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:10:13.4317399Z 2025-03-14T05:10:13.4317912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:13.4318563Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:10:13.4318958Z 2025-03-14T05:10:13.4319432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:13.4320035Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:10:13.4320396Z 2025-03-14T05:10:13.4321041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:13.4321718Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:10:13.4322078Z 2025-03-14T05:10:13.4322637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:10:13.4323395Z pred_anchor_deltas_i_4: "f32[4332, 4][4, 1]cpu" = l_pred_anchor_deltas_4_.reshape(-1, 4); l_pred_anchor_deltas_4_ = None 2025-03-14T05:10:13.4323782Z 2025-03-14T05:10:13.4324362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:10:13.4325094Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = l_anchors_4_tensor.unsqueeze(0); l_anchors_4_tensor = None 2025-03-14T05:10:13.4325549Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:10:13.4325982Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:10:13.4326403Z 2025-03-14T05:10:13.4326917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:13.4327596Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_4.float(); pred_anchor_deltas_i_4 = None 2025-03-14T05:10:13.4327939Z 2025-03-14T05:10:13.4328439Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:13.4329011Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:10:13.4329345Z 2025-03-14T05:10:13.4329819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:13.4330402Z getitem_64: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:10:13.4330759Z getitem_65: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4331275Z widths_4: "f32[4332][1]cpu" = getitem_64 - getitem_65; getitem_64 = getitem_65 = None 2025-03-14T05:10:13.4331610Z 2025-03-14T05:10:13.4332102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:13.4332660Z getitem_66: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:10:13.4333025Z getitem_67: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:10:13.4333442Z heights_4: "f32[4332][1]cpu" = getitem_66 - getitem_67; getitem_66 = getitem_67 = None 2025-03-14T05:10:13.4333780Z 2025-03-14T05:10:13.4334230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:13.4334818Z getitem_68: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:10:13.4335147Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:10:13.4335525Z ctr_x_4: "f32[4332][1]cpu" = getitem_68 + mul_40; getitem_68 = mul_40 = None 2025-03-14T05:10:13.4335952Z 2025-03-14T05:10:13.4336412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:13.4337018Z getitem_69: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:10:13.4337376Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:10:13.4337686Z ctr_y_4: "f32[4332][1]cpu" = getitem_69 + mul_41; getitem_69 = mul_41 = None 2025-03-14T05:10:13.4338027Z 2025-03-14T05:10:13.4338507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:13.4339148Z getitem_70: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:13.4339529Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_70 / 1.0; getitem_70 = None 2025-03-14T05:10:13.4339825Z 2025-03-14T05:10:13.4340371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:13.4340941Z getitem_71: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:13.4341326Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_71 / 1.0; getitem_71 = None 2025-03-14T05:10:13.4341658Z 2025-03-14T05:10:13.4342110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:13.4342671Z getitem_72: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:13.4343124Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_72 / 1.0; getitem_72 = None 2025-03-14T05:10:13.4343425Z 2025-03-14T05:10:13.4343882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:13.4344574Z getitem_73: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:10:13.4345000Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_73 / 1.0; getitem_73 = None 2025-03-14T05:10:13.4369209Z 2025-03-14T05:10:13.4369870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:13.4370556Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:10:13.4370839Z 2025-03-14T05:10:13.4371290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:13.4371878Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:10:13.4372130Z 2025-03-14T05:10:13.4372565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:13.4373099Z getitem_74: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:10:13.4373419Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_74; dx_4 = getitem_74 = None 2025-03-14T05:10:13.4373752Z getitem_75: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:10:13.4374102Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_75; mul_42 = getitem_75 = None 2025-03-14T05:10:13.4374366Z 2025-03-14T05:10:13.4374812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:13.4375344Z getitem_76: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:10:13.4375659Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_76; dy_4 = getitem_76 = None 2025-03-14T05:10:13.4375987Z getitem_77: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:10:13.4376327Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_77; mul_43 = getitem_77 = None 2025-03-14T05:10:13.4376591Z 2025-03-14T05:10:13.4377051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:13.4377583Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:10:13.4377914Z getitem_78: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:10:13.4378264Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_78; exp_8 = getitem_78 = None 2025-03-14T05:10:13.4378521Z 2025-03-14T05:10:13.4378946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:13.4379444Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:10:13.4379781Z getitem_79: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:10:13.4380148Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_79; exp_9 = getitem_79 = None 2025-03-14T05:10:13.4380395Z 2025-03-14T05:10:13.4380792Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:13.4381250Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:10:13.4381717Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:10:13.4381966Z 2025-03-14T05:10:13.4382367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:13.4382827Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:10:13.4383098Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:10:13.4383394Z 2025-03-14T05:10:13.4383783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:13.4384311Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:10:13.4384620Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:10:13.4384877Z 2025-03-14T05:10:13.4385311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:13.4385791Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:10:13.4386098Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:10:13.4386356Z 2025-03-14T05:10:13.4386802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:13.4387387Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:10:13.4387691Z 2025-03-14T05:10:13.4388107Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:13.4388685Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:10:13.4388972Z 2025-03-14T05:10:13.4389437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:10:13.4390056Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:10:13.4390339Z 2025-03-14T05:10:13.4390926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:10:13.4391631Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:10:13.4391874Z 2025-03-14T05:10:13.4392263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:13.4392747Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:10:13.4393001Z 2025-03-14T05:10:13.4393518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:13.4394170Z topk = l_pred_objectness_logits_0_.topk(1000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:10:13.4394506Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:10:13.4394774Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:10:13.4395009Z 2025-03-14T05:10:13.4395545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:13.4396174Z getitem_82: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:13.4396583Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_82, topk_idx)]; proposals_i_5 = getitem_82 = topk_idx = None 2025-03-14T05:10:13.4396925Z 2025-03-14T05:10:13.4397480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:13.4398145Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:13.4398427Z 2025-03-14T05:10:13.4398829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:13.4399293Z to_6: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:10:13.4399532Z 2025-03-14T05:10:13.4400042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:13.4400677Z topk_1 = l_pred_objectness_logits_1_.topk(1000, dim = 1); l_pred_objectness_logits_1_ = None 2025-03-14T05:10:13.4401009Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:10:13.4401294Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:10:13.4401533Z 2025-03-14T05:10:13.4402070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:13.4402693Z getitem_86: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:13.4403112Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_86, topk_idx_1)]; proposals_i_6 = getitem_86 = topk_idx_1 = None 2025-03-14T05:10:13.4403463Z 2025-03-14T05:10:13.4404030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:13.4404734Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:13.4405014Z 2025-03-14T05:10:13.4405393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:13.4405861Z to_7: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:10:13.4406111Z 2025-03-14T05:10:13.4406633Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:13.4407300Z topk_2 = l_pred_objectness_logits_2_.topk(1000, dim = 1); l_pred_objectness_logits_2_ = None 2025-03-14T05:10:13.4407636Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:10:13.4407916Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:10:13.4408160Z 2025-03-14T05:10:13.4408706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:13.4409338Z getitem_90: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:13.4409763Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_90, topk_idx_2)]; proposals_i_7 = getitem_90 = topk_idx_2 = None 2025-03-14T05:10:13.4410113Z 2025-03-14T05:10:13.4410648Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:13.4411337Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:13.4411623Z 2025-03-14T05:10:13.4412004Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:13.4412496Z to_8: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:10:13.4412742Z 2025-03-14T05:10:13.4413262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:13.4413914Z topk_3 = l_pred_objectness_logits_3_.topk(1000, dim = 1); l_pred_objectness_logits_3_ = None 2025-03-14T05:10:13.4414248Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:10:13.4414532Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:10:13.4414775Z 2025-03-14T05:10:13.4415317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:13.4415950Z getitem_94: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:10:13.4416372Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_94, topk_idx_3)]; proposals_i_8 = getitem_94 = topk_idx_3 = None 2025-03-14T05:10:13.4416723Z 2025-03-14T05:10:13.4417259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:13.4417958Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:13.4418267Z 2025-03-14T05:10:13.4418650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:13.4419128Z to_9: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:10:13.4419373Z 2025-03-14T05:10:13.4419890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:10:13.4420533Z topk_4 = l_pred_objectness_logits_4_.topk(1000, dim = 1); l_pred_objectness_logits_4_ = None 2025-03-14T05:10:13.4420859Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:10:13.4421130Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:10:13.4421358Z 2025-03-14T05:10:13.4421885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:10:13.4422540Z getitem_98: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:10:13.4422972Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_98, topk_idx_4)]; proposals_i_9 = getitem_98 = topk_idx_4 = None 2025-03-14T05:10:13.4423312Z 2025-03-14T05:10:13.4423826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:10:13.4424594Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:10:13.4424880Z 2025-03-14T05:10:13.4425269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:10:13.4425753Z to_10: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:10:13.4426036Z 2025-03-14T05:10:13.4426400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:13.4427094Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:10:13.4427569Z 2025-03-14T05:10:13.4427934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:13.4428700Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:10:13.4429264Z 2025-03-14T05:10:13.4429608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:13.4430118Z level_ids: "i64[5000][1]cpu" = torch.cat([to_6, to_7, to_8, to_9, to_10], 0); to_6 = to_7 = to_8 = to_9 = to_10 = level_ids = None 2025-03-14T05:10:13.4430416Z 2025-03-14T05:10:13.4430870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:10:13.4431457Z getitem_100: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:10:13.4431739Z 2025-03-14T05:10:13.4432117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:10:13.4432599Z tensor: "f32[5000, 4][4, 1]cpu" = getitem_100.to(torch.float32); getitem_100 = None 2025-03-14T05:10:13.4432856Z 2025-03-14T05:10:13.4433313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:10:13.4433864Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:10:13.4434110Z 2025-03-14T05:10:13.4434678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:10:13.4435352Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:10:13.4435657Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:13.4435977Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:10:13.4436310Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:10:13.4436558Z 2025-03-14T05:10:13.4437002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:10:13.4437523Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:10:13.4437780Z 2025-03-14T05:10:19.7162472Z 2025-03-14T05:10:19.7167378Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:19.7173815Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:19.7175978Z l_stack0_ = L_stack0_ 2025-03-14T05:10:19.7178546Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:10:19.7180314Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:10:19.7183650Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:10:19.7185679Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:10:19.7186324Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:10:19.7187161Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:10:19.7187876Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:10:19.7188494Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:10:19.7189000Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7189435Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7189874Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7190290Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7190612Z 2025-03-14T05:10:19.7191042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:10:19.7191565Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:10:19.7192314Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:10:19.7193086Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:10:19.7193855Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:10:19.7194646Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:10:19.7194955Z 2025-03-14T05:10:19.7195362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:10:19.7196384Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:10:19.7197088Z 2025-03-14T05:10:19.7197506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:10:19.7198502Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:10:19.7199231Z 2025-03-14T05:10:19.7199611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7200074Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7200341Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:19.7200584Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:19.7200867Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7201128Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:19.7201370Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:19.7201668Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7201939Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:19.7202176Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:19.7202450Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7202704Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:19.7202940Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:19.7203163Z 2025-03-14T05:10:19.7203542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:19.7204322Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:19.7204879Z 2025-03-14T05:10:19.7205347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:19.7205944Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:10:19.7206233Z 2025-03-14T05:10:19.7206644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:19.7207200Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:19.7207496Z 2025-03-14T05:10:19.7207918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:19.7208469Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:19.7208802Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7209147Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:19.7209428Z 2025-03-14T05:10:19.7209857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:19.7210395Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:19.7210697Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:19.7211027Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:19.7211302Z 2025-03-14T05:10:19.7211699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:19.7212197Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7212479Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:19.7212760Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:19.7213010Z 2025-03-14T05:10:19.7213410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:19.7213924Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:19.7214231Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:19.7214527Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:19.7214791Z 2025-03-14T05:10:19.7215222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:19.7215727Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:19.7216061Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:19.7216304Z 2025-03-14T05:10:19.7216695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:19.7217204Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:19.7217528Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:19.7217764Z 2025-03-14T05:10:19.7218158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:19.7218661Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:19.7218985Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:19.7219219Z 2025-03-14T05:10:19.7219613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:19.7220147Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:19.7220498Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:19.7220751Z 2025-03-14T05:10:19.7221173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:19.7221706Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:19.7221963Z 2025-03-14T05:10:19.7222393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:19.7222915Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:19.7223169Z 2025-03-14T05:10:19.7223598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:19.7224286Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:19.7224652Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:19.7225012Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:19.7225391Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:19.7225655Z 2025-03-14T05:10:19.7226093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:19.7226640Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:19.7226960Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:19.7227291Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:19.7227668Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:19.7227962Z 2025-03-14T05:10:19.7228388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:19.7228918Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:19.7229263Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:19.7229611Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:19.7229875Z 2025-03-14T05:10:19.7230299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:19.7230822Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:19.7231168Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:19.7231527Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:19.7231790Z 2025-03-14T05:10:19.7232196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:19.7232664Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:19.7232938Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:19.7233179Z 2025-03-14T05:10:19.7233582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:19.7234069Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:19.7234336Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:19.7234580Z 2025-03-14T05:10:19.7234984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:19.7235467Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:19.7235781Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:19.7236040Z 2025-03-14T05:10:19.7236434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:19.7236915Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:19.7237207Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:19.7237459Z 2025-03-14T05:10:19.7237904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:19.7238495Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:19.7238792Z 2025-03-14T05:10:19.7239213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:19.7239773Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:19.7240066Z 2025-03-14T05:10:19.7240520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:19.7241221Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:19.7241658Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:19.7241946Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:19.7242245Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:19.7242553Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:19.7242811Z 2025-03-14T05:10:19.7243195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7243757Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7244111Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:19.7244358Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:19.7244730Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7245097Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:19.7245351Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:19.7245730Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7246090Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:19.7246339Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:19.7246721Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7247084Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:19.7247349Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:19.7247595Z 2025-03-14T05:10:19.7248017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:19.7248619Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:10:19.7248930Z 2025-03-14T05:10:19.7249415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:19.7250813Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:19.7251250Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:19.7251544Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:19.7251854Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:19.7252167Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:19.7252431Z 2025-03-14T05:10:19.7253879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:19.7254632Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:19.7254980Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:19.7255319Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:19.7255654Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:19.7255952Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:19.7256198Z 2025-03-14T05:10:19.7256687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:19.7257251Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:19.7257498Z 2025-03-14T05:10:19.7257648Z 2025-03-14T05:10:19.7257752Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:19.7259679Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:19.7261706Z l_stack0_ = L_stack0_ 2025-03-14T05:10:19.7262062Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:10:19.7262544Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:10:19.7263041Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:10:19.7263516Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:10:19.7264038Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:10:19.7264704Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:10:19.7265330Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:10:19.7265938Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:10:19.7266453Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7266870Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7267283Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7267686Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7267989Z 2025-03-14T05:10:19.7268372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:10:19.7268861Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:10:19.7269574Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:10:19.7270320Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:10:19.7271070Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:10:19.7271801Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:10:19.7272084Z 2025-03-14T05:10:19.7272492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:10:19.7273460Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:10:19.7274157Z 2025-03-14T05:10:19.7274565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:10:19.7275553Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:10:19.7276261Z 2025-03-14T05:10:19.7276628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7277096Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7277349Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:19.7277581Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:19.7277853Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7278095Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:19.7278348Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:19.7278621Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7278867Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:19.7279099Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:19.7279364Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7279607Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:19.7279838Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:19.7280055Z 2025-03-14T05:10:19.7280427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:19.7281186Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:19.7281953Z 2025-03-14T05:10:19.7282415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:19.7282980Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:10:19.7283252Z 2025-03-14T05:10:19.7283645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:19.7284225Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:19.7284531Z 2025-03-14T05:10:19.7284927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:19.7285424Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:19.7285742Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7286069Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:19.7286341Z 2025-03-14T05:10:19.7286736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:19.7287233Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:19.7287546Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:19.7287873Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:19.7288139Z 2025-03-14T05:10:19.7288527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:19.7289001Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7289276Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:19.7289548Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:19.7289816Z 2025-03-14T05:10:19.7290205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:19.7290707Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:19.7291005Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:19.7292035Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:19.7292299Z 2025-03-14T05:10:19.7292706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:19.7293214Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:19.7293536Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:19.7293772Z 2025-03-14T05:10:19.7294149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:19.7294645Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:19.7294962Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:19.7295187Z 2025-03-14T05:10:19.7295566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:19.7296062Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:19.7296380Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:19.7296612Z 2025-03-14T05:10:19.7297017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:19.7297555Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:19.7297892Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:19.7298129Z 2025-03-14T05:10:19.7298546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:19.7299065Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:19.7299321Z 2025-03-14T05:10:19.7299729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:19.7300238Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:19.7300494Z 2025-03-14T05:10:19.7300917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:19.7301447Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:19.7301763Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:19.7302086Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:19.7302424Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:19.7302678Z 2025-03-14T05:10:19.7303109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:19.7303655Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:19.7303973Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:19.7304382Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:19.7305778Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:19.7306079Z 2025-03-14T05:10:19.7306524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:19.7307056Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:19.7307406Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:19.7307774Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:19.7308040Z 2025-03-14T05:10:19.7308481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:19.7309010Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:19.7309359Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:19.7309722Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:19.7309986Z 2025-03-14T05:10:19.7310403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:19.7310886Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:19.7311175Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:19.7311434Z 2025-03-14T05:10:19.7311842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:19.7312311Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:19.7312582Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:19.7312821Z 2025-03-14T05:10:19.7313222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:19.7313706Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:19.7314012Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:19.7314262Z 2025-03-14T05:10:19.7314663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:19.7315146Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:19.7315446Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:19.7315702Z 2025-03-14T05:10:19.7316145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:19.7316737Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:19.7317035Z 2025-03-14T05:10:19.7317469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:19.7318035Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:19.7318318Z 2025-03-14T05:10:19.7318751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:19.7319443Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:19.7319857Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:19.7320140Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:19.7320430Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:19.7320727Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:19.7320980Z 2025-03-14T05:10:19.7321347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7321883Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7322221Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:19.7322464Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:19.7322820Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7323156Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:19.7323390Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:19.7323744Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7324076Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:19.7324323Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:19.7324690Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7325019Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:19.7325244Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:19.7325459Z 2025-03-14T05:10:19.7325872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:19.7326412Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:10:19.7326691Z 2025-03-14T05:10:19.7327123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:19.7327779Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:19.7328179Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:19.7328456Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:19.7328745Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:19.7329040Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:19.7329280Z 2025-03-14T05:10:19.7329815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:19.7330511Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:19.7330844Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:19.7331172Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:19.7331502Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:19.7331818Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:19.7332057Z 2025-03-14T05:10:19.7332490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:19.7332997Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:19.7333228Z 2025-03-14T05:10:19.7351893Z 2025-03-14T05:10:19.7357340Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:19.7361268Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:19.7364096Z l_stack0_ = L_stack0_ 2025-03-14T05:10:19.7364492Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:10:19.7364991Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:10:19.7366247Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:10:19.7366737Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:10:19.7367270Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:10:19.7367846Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:10:19.7368427Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:10:19.7369008Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:10:19.7369498Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7369911Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7370329Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7370729Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7371031Z 2025-03-14T05:10:19.7371434Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:10:19.7371953Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:10:19.7372670Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:10:19.7373398Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:10:19.7374117Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:10:19.7374815Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:10:19.7375106Z 2025-03-14T05:10:19.7375503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:10:19.7376431Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:10:19.7377111Z 2025-03-14T05:10:19.7377512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:10:19.7378495Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:10:19.7379223Z 2025-03-14T05:10:19.7379593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7380046Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7380297Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:19.7380527Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:19.7380796Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7381045Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:19.7381282Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:19.7381722Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7381973Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:19.7382213Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:19.7382490Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7382737Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:19.7382978Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:19.7383198Z 2025-03-14T05:10:19.7383565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:19.7384425Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:19.7385086Z 2025-03-14T05:10:19.7385582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:19.7386200Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:10:19.7386494Z 2025-03-14T05:10:19.7386930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:19.7387496Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:19.7387796Z 2025-03-14T05:10:19.7388220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:19.7388757Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:19.7389099Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7389447Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:19.7389732Z 2025-03-14T05:10:19.7390160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:19.7390690Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:19.7391026Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:19.7391380Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:19.7391670Z 2025-03-14T05:10:19.7392090Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:19.7392635Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7392966Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:19.7393257Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:19.7393520Z 2025-03-14T05:10:19.7393947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:19.7394492Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:19.7394821Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:19.7395125Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:19.7395391Z 2025-03-14T05:10:19.7395836Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:19.7396380Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:19.7396711Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:19.7396952Z 2025-03-14T05:10:19.7397346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:19.7397857Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:19.7398177Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:19.7398413Z 2025-03-14T05:10:19.7398800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:19.7399331Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:19.7399654Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:19.7399883Z 2025-03-14T05:10:19.7400338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:19.7400874Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:19.7401218Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:19.7401452Z 2025-03-14T05:10:19.7401879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:19.7402411Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:19.7402670Z 2025-03-14T05:10:19.7403089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:19.7403610Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:19.7403868Z 2025-03-14T05:10:19.7404302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:19.7404841Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:19.7405165Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:19.7405516Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:19.7405878Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:19.7406134Z 2025-03-14T05:10:19.7406570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:19.7407111Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:19.7407431Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:19.7407760Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:19.7408099Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:19.7408360Z 2025-03-14T05:10:19.7408785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:19.7409285Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:19.7409612Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:19.7409956Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:19.7410205Z 2025-03-14T05:10:19.7410622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:19.7411120Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:19.7411486Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:19.7411840Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:19.7412095Z 2025-03-14T05:10:19.7412511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:19.7412981Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:19.7413246Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:19.7413478Z 2025-03-14T05:10:19.7413869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:19.7414317Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:19.7414575Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:19.7414810Z 2025-03-14T05:10:19.7415196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:19.7415662Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:19.7415948Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:19.7416194Z 2025-03-14T05:10:19.7416600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:19.7417068Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:19.7417353Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:19.7417599Z 2025-03-14T05:10:19.7418049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:19.7418653Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:19.7418948Z 2025-03-14T05:10:19.7419377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:19.7419935Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:19.7420226Z 2025-03-14T05:10:19.7420679Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:19.7421357Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:19.7421786Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:19.7422077Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:19.7422374Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:19.7422680Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:19.7422936Z 2025-03-14T05:10:19.7423312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7423863Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7424302Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:19.7424553Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:19.7424960Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7425313Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:19.7425562Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:19.7425933Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7426352Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:19.7426592Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:19.7426964Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7427319Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:19.7427572Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:19.7427800Z 2025-03-14T05:10:19.7428231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:19.7428796Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:10:19.7429092Z 2025-03-14T05:10:19.7429553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:19.7430706Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:19.7431135Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:19.7431423Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:19.7431718Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:19.7432030Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:19.7432297Z 2025-03-14T05:10:19.7433653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:19.7434347Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:19.7434685Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:19.7435017Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:19.7435351Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:19.7435631Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:19.7435875Z 2025-03-14T05:10:19.7436318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:19.7436840Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:19.7437075Z 2025-03-14T05:10:19.7437212Z 2025-03-14T05:10:19.7437315Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:19.7439199Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:19.7441217Z l_stack0_ = L_stack0_ 2025-03-14T05:10:19.7441566Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:10:19.7442049Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:10:19.7442529Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:10:19.7443005Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:10:19.7443536Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:10:19.7444106Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:10:19.7444681Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:10:19.7445248Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:10:19.7445726Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7446130Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7446548Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7446953Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:19.7447250Z 2025-03-14T05:10:19.7447625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:10:19.7448620Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:10:19.7449327Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:10:19.7450040Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:10:19.7450757Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:10:19.7451476Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:10:19.7451764Z 2025-03-14T05:10:19.7452162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:10:19.7453123Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:10:19.7453860Z 2025-03-14T05:10:19.7454278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:10:19.7455301Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:10:19.7456035Z 2025-03-14T05:10:19.7456414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7456966Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7457321Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:19.7457560Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:19.7457836Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7458090Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:19.7458322Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:19.7458598Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7458848Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:19.7459088Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:19.7459354Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:19.7459601Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:19.7459831Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:19.7460051Z 2025-03-14T05:10:19.7460432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:19.7461241Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:19.7461834Z 2025-03-14T05:10:19.7462303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:19.7462880Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:10:19.7463158Z 2025-03-14T05:10:19.7463556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:19.7464089Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:19.7464436Z 2025-03-14T05:10:19.7464860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:19.7465385Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:19.7465724Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7466074Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:19.7466371Z 2025-03-14T05:10:19.7466775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:19.7467327Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:19.7467661Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:19.7468024Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:19.7468317Z 2025-03-14T05:10:19.7468761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:19.7469283Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:19.7469588Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:19.7469880Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:19.7470148Z 2025-03-14T05:10:19.7470569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:19.7471115Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:19.7471440Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:19.7471737Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:19.7472003Z 2025-03-14T05:10:19.7472438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:19.7472978Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:19.7473321Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:19.7473570Z 2025-03-14T05:10:19.7473977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:19.7474523Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:19.7474879Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:19.7475119Z 2025-03-14T05:10:19.7475528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:19.7476067Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:19.7476404Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:19.7476651Z 2025-03-14T05:10:19.7477073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:19.7477615Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:19.7477967Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:19.7478204Z 2025-03-14T05:10:19.7478638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:19.7479178Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:19.7479437Z 2025-03-14T05:10:19.7479858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:19.7480379Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:19.7480649Z 2025-03-14T05:10:19.7481081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:19.7481781Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:19.7482113Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:19.7482509Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:19.7482857Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:19.7483117Z 2025-03-14T05:10:19.7483552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:19.7484100Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:19.7484418Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:19.7484752Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:19.7485094Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:19.7485355Z 2025-03-14T05:10:19.7485777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:19.7486283Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:19.7486619Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:19.7486967Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:19.7487219Z 2025-03-14T05:10:19.7487670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:19.7488194Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:19.7488537Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:19.7488889Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:19.7489142Z 2025-03-14T05:10:19.7489559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:19.7490026Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:19.7490296Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:19.7490531Z 2025-03-14T05:10:19.7490927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:19.7491384Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:19.7491647Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:19.7491881Z 2025-03-14T05:10:19.7492284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:19.7492774Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:19.7493082Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:19.7493331Z 2025-03-14T05:10:19.7493735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:19.7494250Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:19.7494554Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:19.7494802Z 2025-03-14T05:10:19.7495253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:19.7495841Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:19.7496138Z 2025-03-14T05:10:19.7496562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:19.7497120Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:19.7497416Z 2025-03-14T05:10:19.7497873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:19.7498552Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:19.7498976Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:19.7499261Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:19.7499558Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:19.7499865Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:19.7500119Z 2025-03-14T05:10:19.7500504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:19.7501094Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7501461Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:19.7501708Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:19.7502079Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7502422Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:19.7502661Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:19.7503020Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7503358Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:19.7503595Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:19.7503958Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:19.7504368Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:19.7504614Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:19.7504843Z 2025-03-14T05:10:19.7505295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:19.7505852Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:10:19.7506146Z 2025-03-14T05:10:19.7506594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:19.7507289Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:19.7507710Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:19.7507993Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:19.7508286Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:19.7508613Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:19.7508858Z 2025-03-14T05:10:19.7509405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:19.7510091Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:19.7510429Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:19.7510755Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:19.7511092Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:19.7511381Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:19.7511618Z 2025-03-14T05:10:19.7512061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:19.7512581Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:19.7512823Z 2025-03-14T05:10:20.2964858Z 2025-03-14T05:10:20.2969210Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:20.2971166Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:20.2972085Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:10:20.2972328Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:10:20.2972664Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:20.2973110Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:20.2973512Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:20.2973909Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:20.2974209Z 2025-03-14T05:10:20.2974637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:20.2975122Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.2975383Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:20.2975634Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:20.2975912Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.2976165Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:20.2976408Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:20.2976685Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.2976937Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:20.2977167Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:20.2977437Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.2977736Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:20.2977972Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:20.2978196Z 2025-03-14T05:10:20.2978581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:20.2979417Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:20.2979977Z 2025-03-14T05:10:20.2980449Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:20.2981033Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:10:20.2981310Z 2025-03-14T05:10:20.2982240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:20.2982813Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:20.2983105Z 2025-03-14T05:10:20.2983524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:20.2984040Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:20.2984441Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:20.2984779Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:20.2985065Z 2025-03-14T05:10:20.2985535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:20.2986118Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:20.2986433Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:20.2986775Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:20.2987058Z 2025-03-14T05:10:20.2987456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:20.2987952Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:20.2988236Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:20.2988513Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:20.2988764Z 2025-03-14T05:10:20.2989164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:20.2989680Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:20.2989991Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:20.2990276Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:20.2990527Z 2025-03-14T05:10:20.2990950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:20.2991459Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:20.2991810Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:20.2992048Z 2025-03-14T05:10:20.2992447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:20.2992962Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:20.2993317Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:20.2993552Z 2025-03-14T05:10:20.2993944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:20.2994451Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:20.2994775Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:20.2995012Z 2025-03-14T05:10:20.2995406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:20.2995945Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:20.2996291Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:20.2996531Z 2025-03-14T05:10:20.2996959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:20.2997510Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:20.2997775Z 2025-03-14T05:10:20.2998208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:20.2998769Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:20.2999037Z 2025-03-14T05:10:20.2999461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:20.3000000Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:20.3000324Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:20.3000658Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:20.3001010Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:20.3001271Z 2025-03-14T05:10:20.3001706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:20.3002245Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:20.3002567Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:20.3002900Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:20.3003244Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:20.3003502Z 2025-03-14T05:10:20.3003927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:20.3004438Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:20.3004791Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:20.3005142Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:20.3005427Z 2025-03-14T05:10:20.3005869Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:20.3006369Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:20.3006707Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:20.3007054Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:20.3007310Z 2025-03-14T05:10:20.3007715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:20.3008181Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:20.3008451Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:20.3008688Z 2025-03-14T05:10:20.3009086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:20.3009540Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:20.3009816Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:20.3010649Z 2025-03-14T05:10:20.3011065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:20.3011546Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:20.3011858Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:20.3012146Z 2025-03-14T05:10:20.3012562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:20.3013038Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:20.3013336Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:20.3013588Z 2025-03-14T05:10:20.3014020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:20.3014603Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:20.3014900Z 2025-03-14T05:10:20.3015325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:20.3015885Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:20.3016172Z 2025-03-14T05:10:20.3016620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:20.3017304Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:20.3017730Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:20.3018022Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:20.3018324Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:20.3018667Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:20.3018920Z 2025-03-14T05:10:20.3019310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:20.3019913Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3020266Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:20.3020515Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:20.3020880Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3021223Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:20.3021465Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:20.3021826Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3022168Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:20.3022406Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:20.3022762Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3023100Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:20.3023331Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:20.3023581Z 2025-03-14T05:10:20.3024003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:20.3024683Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:10:20.3025030Z 2025-03-14T05:10:20.3025511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:20.3026221Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:20.3026654Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:20.3026941Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:20.3027234Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:20.3027536Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:20.3027787Z 2025-03-14T05:10:20.3028348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:20.3029059Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:20.3029405Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:20.3029751Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:20.3030085Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:20.3030376Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:20.3030621Z 2025-03-14T05:10:20.3031074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:20.3031606Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:20.3031876Z 2025-03-14T05:10:20.3037296Z 2025-03-14T05:10:20.3039792Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:20.3040902Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:20.3042016Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:10:20.3042260Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:10:20.3042586Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3043004Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3043422Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3043827Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3044128Z 2025-03-14T05:10:20.3044565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:20.3045103Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3045473Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:20.3045723Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:20.3046012Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3046275Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:20.3046622Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:20.3051684Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3052171Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:20.3052679Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:20.3053151Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3053539Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:20.3054401Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:20.3054750Z 2025-03-14T05:10:20.3055199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:20.3056001Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:20.3056566Z 2025-03-14T05:10:20.3057049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:20.3057652Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:10:20.3057927Z 2025-03-14T05:10:20.3058335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:20.3058878Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:20.3059164Z 2025-03-14T05:10:20.3059568Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:20.3060071Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:20.3060568Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:20.3060903Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:20.3061183Z 2025-03-14T05:10:20.3061597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:20.3062138Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:20.3062459Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:20.3062798Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:20.3063072Z 2025-03-14T05:10:20.3063471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:20.3063977Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:20.3064427Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:20.3064723Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:20.3064991Z 2025-03-14T05:10:20.3065429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:20.3065970Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:20.3066294Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:20.3066597Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:20.3066856Z 2025-03-14T05:10:20.3067306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:20.3067851Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:20.3068184Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:20.3068426Z 2025-03-14T05:10:20.3068822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:20.3069346Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:20.3069676Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:20.3069909Z 2025-03-14T05:10:20.3070285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:20.3070784Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:20.3071103Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:20.3071335Z 2025-03-14T05:10:20.3071719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:20.3072256Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:20.3072604Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:20.3072842Z 2025-03-14T05:10:20.3073269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:20.3073830Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:20.3074094Z 2025-03-14T05:10:20.3074513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:20.3075039Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:20.3075297Z 2025-03-14T05:10:20.3075754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:20.3076299Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:20.3076625Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:20.3076959Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:20.3077315Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:20.3077573Z 2025-03-14T05:10:20.3078013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:20.3078562Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:20.3078882Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:20.3079211Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:20.3079554Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:20.3079815Z 2025-03-14T05:10:20.3080254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:20.3080776Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:20.3081108Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:20.3081639Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:20.3081913Z 2025-03-14T05:10:20.3082342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:20.3082983Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:20.3083326Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:20.3083682Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:20.3083945Z 2025-03-14T05:10:20.3084359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:20.3084831Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:20.3085107Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:20.3085348Z 2025-03-14T05:10:20.3085776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:20.3086241Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:20.3086507Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:20.3086901Z 2025-03-14T05:10:20.3087304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:20.3087796Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:20.3088099Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:20.3088359Z 2025-03-14T05:10:20.3088799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:20.3089282Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:20.3089574Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:20.3089822Z 2025-03-14T05:10:20.3090258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:20.3090853Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:20.3091150Z 2025-03-14T05:10:20.3091580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:20.3092139Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:20.3092443Z 2025-03-14T05:10:20.3092895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:20.3093575Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:20.3094009Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:20.3094331Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:20.3094659Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:20.3094974Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:20.3095238Z 2025-03-14T05:10:20.3095625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:20.3096207Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3096568Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:20.3096826Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:20.3097206Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3097563Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:20.3097813Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:20.3098182Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3098531Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:20.3098777Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:20.3099148Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3099496Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:20.3099737Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:20.3099973Z 2025-03-14T05:10:20.3100409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:20.3101035Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:10:20.3101366Z 2025-03-14T05:10:20.3101814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:20.3102516Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:20.3102936Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:20.3103225Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:20.3103522Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:20.3103904Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:20.3104422Z 2025-03-14T05:10:20.3105159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:20.3106004Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:20.3106523Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:20.3106899Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:20.3107273Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:20.3107594Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:20.3107865Z 2025-03-14T05:10:20.3108403Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:20.3109017Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:20.3109283Z 2025-03-14T05:10:20.3109495Z 2025-03-14T05:10:20.3109637Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:20.3110694Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:10:20.3111570Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:10:20.3116666Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:10:20.3121150Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3123270Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3123810Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3130307Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:10:20.3130777Z 2025-03-14T05:10:20.3131219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:20.3131720Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3131991Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:10:20.3132239Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:10:20.3132531Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3132935Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:10:20.3133199Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:10:20.3133499Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3133760Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:10:20.3134004Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:10:20.3134322Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:10:20.3134587Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:10:20.3134828Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:10:20.3135060Z 2025-03-14T05:10:20.3135461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:10:20.3136260Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:10:20.3136835Z 2025-03-14T05:10:20.3137301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:10:20.3137891Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:10:20.3138177Z 2025-03-14T05:10:20.3138593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:10:20.3139128Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:10:20.3139422Z 2025-03-14T05:10:20.3139838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:10:20.3140392Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:10:20.3141994Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:20.3142344Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:10:20.3142621Z 2025-03-14T05:10:20.3143042Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:10:20.3143564Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:10:20.3143887Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:10:20.3144368Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:10:20.3144678Z 2025-03-14T05:10:20.3145104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:10:20.3145623Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:10:20.3145925Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:10:20.3146224Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:10:20.3146486Z 2025-03-14T05:10:20.3146901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:10:20.3147425Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:10:20.3147773Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:10:20.3148069Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:10:20.3148334Z 2025-03-14T05:10:20.3148754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:10:20.3149308Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:10:20.3149646Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:10:20.3149890Z 2025-03-14T05:10:20.3150291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:10:20.3150805Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:10:20.3151141Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:10:20.3151384Z 2025-03-14T05:10:20.3151780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:10:20.3152300Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:10:20.3152628Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:10:20.3152867Z 2025-03-14T05:10:20.3153260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:10:20.3153794Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:10:20.3154140Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:10:20.3154378Z 2025-03-14T05:10:20.3154818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:10:20.3155372Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:10:20.3155629Z 2025-03-14T05:10:20.3156055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:10:20.3156577Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:10:20.3156829Z 2025-03-14T05:10:20.3157265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:10:20.3157812Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:10:20.3158137Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:10:20.3158483Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:10:20.3158839Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:10:20.3159104Z 2025-03-14T05:10:20.3159542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:10:20.3160086Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:10:20.3160411Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:10:20.3160744Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:10:20.3161113Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:10:20.3161374Z 2025-03-14T05:10:20.3161795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:10:20.3162321Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:10:20.3162654Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:10:20.3163004Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:10:20.3163257Z 2025-03-14T05:10:20.3163674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:10:20.3164179Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:10:20.3164518Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:10:20.3164871Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:10:20.3165121Z 2025-03-14T05:10:20.3165530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:10:20.3166001Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:10:20.3166275Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:10:20.3166510Z 2025-03-14T05:10:20.3166898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:10:20.3167370Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:10:20.3167657Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:10:20.3167913Z 2025-03-14T05:10:20.3168311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:10:20.3168798Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:10:20.3169095Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:10:20.3169348Z 2025-03-14T05:10:20.3169743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:10:20.3170224Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:10:20.3170541Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:10:20.3170788Z 2025-03-14T05:10:20.3171227Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:10:20.3171813Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:10:20.3172109Z 2025-03-14T05:10:20.3172536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:10:20.3173097Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:10:20.3173390Z 2025-03-14T05:10:20.3173842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:10:20.3174560Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:10:20.3174986Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:10:20.3175274Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:10:20.3175591Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:10:20.3175903Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:10:20.3176161Z 2025-03-14T05:10:20.3176546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:10:20.3177097Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3177453Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:10:20.3177707Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:10:20.3178074Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3178418Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:10:20.3178663Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:10:20.3179026Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3179369Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:10:20.3179606Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:10:20.3179976Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:10:20.3180326Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:10:20.3180569Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:10:20.3180790Z 2025-03-14T05:10:20.3181275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:10:20.3182165Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:10:20.3182511Z 2025-03-14T05:10:20.3182964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:10:20.3183668Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:10:20.3184099Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:10:20.3184472Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:10:20.3184793Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:10:20.3185126Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:10:20.3185403Z 2025-03-14T05:10:20.3186000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:20.3186720Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:10:20.3187079Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:20.3187429Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:10:20.3187872Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:20.3188182Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:20.3188439Z 2025-03-14T05:10:20.3188900Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:20.3189443Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:20.3189731Z 2025-03-14T05:10:20.6792212Z 2025-03-14T05:10:20.6797923Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:20.6799715Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:10:20.6800110Z l_scores_0_ = L_scores_0_ 2025-03-14T05:10:20.6800330Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:10:20.6800536Z 2025-03-14T05:10:20.6801183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:20.6801911Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:10:20.6802244Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:20.6802570Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:10:20.6802895Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:20.6803190Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:20.6803436Z 2025-03-14T05:10:20.6803884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:20.6804417Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:20.6804660Z 2025-03-14T05:10:20.6805066Z 2025-03-14T05:10:20.6805225Z class GraphModule(torch.nn.Module): 2025-03-14T05:10:20.6805557Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:10:20.6805877Z l_scores_0_ = L_scores_0_ 2025-03-14T05:10:20.6806091Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:10:20.6806278Z 2025-03-14T05:10:20.6806828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:10:20.6807466Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:10:20.6807777Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:10:20.6808085Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:10:20.6808388Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:10:20.6808671Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:10:20.6808904Z 2025-03-14T05:10:20.6809338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:10:20.6809848Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:10:20.6810079Z 2025-03-14T05:10:55.1495223Z Compilation time (from dynamo_timed): 55.520050256 2025-03-14T05:10:55.1497210Z pass 2025-03-14T05:10:55.1497800Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:10:55.1509295Z TIMING: entire_frame_compile:55.52005 gc:0.05177 _recursive_pre_grad_passes:0.04467 async_compile.wait:12.85466 backend_compile:31.83028 _recursive_joint_graph_passes:0.19638 inductor_compile:16.76833 _recursive_post_grad_passes:0.06168 code_gen:14.85 total_wall_time:55.52005 2025-03-14T05:10:55.1511992Z STATS: call_* op count: 1308 | FakeTensorMode.__torch_dispatch__:20210 | FakeTensor.__torch_dispatch__:738 | ProxyTorchDispatchMode.__torch_dispatch__:2202 | attempt fast:284 | slow no contiguity match:46 | fast is_contiguous:228 | slow both tensors nontrivially broadcast:10 2025-03-14T05:10:55.1545032Z Dynamo produced 78 graphs covering 1308 ops with 62 graph breaks (8 unique) 2025-03-14T05:11:01.7268130Z 2025-03-14T05:11:15.4915020Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:11:15.4917853Z loading model: 0it [00:13, ?it/s] 2025-03-14T05:11:15.4918315Z cpu eval detectron2_maskrcnn_r_50_c4 2025-03-14T05:11:23.0967048Z WARNING:common:fp64 golden ref were not generated for detectron2_maskrcnn_r_50_c4. Setting accuracy check to cosine 2025-03-14T05:11:23.1036025Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:11:45.3886755Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:12:10.8396399Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:12:20.7225946Z 2025-03-14T05:12:20.7226604Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:20.7270305Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:12:20.7313302Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:12:20.7313739Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7314396Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7315093Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7315805Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7316467Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7317094Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7317760Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7318488Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7319188Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7319870Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7320508Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7321169Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7321882Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7322610Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7323283Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7323946Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7324624Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7325348Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7326044Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7326716Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7327363Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.7328060Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7328804Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7329582Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7330288Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7330941Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7331611Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7332343Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7333051Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7333724Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7334362Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7335027Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7335765Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7336460Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7337152Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7337785Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7338450Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7339170Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7339863Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7340541Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7341176Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7341837Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7342575Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7343291Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7344002Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7344837Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7345639Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7346525Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7347376Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7348175Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7348910Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7349691Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7350571Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7351426Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7352222Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7352945Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7353677Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7354458Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7355155Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7355826Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7356463Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7357142Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7357894Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7358604Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7359283Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7359931Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7360613Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7361341Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7362050Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7362734Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7363404Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.7364137Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7364899Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7365632Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7366330Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7366988Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7367666Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7368397Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7369110Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7369795Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7370441Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7371121Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7371854Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7372550Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7373223Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7373866Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7374536Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7375261Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7375964Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7376654Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7377327Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7378000Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7378753Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7379469Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7380156Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7380810Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7381681Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7382431Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7383148Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7383844Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7384638Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7385391Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7386150Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7386867Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7387554Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7388215Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7388921Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7389673Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7390391Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7391081Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7391767Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7392461Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7393210Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7393923Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7394597Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7395253Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7395934Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7396673Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7397363Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7398028Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7398700Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7399382Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7400104Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7400799Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7401476Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7402128Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7402815Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7403550Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7404265Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7404978Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7405633Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7406335Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7407071Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7407787Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7408473Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7409123Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.7409815Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7410550Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7411274Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7411989Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7412653Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7413323Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7414041Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7414738Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7415414Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7416051Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7416715Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7417441Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7418142Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7418840Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7419496Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7420178Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7420919Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7421641Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7422330Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7422983Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7423688Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7424498Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7425302Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7426003Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7426655Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7427350Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7428083Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7428803Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7429499Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7430168Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7430858Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7431592Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7432343Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7433038Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7433729Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7434419Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7435161Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7435884Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7436577Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7437235Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7438291Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7439032Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7439827Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7440546Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7441199Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7441880Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7442607Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7443318Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7444002Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7444654Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7445372Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7446140Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7446896Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7447633Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7448302Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7448985Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7449722Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7450451Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7451186Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7451856Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7452537Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7453315Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7454083Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7454816Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7455501Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7456244Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7457090Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7458273Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7459311Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7460271Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7461300Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7462485Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7463707Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7464972Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7465817Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7466530Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7467304Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7468050Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7468781Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7469540Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:12:20.7470311Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:12:20.7471065Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:12:20.7471863Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:12:20.7472694Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:12:20.7473507Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:12:20.7474307Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:12:20.7474805Z 2025-03-14T05:12:20.7475218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7476134Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7476774Z 2025-03-14T05:12:20.7477172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7479078Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7480730Z 2025-03-14T05:12:20.7481136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:12:20.7481766Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:12:20.7482055Z 2025-03-14T05:12:20.7482546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:12:20.7483243Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:12:20.7483620Z 2025-03-14T05:12:20.7483990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7484781Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7485353Z 2025-03-14T05:12:20.7485805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7487790Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7489532Z 2025-03-14T05:12:20.7489930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7490446Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:12:20.7490726Z 2025-03-14T05:12:20.7491091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7491876Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7492447Z 2025-03-14T05:12:20.7492817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7494827Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7496523Z 2025-03-14T05:12:20.7496917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7497430Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:12:20.7497702Z 2025-03-14T05:12:20.7498062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7498850Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7499441Z 2025-03-14T05:12:20.7499812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7501775Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7503502Z 2025-03-14T05:12:20.7503864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7504773Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.7505403Z 2025-03-14T05:12:20.7505777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7507886Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7509808Z 2025-03-14T05:12:20.7510222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7510760Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:12:20.7511054Z 2025-03-14T05:12:20.7511469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7512018Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:12:20.7512320Z 2025-03-14T05:12:20.7512699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7513531Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7514101Z 2025-03-14T05:12:20.7514470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7516426Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7518145Z 2025-03-14T05:12:20.7518541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7519055Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:12:20.7519329Z 2025-03-14T05:12:20.7519686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7520463Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7521035Z 2025-03-14T05:12:20.7521407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7523338Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7525041Z 2025-03-14T05:12:20.7525410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7525886Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:12:20.7526146Z 2025-03-14T05:12:20.7526482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7527228Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7527801Z 2025-03-14T05:12:20.7528175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7530085Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7531779Z 2025-03-14T05:12:20.7532158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7532662Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:12:20.7532945Z 2025-03-14T05:12:20.7533322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7533823Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:12:20.7534102Z 2025-03-14T05:12:20.7534453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7535203Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7535756Z 2025-03-14T05:12:20.7536119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7538079Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7539819Z 2025-03-14T05:12:20.7540213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7540725Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:12:20.7541007Z 2025-03-14T05:12:20.7541364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7542139Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7542711Z 2025-03-14T05:12:20.7543082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7545195Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7546912Z 2025-03-14T05:12:20.7547290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7547789Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:12:20.7548055Z 2025-03-14T05:12:20.7548397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7549142Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7549696Z 2025-03-14T05:12:20.7550052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7551902Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7553547Z 2025-03-14T05:12:20.7553917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7554406Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:12:20.7554680Z 2025-03-14T05:12:20.7555052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7555550Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:12:20.7555823Z 2025-03-14T05:12:20.7556166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7556906Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7557452Z 2025-03-14T05:12:20.7557805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7559674Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7561324Z 2025-03-14T05:12:20.7561704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7562194Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:12:20.7562464Z 2025-03-14T05:12:20.7562810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7563555Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7564109Z 2025-03-14T05:12:20.7564464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7566358Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7567989Z 2025-03-14T05:12:20.7568364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7568850Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:12:20.7569115Z 2025-03-14T05:12:20.7569450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7570192Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7570737Z 2025-03-14T05:12:20.7571089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7572933Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7574564Z 2025-03-14T05:12:20.7574905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7575656Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.7576216Z 2025-03-14T05:12:20.7576567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7578439Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7580208Z 2025-03-14T05:12:20.7580616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7581128Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:12:20.7581410Z 2025-03-14T05:12:20.7581944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7582477Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:12:20.7582771Z 2025-03-14T05:12:20.7583133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7583919Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7584574Z 2025-03-14T05:12:20.7584976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7587043Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7588784Z 2025-03-14T05:12:20.7589179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7589688Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:12:20.7589967Z 2025-03-14T05:12:20.7590329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7591118Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7591697Z 2025-03-14T05:12:20.7592068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7593942Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7595624Z 2025-03-14T05:12:20.7596005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7596496Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:12:20.7596754Z 2025-03-14T05:12:20.7597093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7597833Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7598389Z 2025-03-14T05:12:20.7598732Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7600621Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7602259Z 2025-03-14T05:12:20.7602624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7603125Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:12:20.7603401Z 2025-03-14T05:12:20.7603773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7604270Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:12:20.7604545Z 2025-03-14T05:12:20.7604884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7605624Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7606166Z 2025-03-14T05:12:20.7606520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7608405Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7610015Z 2025-03-14T05:12:20.7610392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7610874Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:12:20.7611142Z 2025-03-14T05:12:20.7611483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7612220Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7612769Z 2025-03-14T05:12:20.7613121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7614991Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7616619Z 2025-03-14T05:12:20.7616991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7617476Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:12:20.7617742Z 2025-03-14T05:12:20.7618083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7618824Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7619374Z 2025-03-14T05:12:20.7619727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7621582Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7623219Z 2025-03-14T05:12:20.7623593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7624109Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:12:20.7624471Z 2025-03-14T05:12:20.7624878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7625396Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:12:20.7625674Z 2025-03-14T05:12:20.7626022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7626766Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7627321Z 2025-03-14T05:12:20.7627676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7629542Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7631178Z 2025-03-14T05:12:20.7631555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7632039Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:12:20.7632303Z 2025-03-14T05:12:20.7632642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7633390Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7633919Z 2025-03-14T05:12:20.7634267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7636130Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7637751Z 2025-03-14T05:12:20.7638125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7638616Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:12:20.7638885Z 2025-03-14T05:12:20.7639222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7639959Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7640508Z 2025-03-14T05:12:20.7640858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7642732Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7644381Z 2025-03-14T05:12:20.7644748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7645242Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:12:20.7645519Z 2025-03-14T05:12:20.7645887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7646379Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:12:20.7646655Z 2025-03-14T05:12:20.7646984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7647719Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7648283Z 2025-03-14T05:12:20.7648636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7650500Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7652106Z 2025-03-14T05:12:20.7652485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7652969Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:12:20.7653233Z 2025-03-14T05:12:20.7653584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7654300Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7654831Z 2025-03-14T05:12:20.7655176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7656971Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7658542Z 2025-03-14T05:12:20.7658907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7659373Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:12:20.7659656Z 2025-03-14T05:12:20.7659986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7660694Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7661217Z 2025-03-14T05:12:20.7661560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7663455Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7665196Z 2025-03-14T05:12:20.7665556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7666299Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.7666849Z 2025-03-14T05:12:20.7667206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7669122Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7671215Z 2025-03-14T05:12:20.7671618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7672108Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:12:20.7672372Z 2025-03-14T05:12:20.7672756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7673260Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:12:20.7673533Z 2025-03-14T05:12:20.7673879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7674781Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7675320Z 2025-03-14T05:12:20.7675673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7677695Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7679313Z 2025-03-14T05:12:20.7679685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7680168Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:12:20.7680431Z 2025-03-14T05:12:20.7680771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7681606Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7682159Z 2025-03-14T05:12:20.7682517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7684380Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7686013Z 2025-03-14T05:12:20.7686392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7686871Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:12:20.7687135Z 2025-03-14T05:12:20.7687476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7688209Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7688751Z 2025-03-14T05:12:20.7689106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7690964Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7692593Z 2025-03-14T05:12:20.7692962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7693439Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:12:20.7693706Z 2025-03-14T05:12:20.7694077Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7694560Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:12:20.7694825Z 2025-03-14T05:12:20.7695163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7695885Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7696416Z 2025-03-14T05:12:20.7696769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7698649Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7700289Z 2025-03-14T05:12:20.7700678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7701192Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:12:20.7701463Z 2025-03-14T05:12:20.7701815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7702610Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7703219Z 2025-03-14T05:12:20.7703607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7705692Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7707486Z 2025-03-14T05:12:20.7707910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7708443Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:12:20.7708731Z 2025-03-14T05:12:20.7709111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7709914Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7710486Z 2025-03-14T05:12:20.7710856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7712804Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7714521Z 2025-03-14T05:12:20.7714907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7715417Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:12:20.7715698Z 2025-03-14T05:12:20.7716088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7716596Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:12:20.7716871Z 2025-03-14T05:12:20.7717210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7717935Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7718473Z 2025-03-14T05:12:20.7718831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7720675Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7722275Z 2025-03-14T05:12:20.7722655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7723162Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:12:20.7723437Z 2025-03-14T05:12:20.7723797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7724567Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7725116Z 2025-03-14T05:12:20.7725475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7727305Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7728951Z 2025-03-14T05:12:20.7729325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7729803Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:12:20.7730063Z 2025-03-14T05:12:20.7730399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7731140Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7731683Z 2025-03-14T05:12:20.7732035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7733870Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7735576Z 2025-03-14T05:12:20.7735964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7736475Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:12:20.7736754Z 2025-03-14T05:12:20.7737153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7737670Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:12:20.7737946Z 2025-03-14T05:12:20.7738304Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7739074Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7739635Z 2025-03-14T05:12:20.7740009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7741951Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7743691Z 2025-03-14T05:12:20.7744099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7744719Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:12:20.7745006Z 2025-03-14T05:12:20.7745384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7746200Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7746770Z 2025-03-14T05:12:20.7747142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7749152Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7750841Z 2025-03-14T05:12:20.7751236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7751740Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:12:20.7752011Z 2025-03-14T05:12:20.7752367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7753138Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7753703Z 2025-03-14T05:12:20.7754073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7756019Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7757764Z 2025-03-14T05:12:20.7758156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7758671Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:12:20.7758956Z 2025-03-14T05:12:20.7759327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7759811Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:12:20.7760075Z 2025-03-14T05:12:20.7760409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7761143Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.7761693Z 2025-03-14T05:12:20.7762047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7763920Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7765615Z 2025-03-14T05:12:20.7766016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7766524Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:12:20.7766804Z 2025-03-14T05:12:20.7767145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7767872Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.7768409Z 2025-03-14T05:12:20.7768795Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7770639Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7772263Z 2025-03-14T05:12:20.7772640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7773121Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:12:20.7773378Z 2025-03-14T05:12:20.7773719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7774464Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.7775036Z 2025-03-14T05:12:20.7775409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.7777381Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.7779089Z 2025-03-14T05:12:20.7779481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.7779992Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:12:20.7780273Z 2025-03-14T05:12:20.7780656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.7781166Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:12:20.7781726Z 2025-03-14T05:12:20.7782299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:20.7782975Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:12:20.7783268Z 2025-03-14T05:12:20.7783848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.7802175Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:12:20.7802484Z 2025-03-14T05:12:20.7803091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:20.7803767Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:12:20.7804047Z 2025-03-14T05:12:20.7804450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.7804955Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:12:20.7805219Z 2025-03-14T05:12:20.7805690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:12:20.7806302Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:12:20.7806645Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:12:20.7806921Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:12:20.7807165Z 2025-03-14T05:12:20.7807585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:12:20.7808100Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:12:20.7808511Z 2025-03-14T05:12:20.7808932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:12:20.7809452Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:12:20.7809691Z 2025-03-14T05:12:20.7810208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:12:20.7810855Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:12:20.7811186Z 2025-03-14T05:12:20.7811693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:12:20.7812286Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:12:20.7812895Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:12:20.7813504Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:12:20.7813801Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:12:20.7814037Z 2025-03-14T05:12:20.7814426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:20.7814906Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T05:12:20.7815162Z 2025-03-14T05:12:20.7815513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.7816629Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:12:20.7817545Z 2025-03-14T05:12:20.7817904Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:12:20.7818432Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T05:12:20.7818730Z 2025-03-14T05:12:20.7819200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:12:20.7820493Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:12:20.7821458Z 2025-03-14T05:12:20.7821906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:12:20.7823150Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:12:20.7824092Z 2025-03-14T05:12:20.7824627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:12:20.7825185Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:12:20.7825537Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:12:20.7825812Z 2025-03-14T05:12:20.7826325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:12:20.7826950Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T05:12:20.7827332Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:12:20.7827729Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:12:20.7828024Z 2025-03-14T05:12:20.7828508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:12:20.7829165Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:12:20.7829487Z 2025-03-14T05:12:20.7830020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:12:20.7830667Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:12:20.7831022Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:12:20.7831359Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:12:20.7831617Z 2025-03-14T05:12:20.7832080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:20.7832681Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:12:20.7832977Z 2025-03-14T05:12:20.7833377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:20.7833886Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:12:20.7834150Z 2025-03-14T05:12:20.7834560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:20.7835062Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:20.7835376Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:20.7835704Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:12:20.7835992Z 2025-03-14T05:12:20.7836397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:20.7836892Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:20.7837194Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:20.7837535Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:20.7837805Z 2025-03-14T05:12:20.7838203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:20.7838689Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:20.7838960Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:12:20.7839226Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:12:20.7839473Z 2025-03-14T05:12:20.7839876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:20.7840394Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:20.7840688Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:12:20.7840968Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:12:20.7841211Z 2025-03-14T05:12:20.7841640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:20.7842163Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:20.7842495Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:12:20.7842734Z 2025-03-14T05:12:20.7843145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:20.7844345Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:20.7844667Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:12:20.7844903Z 2025-03-14T05:12:20.7845300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:20.7845806Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:20.7846130Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:12:20.7846366Z 2025-03-14T05:12:20.7846760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:20.7847300Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:20.7847649Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:12:20.7847887Z 2025-03-14T05:12:20.7848316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:20.7848853Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:20.7849123Z 2025-03-14T05:12:20.7849534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:20.7850083Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:20.7850342Z 2025-03-14T05:12:20.7850776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:20.7851325Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:20.7851680Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:12:20.7852012Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:20.7852359Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:12:20.7852622Z 2025-03-14T05:12:20.7853050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:20.7853586Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:20.7853902Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:12:20.7854227Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:20.7854579Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:12:20.7854844Z 2025-03-14T05:12:20.7855258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:20.7855754Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:20.7856077Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:20.7856466Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:12:20.7856757Z 2025-03-14T05:12:20.7857184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:20.7857695Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:20.7858037Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:20.7858390Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:12:20.7858649Z 2025-03-14T05:12:20.7859057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:20.7859538Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:20.7859815Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:20.7860064Z 2025-03-14T05:12:20.7860485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:20.7860969Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:20.7861240Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:20.7861472Z 2025-03-14T05:12:20.7861899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:20.7862442Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:20.7862746Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:20.7863025Z 2025-03-14T05:12:20.7863435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:20.7863931Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:20.7864372Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:20.7864639Z 2025-03-14T05:12:20.7865111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:20.7865709Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:20.7866015Z 2025-03-14T05:12:20.7866451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:20.7867015Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:12:20.7867307Z 2025-03-14T05:12:20.7867791Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:12:20.7868410Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:12:20.7868716Z 2025-03-14T05:12:20.7869299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:12:20.7870006Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:12:20.7870263Z 2025-03-14T05:12:20.7870665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.7871176Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:12:20.7871449Z 2025-03-14T05:12:20.7871976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:12:20.7872582Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:12:20.7872866Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:12:20.7873146Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:12:20.7873390Z 2025-03-14T05:12:20.7873942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:12:20.7874626Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:12:20.7875083Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:12:20.7875438Z 2025-03-14T05:12:20.7875983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:12:20.7876657Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:12:20.7876953Z 2025-03-14T05:12:20.7877341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.7877869Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:12:20.7878147Z 2025-03-14T05:12:20.7878616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:12:20.7879217Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:12:20.7879487Z 2025-03-14T05:12:20.7879875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:20.7880368Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:12:20.7880633Z 2025-03-14T05:12:20.7881103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:12:20.7881932Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:12:20.7882198Z 2025-03-14T05:12:20.7882777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:12:20.7883467Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:12:20.7883787Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:20.7884126Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:12:20.7884475Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:12:20.7884737Z 2025-03-14T05:12:20.7885278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:12:20.7885837Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:12:20.7886079Z 2025-03-14T05:12:20.7886471Z 2025-03-14T05:12:20.7886573Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:20.7928228Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:12:20.7968855Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:12:20.7969382Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7970204Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7971049Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7971754Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7972414Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7973062Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7973759Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7974511Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7975283Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7975977Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7976647Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7977344Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7978089Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7978813Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7979509Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7980165Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7980853Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7981719Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7982465Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7983180Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7983854Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.7984636Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7985456Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7986224Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7986948Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7987614Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7988299Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7989117Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7989849Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7990571Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7991243Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.7991933Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7992689Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7993404Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7994111Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7994781Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.7995486Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7996237Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.7996949Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.7997628Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.7998271Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.7998942Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.7999670Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8000377Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8001054Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8001696Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8002362Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8003094Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8003805Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8004472Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8005127Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8005789Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8006505Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8007200Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8007868Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8008505Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8009182Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8009922Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8010615Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8011279Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8011925Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8012603Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8013327Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8014018Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8014684Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8015318Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8015999Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8016713Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8017429Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8018098Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8018763Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.8019483Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8020247Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8020986Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8021701Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8022359Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8023058Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8023810Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8024619Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8025349Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8026001Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8026686Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8027428Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8028143Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8028836Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8029514Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8030199Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8030945Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8031680Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8032369Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8033026Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8033718Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8034462Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8035181Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8035879Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8036559Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8037257Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8038005Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8038718Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8039400Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8040053Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8040743Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8041479Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8042190Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8042876Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8043552Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8044234Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8044986Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8045694Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8046383Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8047037Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8047723Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8048453Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8049163Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8049863Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8050540Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8051233Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8051981Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8052702Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8053407Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8054072Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8054768Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8055512Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8056236Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8056948Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8057610Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8058327Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8059073Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8059788Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8060482Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8061137Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8061828Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8062566Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8063286Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8064000Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8064830Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.8065664Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8066545Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8067373Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8068142Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8068868Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8069605Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8070396Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8071166Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8071939Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8072664Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8073399Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8074191Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8074959Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8075686Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8076390Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8077124Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8077884Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8078605Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8079308Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8079959Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8080645Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8081378Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8082231Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8082921Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8083575Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8084258Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8085009Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8085773Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8086458Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8087127Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8087807Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8088546Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8089265Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8089954Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8090609Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8091294Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8092027Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8092780Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8093523Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8094171Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8094849Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8095575Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8095899Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8096215Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8096507Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8096843Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8097209Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8097538Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8097869Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8098163Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8098501Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8098843Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8099160Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8099480Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8099765Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8100112Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8100472Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8100806Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8101126Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8101406Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8101751Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8102088Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8102414Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8102726Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8103017Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8103363Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8103717Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8104074Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8104560Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8104893Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8105279Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8105639Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8105972Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8106329Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8106654Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8107044Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8107442Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8107813Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8108169Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8108559Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:12:20.8108927Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:12:20.8109277Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:12:20.8109701Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:12:20.8110110Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:12:20.8110500Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:12:20.8110907Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:12:20.8110988Z 2025-03-14T05:12:20.8111320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8111886Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8111965Z 2025-03-14T05:12:20.8112245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8113708Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8113789Z 2025-03-14T05:12:20.8114080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:12:20.8114235Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:12:20.8114303Z 2025-03-14T05:12:20.8114686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:12:20.8114949Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:12:20.8115026Z 2025-03-14T05:12:20.8115285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8115709Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8115775Z 2025-03-14T05:12:20.8116054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8117581Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8117663Z 2025-03-14T05:12:20.8117962Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8118102Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:12:20.8118176Z 2025-03-14T05:12:20.8118445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8118875Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8118941Z 2025-03-14T05:12:20.8119216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8120769Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8120838Z 2025-03-14T05:12:20.8121148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8121300Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:12:20.8121375Z 2025-03-14T05:12:20.8121628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8122071Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8122137Z 2025-03-14T05:12:20.8122410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8123939Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8124006Z 2025-03-14T05:12:20.8124282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8124720Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.8124796Z 2025-03-14T05:12:20.8125074Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8126640Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8126716Z 2025-03-14T05:12:20.8126992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8127148Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:12:20.8127213Z 2025-03-14T05:12:20.8127508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8127676Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:12:20.8127767Z 2025-03-14T05:12:20.8128023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8128437Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8128503Z 2025-03-14T05:12:20.8128769Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8130226Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8130295Z 2025-03-14T05:12:20.8130581Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8130743Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:12:20.8130818Z 2025-03-14T05:12:20.8131064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8131502Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8131575Z 2025-03-14T05:12:20.8131832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8133318Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8133384Z 2025-03-14T05:12:20.8133669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8133807Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:12:20.8133881Z 2025-03-14T05:12:20.8134137Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8134585Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8134657Z 2025-03-14T05:12:20.8134922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8136443Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8136511Z 2025-03-14T05:12:20.8136804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8136962Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:12:20.8137051Z 2025-03-14T05:12:20.8137331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8137488Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:12:20.8137552Z 2025-03-14T05:12:20.8137825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8138249Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8138316Z 2025-03-14T05:12:20.8138594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8140102Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8140176Z 2025-03-14T05:12:20.8140475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8140631Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:12:20.8140723Z 2025-03-14T05:12:20.8140972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8141407Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8141473Z 2025-03-14T05:12:20.8141745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8143259Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8143336Z 2025-03-14T05:12:20.8143629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8143785Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:12:20.8143862Z 2025-03-14T05:12:20.8144114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8144654Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8144729Z 2025-03-14T05:12:20.8145018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8146582Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8146659Z 2025-03-14T05:12:20.8146952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8147111Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:12:20.8147187Z 2025-03-14T05:12:20.8147494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8147672Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:12:20.8147739Z 2025-03-14T05:12:20.8148009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8148425Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8148497Z 2025-03-14T05:12:20.8148760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8150282Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8150370Z 2025-03-14T05:12:20.8150660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8150812Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:12:20.8150879Z 2025-03-14T05:12:20.8151159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8151585Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8151659Z 2025-03-14T05:12:20.8151920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8153422Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8153496Z 2025-03-14T05:12:20.8153797Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8153972Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:12:20.8154038Z 2025-03-14T05:12:20.8154295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8154719Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8154795Z 2025-03-14T05:12:20.8155056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8156603Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8156679Z 2025-03-14T05:12:20.8156927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8157388Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.8157456Z 2025-03-14T05:12:20.8157742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8159299Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8159378Z 2025-03-14T05:12:20.8159655Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8159798Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:12:20.8159870Z 2025-03-14T05:12:20.8160141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8160314Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:12:20.8160391Z 2025-03-14T05:12:20.8160639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8161046Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8161118Z 2025-03-14T05:12:20.8161371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8162842Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8162917Z 2025-03-14T05:12:20.8163198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8163373Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:12:20.8163435Z 2025-03-14T05:12:20.8163688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8164118Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8164194Z 2025-03-14T05:12:20.8164460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8165985Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8166064Z 2025-03-14T05:12:20.8166354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8166504Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:12:20.8166573Z 2025-03-14T05:12:20.8166852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8167289Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8167365Z 2025-03-14T05:12:20.8167627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8169136Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8169214Z 2025-03-14T05:12:20.8169492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8169659Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:12:20.8169743Z 2025-03-14T05:12:20.8170037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8170190Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:12:20.8170266Z 2025-03-14T05:12:20.8170518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8170961Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8171037Z 2025-03-14T05:12:20.8171301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8172802Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8172871Z 2025-03-14T05:12:20.8173161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8173318Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:12:20.8173407Z 2025-03-14T05:12:20.8173656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8174087Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8174162Z 2025-03-14T05:12:20.8174421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8175923Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8175990Z 2025-03-14T05:12:20.8176279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8176437Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:12:20.8176512Z 2025-03-14T05:12:20.8176761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8177211Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8177283Z 2025-03-14T05:12:20.8177545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8179054Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8179122Z 2025-03-14T05:12:20.8179409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8179561Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:12:20.8179638Z 2025-03-14T05:12:20.8179940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8180112Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:12:20.8180186Z 2025-03-14T05:12:20.8180440Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8180866Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8180931Z 2025-03-14T05:12:20.8181205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8182963Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8183104Z 2025-03-14T05:12:20.8183422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8183572Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:12:20.8183651Z 2025-03-14T05:12:20.8183944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8184455Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8184530Z 2025-03-14T05:12:20.8184815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8186391Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8186468Z 2025-03-14T05:12:20.8186761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8186933Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:12:20.8187029Z 2025-03-14T05:12:20.8187279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8187717Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8187783Z 2025-03-14T05:12:20.8188051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8189565Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8189639Z 2025-03-14T05:12:20.8189925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8190103Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:12:20.8190178Z 2025-03-14T05:12:20.8190461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8190633Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:12:20.8190700Z 2025-03-14T05:12:20.8190955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8191370Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8191446Z 2025-03-14T05:12:20.8191712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8193217Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8193306Z 2025-03-14T05:12:20.8193604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8193751Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:12:20.8193816Z 2025-03-14T05:12:20.8194072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8194489Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8194564Z 2025-03-14T05:12:20.8194825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8196328Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8196416Z 2025-03-14T05:12:20.8196707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8196853Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:12:20.8196919Z 2025-03-14T05:12:20.8197193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8197616Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8197690Z 2025-03-14T05:12:20.8197950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8199477Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8199553Z 2025-03-14T05:12:20.8199803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8200258Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.8200338Z 2025-03-14T05:12:20.8200622Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8202196Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8202265Z 2025-03-14T05:12:20.8202549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8202688Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:12:20.8202761Z 2025-03-14T05:12:20.8203040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8203209Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:12:20.8203273Z 2025-03-14T05:12:20.8203530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8203975Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8204049Z 2025-03-14T05:12:20.8204310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8205786Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8205859Z 2025-03-14T05:12:20.8206135Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8206274Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:12:20.8206353Z 2025-03-14T05:12:20.8206616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8207024Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8207096Z 2025-03-14T05:12:20.8207353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8208821Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8208895Z 2025-03-14T05:12:20.8209173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8209314Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:12:20.8209438Z 2025-03-14T05:12:20.8209687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8210104Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8210177Z 2025-03-14T05:12:20.8210432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8211905Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8211979Z 2025-03-14T05:12:20.8212251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8212406Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:12:20.8212472Z 2025-03-14T05:12:20.8212770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8212922Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:12:20.8212998Z 2025-03-14T05:12:20.8213242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8213660Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8213726Z 2025-03-14T05:12:20.8213997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8215501Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8215566Z 2025-03-14T05:12:20.8215854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8216009Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:12:20.8216084Z 2025-03-14T05:12:20.8216333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8216771Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8216845Z 2025-03-14T05:12:20.8217105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8218612Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8218681Z 2025-03-14T05:12:20.8218973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8219105Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:12:20.8219195Z 2025-03-14T05:12:20.8219465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8219895Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8219968Z 2025-03-14T05:12:20.8220230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8221725Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8221793Z 2025-03-14T05:12:20.8222088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8222235Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:12:20.8222327Z 2025-03-14T05:12:20.8222616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8222769Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:12:20.8222835Z 2025-03-14T05:12:20.8223115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8223548Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8223615Z 2025-03-14T05:12:20.8223896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8225553Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8225640Z 2025-03-14T05:12:20.8225955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8226118Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:12:20.8226193Z 2025-03-14T05:12:20.8226452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8226888Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8226955Z 2025-03-14T05:12:20.8227239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8228827Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8228907Z 2025-03-14T05:12:20.8229213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8229376Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:12:20.8229452Z 2025-03-14T05:12:20.8229712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8230176Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8230244Z 2025-03-14T05:12:20.8230521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8232083Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8232161Z 2025-03-14T05:12:20.8232451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8232630Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:12:20.8232721Z 2025-03-14T05:12:20.8233010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8233160Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:12:20.8233229Z 2025-03-14T05:12:20.8233493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8233909Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8233986Z 2025-03-14T05:12:20.8234263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8235754Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8235842Z 2025-03-14T05:12:20.8236120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8236257Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:12:20.8236321Z 2025-03-14T05:12:20.8236587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8236991Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8237065Z 2025-03-14T05:12:20.8237326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8238820Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8238895Z 2025-03-14T05:12:20.8239195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8239348Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:12:20.8239415Z 2025-03-14T05:12:20.8239676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8240103Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8240177Z 2025-03-14T05:12:20.8240444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8241932Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8242003Z 2025-03-14T05:12:20.8242277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8242445Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:12:20.8242509Z 2025-03-14T05:12:20.8242786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8242940Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:12:20.8243014Z 2025-03-14T05:12:20.8243262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8243667Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8243734Z 2025-03-14T05:12:20.8244003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8245511Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8245592Z 2025-03-14T05:12:20.8245901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8246033Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:12:20.8246106Z 2025-03-14T05:12:20.8246351Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8246775Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8246839Z 2025-03-14T05:12:20.8247110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8248629Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8248709Z 2025-03-14T05:12:20.8249001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8249137Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:12:20.8249210Z 2025-03-14T05:12:20.8249473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8249896Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8249961Z 2025-03-14T05:12:20.8250229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8251725Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8251795Z 2025-03-14T05:12:20.8252093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8252262Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:12:20.8252335Z 2025-03-14T05:12:20.8252625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8252775Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:12:20.8252840Z 2025-03-14T05:12:20.8253286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:20.8253439Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:12:20.8253515Z 2025-03-14T05:12:20.8253815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8253964Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:12:20.8254029Z 2025-03-14T05:12:20.8254471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:20.8254621Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:12:20.8254694Z 2025-03-14T05:12:20.8254988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8255150Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:12:20.8255221Z 2025-03-14T05:12:20.8255600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:12:20.8255788Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:12:20.8255902Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:12:20.8256034Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:12:20.8256111Z 2025-03-14T05:12:20.8256446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:12:20.8256572Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:12:20.8256646Z 2025-03-14T05:12:20.8256970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:12:20.8257101Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:12:20.8257167Z 2025-03-14T05:12:20.8257556Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:12:20.8257767Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:12:20.8257839Z 2025-03-14T05:12:20.8258274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:12:20.8258426Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:12:20.8258873Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:12:20.8259009Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:12:20.8259126Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:12:20.8259200Z 2025-03-14T05:12:20.8259503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:20.8259640Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T05:12:20.8259711Z 2025-03-14T05:12:20.8259980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8260771Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:12:20.8260848Z 2025-03-14T05:12:20.8261128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:12:20.8261324Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T05:12:20.8261416Z 2025-03-14T05:12:20.8261807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:12:20.8262698Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:12:20.8262765Z 2025-03-14T05:12:20.8263140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:12:20.8263975Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:12:20.8264051Z 2025-03-14T05:12:20.8264463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:12:20.8264622Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:12:20.8264770Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:12:20.8264842Z 2025-03-14T05:12:20.8265291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:12:20.8265465Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T05:12:20.8265654Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:12:20.8265834Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:12:20.8265922Z 2025-03-14T05:12:20.8266317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:12:20.8266531Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:12:20.8266599Z 2025-03-14T05:12:20.8267033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:12:20.8267180Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:12:20.8267332Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:12:20.8267467Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:12:20.8267540Z 2025-03-14T05:12:20.8267907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:20.8268103Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:12:20.8268168Z 2025-03-14T05:12:20.8268483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:20.8268623Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:12:20.8268714Z 2025-03-14T05:12:20.8269028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:20.8269168Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:20.8269294Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:20.8269445Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:12:20.8269511Z 2025-03-14T05:12:20.8269838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:20.8269965Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:20.8270094Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:20.8270240Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:20.8270316Z 2025-03-14T05:12:20.8270624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:20.8270754Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:20.8270844Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:12:20.8270974Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:12:20.8271052Z 2025-03-14T05:12:20.8271385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:20.8271538Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:20.8271630Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:12:20.8271768Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:12:20.8271833Z 2025-03-14T05:12:20.8272176Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:20.8272332Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:20.8272455Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:12:20.8272521Z 2025-03-14T05:12:20.8272830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:20.8272983Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:20.8273106Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:12:20.8273172Z 2025-03-14T05:12:20.8273474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:20.8273626Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:20.8273747Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:12:20.8273827Z 2025-03-14T05:12:20.8274141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:20.8274323Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:20.8274442Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:12:20.8274508Z 2025-03-14T05:12:20.8274875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:20.8275016Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:20.8275091Z 2025-03-14T05:12:20.8275423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:20.8275568Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:20.8275634Z 2025-03-14T05:12:20.8275988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:20.8276128Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:20.8276260Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:12:20.8276411Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:20.8276560Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:12:20.8276624Z 2025-03-14T05:12:20.8277003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:20.8277158Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:20.8277288Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:12:20.8277447Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:20.8277584Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:12:20.8277656Z 2025-03-14T05:12:20.8277984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:20.8278108Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:20.8278270Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:20.8278408Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:12:20.8278474Z 2025-03-14T05:12:20.8278813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:20.8278931Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:20.8279108Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:20.8279241Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:12:20.8279324Z 2025-03-14T05:12:20.8279636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:20.8279757Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:20.8279875Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:20.8279949Z 2025-03-14T05:12:20.8280253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:20.8280354Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:20.8280485Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:20.8280562Z 2025-03-14T05:12:20.8280864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:20.8280981Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:20.8281106Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:20.8281179Z 2025-03-14T05:12:20.8281605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:20.8281733Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:20.8281856Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:20.8281932Z 2025-03-14T05:12:20.8282278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:20.8282463Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:20.8282528Z 2025-03-14T05:12:20.8282871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:20.8283080Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:12:20.8283179Z 2025-03-14T05:12:20.8283569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:12:20.8283787Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:12:20.8283853Z 2025-03-14T05:12:20.8284340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:12:20.8284476Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:12:20.8284552Z 2025-03-14T05:12:20.8284846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8284997Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:12:20.8285065Z 2025-03-14T05:12:20.8285509Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:12:20.8285626Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:12:20.8285738Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:12:20.8285855Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:12:20.8285929Z 2025-03-14T05:12:20.8286428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:12:20.8286601Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:12:20.8286867Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:12:20.8286933Z 2025-03-14T05:12:20.8287396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:12:20.8287564Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:12:20.8287636Z 2025-03-14T05:12:20.8287932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8288091Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:12:20.8288158Z 2025-03-14T05:12:20.8288547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:12:20.8288695Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:12:20.8288765Z 2025-03-14T05:12:20.8289061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:20.8289213Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:12:20.8289279Z 2025-03-14T05:12:20.8289676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:12:20.8289832Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:12:20.8289905Z 2025-03-14T05:12:20.8290384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:12:20.8290528Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:12:20.8290647Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:20.8290807Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:12:20.8290938Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:12:20.8291016Z 2025-03-14T05:12:20.8291382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:12:20.8291509Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:12:20.8291575Z 2025-03-14T05:12:20.8291585Z 2025-03-14T05:12:20.8291688Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:20.8333185Z def forward(self, L_stack0_tensor: "f32[4, 3, 1156, 1199][4158132, 1386044, 1199, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:12:20.8333619Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:12:20.8333969Z l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8334377Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8334795Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8335192Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8335585Z l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8335909Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8336330Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8336754Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8337150Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8337526Z l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8337858Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8338265Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8338696Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8339096Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8339466Z l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8339790Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8340196Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8340603Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8340994Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8341381Z l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8341742Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.8342168Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8342597Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8343006Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8343421Z l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8343735Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8344194Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8344602Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8344966Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8345344Z l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8345657Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8346033Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8346421Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8346788Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8347135Z l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8347459Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8347833Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8348205Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8348552Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8348909Z l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8349236Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8349605Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8349999Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8350362Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8350718Z l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8351035Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8351428Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8351793Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8352154Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8352515Z l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8352832Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8353232Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8353618Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8353978Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8354330Z l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8354648Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8355020Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8355396Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8355758Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8356097Z l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8356413Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8356808Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8357188Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8357548Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8357885Z l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8358163Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8358501Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8358839Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8359154Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8359466Z l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8359758Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.8360122Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8360477Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8360811Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8361122Z l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8361407Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8361742Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8362070Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8362384Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8362683Z l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8362984Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8363313Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8363693Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8364039Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8364365Z l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8364654Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8364985Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8365367Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8365717Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8366027Z l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8366319Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8366673Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8366998Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8367316Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8367627Z l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8367904Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8368240Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8368563Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8368881Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8369206Z l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8369538Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8369920Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8370291Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8370608Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8370908Z l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8371191Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8371523Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8371855Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8372167Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8372493Z l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8372781Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8373120Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8373452Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8373797Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8374139Z l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8374415Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8374751Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8375077Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8375395Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8375715Z l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8376030Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8376420Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8376785Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8377156Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8377494Z l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8377812Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8378194Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8378568Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8378926Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8379300Z l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8379634Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8380013Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8380393Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8380746Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8381098Z l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8381536Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:12:20.8381955Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8382359Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8382742Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8383154Z l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8383523Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8383948Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8384438Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8384830Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8385189Z l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8385512Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8385882Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8386253Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8386635Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8386999Z l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8387321Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8387692Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8388071Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8388426Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8388777Z l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8389085Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8389470Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8389847Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8390214Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8390556Z l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8390879Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8391257Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8391623Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8391982Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8392327Z l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8392647Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8393035Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8393427Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8393806Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8394159Z l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8394476Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8394845Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8395217Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8395565Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8395911Z l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8396225Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8396590Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8396976Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8397324Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8397666Z l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8397943Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8398278Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8398607Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8398925Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8399260Z l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8399566Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8399949Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8400331Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8400703Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8401039Z l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8401358Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8401705Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8402041Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8402364Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8402668Z l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8402965Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8403342Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8403741Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8404098Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8404458Z l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8404736Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:12:20.8405072Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8405434Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8405781Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8406126Z l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8406433Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:12:20.8406810Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8407155Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8407491Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8407790Z l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8408071Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:12:20.8408412Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:12:20.8408780Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:12:20.8409135Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:12:20.8409473Z l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:12:20.8409859Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:12:20.8410221Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:12:20.8410566Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:12:20.8410982Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:12:20.8411383Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:12:20.8411774Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:12:20.8412148Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:12:20.8412231Z 2025-03-14T05:12:20.8412542Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8413073Z x: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8413145Z 2025-03-14T05:12:20.8413456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8415012Z x_1: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8415106Z 2025-03-14T05:12:20.8415425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:12:20.8415583Z x_2: "f32[4, 64, 578, 600][22195200, 346800, 600, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:12:20.8415663Z 2025-03-14T05:12:20.8416055Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:12:20.8416325Z x_3: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:12:20.8416397Z 2025-03-14T05:12:20.8416685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8417142Z x_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8417245Z 2025-03-14T05:12:20.8417536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8419155Z x_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8419233Z 2025-03-14T05:12:20.8419528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8419681Z out: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:12:20.8419749Z 2025-03-14T05:12:20.8420014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8420456Z x_6: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8420535Z 2025-03-14T05:12:20.8420868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8422457Z x_7: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8422536Z 2025-03-14T05:12:20.8422834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8422986Z out_1: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:12:20.8423054Z 2025-03-14T05:12:20.8423322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8423770Z x_8: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8423844Z 2025-03-14T05:12:20.8424118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8425821Z x_9: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8425901Z 2025-03-14T05:12:20.8426160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8426613Z x_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.8426681Z 2025-03-14T05:12:20.8426960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8428589Z x_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8428672Z 2025-03-14T05:12:20.8428974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8429121Z x_9 += x_11; out_2: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:12:20.8429197Z 2025-03-14T05:12:20.8429482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8429642Z out_3: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:12:20.8429709Z 2025-03-14T05:12:20.8429967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8430392Z x_12: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8430467Z 2025-03-14T05:12:20.8430731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8432273Z x_13: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8432354Z 2025-03-14T05:12:20.8432636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8432791Z out_4: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:12:20.8432858Z 2025-03-14T05:12:20.8433116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8433538Z x_14: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8433612Z 2025-03-14T05:12:20.8433873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8435400Z x_15: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8435501Z 2025-03-14T05:12:20.8435787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8435941Z out_5: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:12:20.8436008Z 2025-03-14T05:12:20.8436267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8436702Z x_16: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8436776Z 2025-03-14T05:12:20.8437050Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8438573Z x_17: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8438662Z 2025-03-14T05:12:20.8438943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8439104Z x_17 += out_3; out_6: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:12:20.8439170Z 2025-03-14T05:12:20.8439461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8439613Z out_7: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:12:20.8439689Z 2025-03-14T05:12:20.8439940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8440363Z x_18: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8440438Z 2025-03-14T05:12:20.8440704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8442242Z x_19: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8442319Z 2025-03-14T05:12:20.8442608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8442746Z out_8: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:12:20.8442817Z 2025-03-14T05:12:20.8443060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8443482Z x_20: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8443550Z 2025-03-14T05:12:20.8443807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8445320Z x_21: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8445386Z 2025-03-14T05:12:20.8445674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8445825Z out_9: "f32[4, 64, 289, 300][5548800, 86700, 300, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:12:20.8445892Z 2025-03-14T05:12:20.8446144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8446568Z x_22: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8446647Z 2025-03-14T05:12:20.8446907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8448412Z x_23: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8448499Z 2025-03-14T05:12:20.8448773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8448935Z x_23 += out_7; out_10: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:12:20.8449000Z 2025-03-14T05:12:20.8449280Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8449432Z out_11: "f32[4, 256, 289, 300][22195200, 86700, 300, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:12:20.8449505Z 2025-03-14T05:12:20.8449744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8450163Z x_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8450246Z 2025-03-14T05:12:20.8450514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8452004Z x_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8452077Z 2025-03-14T05:12:20.8452368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8452515Z out_12: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:12:20.8452587Z 2025-03-14T05:12:20.8452838Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8453268Z x_26: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8453333Z 2025-03-14T05:12:20.8453598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8455116Z x_27: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8455221Z 2025-03-14T05:12:20.8455508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8455652Z out_13: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:12:20.8455722Z 2025-03-14T05:12:20.8455966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8456388Z x_28: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8456454Z 2025-03-14T05:12:20.8456725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8458283Z x_29: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8458357Z 2025-03-14T05:12:20.8458616Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8459054Z x_30: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.8459129Z 2025-03-14T05:12:20.8459391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8460961Z x_31: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8461051Z 2025-03-14T05:12:20.8461330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8461487Z x_29 += x_31; out_14: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:12:20.8461553Z 2025-03-14T05:12:20.8461843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8462002Z out_15: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:12:20.8462075Z 2025-03-14T05:12:20.8462327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8462760Z x_32: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8462827Z 2025-03-14T05:12:20.8463101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8464805Z x_33: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8464897Z 2025-03-14T05:12:20.8465205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8465359Z out_16: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:12:20.8465439Z 2025-03-14T05:12:20.8465707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8466148Z x_34: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8466214Z 2025-03-14T05:12:20.8466485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8468012Z x_35: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8468096Z 2025-03-14T05:12:20.8468392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8468536Z out_17: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:12:20.8468609Z 2025-03-14T05:12:20.8468860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8469292Z x_36: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8469358Z 2025-03-14T05:12:20.8469626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8471163Z x_37: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8471248Z 2025-03-14T05:12:20.8471534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8471689Z x_37 += out_15; out_18: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:12:20.8471765Z 2025-03-14T05:12:20.8472048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8472208Z out_19: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:12:20.8472275Z 2025-03-14T05:12:20.8472536Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8472953Z x_38: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8473025Z 2025-03-14T05:12:20.8473288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8474851Z x_39: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8474940Z 2025-03-14T05:12:20.8475229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8475383Z out_20: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:12:20.8475450Z 2025-03-14T05:12:20.8475710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8476138Z x_40: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8476212Z 2025-03-14T05:12:20.8476478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8478021Z x_41: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8478100Z 2025-03-14T05:12:20.8478385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8478538Z out_21: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:12:20.8478605Z 2025-03-14T05:12:20.8478859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8479284Z x_42: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8479357Z 2025-03-14T05:12:20.8479624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8481152Z x_43: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8481242Z 2025-03-14T05:12:20.8481701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8481876Z x_43 += out_19; out_22: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:12:20.8481943Z 2025-03-14T05:12:20.8482236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8482388Z out_23: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:12:20.8482461Z 2025-03-14T05:12:20.8482710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8483139Z x_44: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8483254Z 2025-03-14T05:12:20.8483516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8485061Z x_45: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8485129Z 2025-03-14T05:12:20.8485421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8485571Z out_24: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:12:20.8485638Z 2025-03-14T05:12:20.8485895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8486318Z x_46: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8486394Z 2025-03-14T05:12:20.8486658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8488187Z x_47: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8488280Z 2025-03-14T05:12:20.8488566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8488714Z out_25: "f32[4, 128, 145, 150][2784000, 21750, 150, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:12:20.8488781Z 2025-03-14T05:12:20.8489039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8489469Z x_48: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8489545Z 2025-03-14T05:12:20.8489810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8491651Z x_49: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8491729Z 2025-03-14T05:12:20.8492012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8492183Z x_49 += out_23; out_26: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:12:20.8492250Z 2025-03-14T05:12:20.8492545Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8492698Z out_27: "f32[4, 512, 145, 150][11136000, 21750, 150, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:12:20.8492772Z 2025-03-14T05:12:20.8493021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8493451Z x_50: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8493518Z 2025-03-14T05:12:20.8493817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8495375Z x_51: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8495451Z 2025-03-14T05:12:20.8495742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8495878Z out_28: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:12:20.8495953Z 2025-03-14T05:12:20.8496214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8496670Z x_52: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8496767Z 2025-03-14T05:12:20.8497067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8498675Z x_53: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8498755Z 2025-03-14T05:12:20.8499072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8499214Z out_29: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:12:20.8499290Z 2025-03-14T05:12:20.8499554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8500022Z x_54: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8500090Z 2025-03-14T05:12:20.8500377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8501980Z x_55: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8502074Z 2025-03-14T05:12:20.8502353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8502809Z x_56: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:12:20.8502887Z 2025-03-14T05:12:20.8503167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8504885Z x_57: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8504994Z 2025-03-14T05:12:20.8505290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8505444Z x_55 += x_57; out_30: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:12:20.8505511Z 2025-03-14T05:12:20.8505818Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8505972Z out_31: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:12:20.8506050Z 2025-03-14T05:12:20.8506309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8506746Z x_58: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8506816Z 2025-03-14T05:12:20.8507099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8508624Z x_59: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8508704Z 2025-03-14T05:12:20.8508997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8509132Z out_32: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:12:20.8509206Z 2025-03-14T05:12:20.8509452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8509884Z x_60: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8509948Z 2025-03-14T05:12:20.8510219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8511765Z x_61: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8511848Z 2025-03-14T05:12:20.8512136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8512268Z out_33: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:12:20.8512338Z 2025-03-14T05:12:20.8512588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8513012Z x_62: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8513077Z 2025-03-14T05:12:20.8513346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8514866Z x_63: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8514948Z 2025-03-14T05:12:20.8515240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8515385Z x_63 += out_31; out_34: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:12:20.8515462Z 2025-03-14T05:12:20.8515747Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8515899Z out_35: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:12:20.8515963Z 2025-03-14T05:12:20.8516222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8516629Z x_64: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8516704Z 2025-03-14T05:12:20.8516964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8518500Z x_65: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8518575Z 2025-03-14T05:12:20.8518866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8519009Z out_36: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:12:20.8519074Z 2025-03-14T05:12:20.8519336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8519758Z x_66: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8519832Z 2025-03-14T05:12:20.8520099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8521665Z x_67: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8521755Z 2025-03-14T05:12:20.8522037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8522180Z out_37: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:12:20.8522247Z 2025-03-14T05:12:20.8522502Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8522918Z x_68: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8522992Z 2025-03-14T05:12:20.8523264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8524739Z x_69: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8524878Z 2025-03-14T05:12:20.8525149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8525303Z x_69 += out_35; out_38: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:12:20.8525368Z 2025-03-14T05:12:20.8525650Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8525787Z out_39: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:12:20.8525858Z 2025-03-14T05:12:20.8526099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8526507Z x_70: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8526581Z 2025-03-14T05:12:20.8526853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8528329Z x_71: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8528394Z 2025-03-14T05:12:20.8528678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8528808Z out_40: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:12:20.8528880Z 2025-03-14T05:12:20.8529123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8529533Z x_72: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8529605Z 2025-03-14T05:12:20.8529860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8531356Z x_73: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8531421Z 2025-03-14T05:12:20.8531707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8531837Z out_41: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:12:20.8531910Z 2025-03-14T05:12:20.8532152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8532569Z x_74: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8532642Z 2025-03-14T05:12:20.8532898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8534396Z x_75: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8534472Z 2025-03-14T05:12:20.8534753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8534907Z x_75 += out_39; out_42: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:12:20.8534972Z 2025-03-14T05:12:20.8535252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8535391Z out_43: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:12:20.8535461Z 2025-03-14T05:12:20.8535701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8536103Z x_76: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8536183Z 2025-03-14T05:12:20.8536445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8537897Z x_77: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8537969Z 2025-03-14T05:12:20.8538254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8538385Z out_44: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:12:20.8538456Z 2025-03-14T05:12:20.8538703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8539114Z x_78: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8539178Z 2025-03-14T05:12:20.8539462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8540925Z x_79: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8540999Z 2025-03-14T05:12:20.8541285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8541414Z out_45: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:12:20.8541482Z 2025-03-14T05:12:20.8541722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8542134Z x_80: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8542198Z 2025-03-14T05:12:20.8542459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8543958Z x_81: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8544034Z 2025-03-14T05:12:20.8544377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8544532Z x_81 += out_43; out_46: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:12:20.8544608Z 2025-03-14T05:12:20.8544889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8545041Z out_47: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:12:20.8545108Z 2025-03-14T05:12:20.8545361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8545776Z x_82: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:12:20.8545871Z 2025-03-14T05:12:20.8546147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8547648Z x_83: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8547725Z 2025-03-14T05:12:20.8548007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8548150Z out_48: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:12:20.8548217Z 2025-03-14T05:12:20.8548473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8548889Z x_84: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:12:20.8548979Z 2025-03-14T05:12:20.8549245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8550778Z x_85: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8550853Z 2025-03-14T05:12:20.8551140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8551280Z out_49: "f32[4, 256, 73, 75][1401600, 5475, 75, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:12:20.8551345Z 2025-03-14T05:12:20.8551614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8552046Z x_86: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:12:20.8552120Z 2025-03-14T05:12:20.8552399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:12:20.8553924Z x_87: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:12:20.8553999Z 2025-03-14T05:12:20.8554276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:12:20.8554429Z x_87 += out_47; out_50: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:12:20.8554493Z 2025-03-14T05:12:20.8554793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:12:20.8554933Z out_51: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:12:20.8555007Z 2025-03-14T05:12:20.8555446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:20.8555623Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:12:20.8555687Z 2025-03-14T05:12:20.8555991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8556133Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:12:20.8556207Z 2025-03-14T05:12:20.8556654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:20.8556815Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:12:20.8556880Z 2025-03-14T05:12:20.8557181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8557323Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:12:20.8557400Z 2025-03-14T05:12:20.8557779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:12:20.8557968Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:12:20.8558069Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:12:20.8558197Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:12:20.8558262Z 2025-03-14T05:12:20.8558601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:12:20.8558731Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:12:20.8558805Z 2025-03-14T05:12:20.8559159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:12:20.8559300Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:12:20.8559372Z 2025-03-14T05:12:20.8559757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:12:20.8559975Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:12:20.8560040Z 2025-03-14T05:12:20.8560460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:12:20.8560586Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:12:20.8561020Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:12:20.8561142Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:12:20.8561259Z x_88: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:12:20.8561322Z 2025-03-14T05:12:20.8561621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:20.8561745Z tensor: "f32[82125, 4][4, 1]cpu" = x_88.to(torch.float32); x_88 = None 2025-03-14T05:12:20.8561834Z 2025-03-14T05:12:20.8562082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:20.8562846Z x_89: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(out_51, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); out_51 = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:12:20.8562911Z 2025-03-14T05:12:20.8563185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:12:20.8563363Z x_90: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_89, inplace = False); x_89 = None 2025-03-14T05:12:20.8563437Z 2025-03-14T05:12:20.8563806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:12:20.8564635Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:12:20.8564707Z 2025-03-14T05:12:20.8565052Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:12:20.8565855Z x_91: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_90, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_90 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:12:20.8565935Z 2025-03-14T05:12:20.8566267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:12:20.8566417Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:12:20.8566564Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:12:20.8566627Z 2025-03-14T05:12:20.8567038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:12:20.8567201Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_91.view(4, -1, 4, 73, 75); x_91 = None 2025-03-14T05:12:20.8567371Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:12:20.8567550Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:12:20.8567617Z 2025-03-14T05:12:20.8568011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:12:20.8568226Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:12:20.8568299Z 2025-03-14T05:12:20.8568717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:12:20.8568882Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:12:20.8569028Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:12:20.8569172Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:12:20.8569235Z 2025-03-14T05:12:20.8569605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:20.8569775Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:12:20.8569849Z 2025-03-14T05:12:20.8570160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:20.8570305Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:12:20.8570369Z 2025-03-14T05:12:20.8570689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:20.8570817Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:20.8570946Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:20.8571091Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:12:20.8571168Z 2025-03-14T05:12:20.8571497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:20.8571639Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:20.8571757Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:20.8571906Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:20.8571970Z 2025-03-14T05:12:20.8572272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:20.8572390Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:20.8572488Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:12:20.8572610Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:12:20.8572685Z 2025-03-14T05:12:20.8572985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:20.8573135Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:20.8573224Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:12:20.8573356Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:12:20.8573420Z 2025-03-14T05:12:20.8573741Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:20.8573898Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:20.8574035Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:12:20.8574109Z 2025-03-14T05:12:20.8574406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:20.8574560Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:20.8574686Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:12:20.8574760Z 2025-03-14T05:12:20.8575051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:20.8575207Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:20.8575318Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:12:20.8575390Z 2025-03-14T05:12:20.8575681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:20.8575874Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:20.8575984Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:12:20.8576058Z 2025-03-14T05:12:20.8576383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:20.8576526Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:20.8576590Z 2025-03-14T05:12:20.8576916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:20.8577069Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:20.8577155Z 2025-03-14T05:12:20.8577501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:20.8577646Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:20.8577768Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:12:20.8577922Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:20.8578055Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:12:20.8578127Z 2025-03-14T05:12:20.8578462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:20.8578603Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:20.8578722Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:12:20.8578875Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:20.8579009Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:12:20.8579081Z 2025-03-14T05:12:20.8579399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:20.8579519Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:20.8579698Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:20.8579826Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:12:20.8579897Z 2025-03-14T05:12:20.8580213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:20.8580348Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:20.8580510Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:20.8580647Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:12:20.8580714Z 2025-03-14T05:12:20.8581019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:20.8581115Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:20.8581238Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:20.8581304Z 2025-03-14T05:12:20.8581753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:20.8581855Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:20.8581978Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:20.8582044Z 2025-03-14T05:12:20.8582350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:20.8582463Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:20.8582600Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:20.8582664Z 2025-03-14T05:12:20.8582978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:20.8583104Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:20.8583235Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:20.8583300Z 2025-03-14T05:12:20.8583647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:20.8583824Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:20.8583898Z 2025-03-14T05:12:20.8584282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:20.8584458Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:12:20.8584523Z 2025-03-14T05:12:20.8584912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:12:20.8585092Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:12:20.8585169Z 2025-03-14T05:12:20.8585644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:12:20.8585799Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:12:20.8585864Z 2025-03-14T05:12:20.8586162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8586302Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:12:20.8586376Z 2025-03-14T05:12:20.8586808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:12:20.8586929Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:12:20.8587031Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:12:20.8587149Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:12:20.8587213Z 2025-03-14T05:12:20.8587666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:12:20.8587827Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:12:20.8588064Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:12:20.8588135Z 2025-03-14T05:12:20.8588577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:12:20.8588746Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:12:20.8588812Z 2025-03-14T05:12:20.8589121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:20.8589286Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:12:20.8589357Z 2025-03-14T05:12:20.8589729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:12:20.8589877Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:12:20.8589939Z 2025-03-14T05:12:20.8590233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:20.8590372Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:12:20.8590444Z 2025-03-14T05:12:20.8590807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:12:20.8590950Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:12:20.8591014Z 2025-03-14T05:12:20.8591487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:12:20.8591627Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:12:20.8591750Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:20.8591901Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:12:20.8592060Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:12:20.8592126Z 2025-03-14T05:12:20.8592494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:12:20.8592611Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:12:20.8592700Z 2025-03-14T05:12:25.4465397Z 2025-03-14T05:12:25.4545341Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:25.4589740Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:12:25.4625131Z l_features_res4_ = L_features_res4_ 2025-03-14T05:12:25.4666457Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:12:25.4704998Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:12:25.4747546Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:12:25.4785205Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:12:25.4786544Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:12:25.4800503Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:12:25.4801230Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:12:25.4801684Z 2025-03-14T05:12:25.4802349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:25.4803145Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:12:25.4803458Z 2025-03-14T05:12:25.4803908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4804484Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:12:25.4804778Z 2025-03-14T05:12:25.4805371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:25.4806084Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:12:25.4806385Z 2025-03-14T05:12:25.4806814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4807366Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:12:25.4807727Z 2025-03-14T05:12:25.4808247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:12:25.4808929Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:12:25.4809304Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:12:25.4809675Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:12:25.4809947Z 2025-03-14T05:12:25.4810419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:12:25.4810969Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:12:25.4811226Z 2025-03-14T05:12:25.4811659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:12:25.4812182Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:12:25.4812431Z 2025-03-14T05:12:25.4812915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:12:25.4813592Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:12:25.4813926Z 2025-03-14T05:12:25.4814456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:12:25.4815087Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:12:25.4815633Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:12:25.4816156Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:12:25.4816462Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:12:25.4816694Z 2025-03-14T05:12:25.4817104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:25.4817596Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:12:25.4817845Z 2025-03-14T05:12:25.4818275Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:25.4819232Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:12:25.4819975Z 2025-03-14T05:12:25.4820356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:12:25.4820899Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:12:25.4821212Z 2025-03-14T05:12:25.4821700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:12:25.4822834Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:12:25.4823578Z 2025-03-14T05:12:25.4824048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:12:25.4825208Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:12:25.4825951Z 2025-03-14T05:12:25.4826410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:12:25.4826986Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:12:25.4827361Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:12:25.4827623Z 2025-03-14T05:12:25.4828126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:12:25.4828750Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:12:25.4829132Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:12:25.4829550Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:12:25.4829864Z 2025-03-14T05:12:25.4830356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:12:25.4831013Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:12:25.4831333Z 2025-03-14T05:12:25.4831851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:12:25.4832482Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:12:25.4832836Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:12:25.4833177Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:12:25.4833435Z 2025-03-14T05:12:25.4833896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:25.4834492Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:12:25.4834781Z 2025-03-14T05:12:25.4835179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:25.4835689Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:12:25.4835970Z 2025-03-14T05:12:25.4836373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:25.4836875Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:25.4837184Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:25.4837525Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:12:25.4837795Z 2025-03-14T05:12:25.4838200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:25.4838698Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:25.4839000Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:25.4839323Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:25.4839597Z 2025-03-14T05:12:25.4839994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:25.4840485Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:25.4840758Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:12:25.4841024Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:12:25.4841294Z 2025-03-14T05:12:25.4841700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:25.4842209Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:25.4842503Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:12:25.4842796Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:12:25.4843063Z 2025-03-14T05:12:25.4843486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:25.4843996Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:25.4844326Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:12:25.4844563Z 2025-03-14T05:12:25.4844961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:25.4845464Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:25.4845792Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:12:25.4846029Z 2025-03-14T05:12:25.4846425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:25.4846935Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:25.4847262Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:12:25.4847498Z 2025-03-14T05:12:25.4847892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:25.4848431Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:25.4848777Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:12:25.4849037Z 2025-03-14T05:12:25.4849466Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:25.4850004Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:25.4850265Z 2025-03-14T05:12:25.4850709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:25.4851233Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:25.4851494Z 2025-03-14T05:12:25.4851931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:25.4852479Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:25.4852811Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:12:25.4853161Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:25.4853517Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:12:25.4853787Z 2025-03-14T05:12:25.4854234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:25.4854779Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:25.4855103Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:12:25.4855434Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:25.4855824Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:12:25.4856101Z 2025-03-14T05:12:25.4856526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:25.4857025Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:25.4857353Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:25.4857702Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:12:25.4857961Z 2025-03-14T05:12:25.4858388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:25.4858893Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:25.4859234Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:25.4859589Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:12:25.4859842Z 2025-03-14T05:12:25.4860253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:25.4860726Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:25.4860999Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:25.4861241Z 2025-03-14T05:12:25.4861637Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:25.4862135Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:25.4862402Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:25.4862646Z 2025-03-14T05:12:25.4863041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:25.4863522Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:25.4863842Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:25.4864094Z 2025-03-14T05:12:25.4864653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:25.4865170Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:25.4865479Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:25.4865751Z 2025-03-14T05:12:25.4866208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:25.4866825Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:25.4867139Z 2025-03-14T05:12:25.4867591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:25.4868175Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:12:25.4868479Z 2025-03-14T05:12:25.4868979Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:12:25.4869660Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:12:25.4869989Z 2025-03-14T05:12:25.4870594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:12:25.4871313Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:12:25.4871581Z 2025-03-14T05:12:25.4871985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4872511Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:12:25.4872788Z 2025-03-14T05:12:25.4873335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:12:25.4873970Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:12:25.4874261Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:12:25.4874531Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:12:25.4874767Z 2025-03-14T05:12:25.4875320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:12:25.4875994Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:12:25.4876453Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:12:25.4876832Z 2025-03-14T05:12:25.4877385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:12:25.4878071Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:12:25.4878390Z 2025-03-14T05:12:25.4878780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4879286Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:12:25.4879566Z 2025-03-14T05:12:25.4880040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:12:25.4880626Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:12:25.4880894Z 2025-03-14T05:12:25.4881268Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:25.4882096Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:12:25.4882359Z 2025-03-14T05:12:25.4882828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:12:25.4883401Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:12:25.4883665Z 2025-03-14T05:12:25.4884314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:12:25.4885022Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:12:25.4885341Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:25.4885673Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:12:25.4886018Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:12:25.4886278Z 2025-03-14T05:12:25.4886744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:12:25.4887289Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:12:25.4887531Z 2025-03-14T05:12:25.4887633Z 2025-03-14T05:12:25.4887725Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:25.4889053Z def forward(self, L_features_res4_: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[15, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[1024, 1024, 3, 3][9216, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[1024][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[15, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[15][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[60, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[60][1]cpu"): 2025-03-14T05:12:25.4890361Z l_features_res4_ = L_features_res4_ 2025-03-14T05:12:25.4890787Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:12:25.4891318Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:12:25.4892639Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:12:25.4893666Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:12:25.4894357Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:12:25.4895051Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:12:25.4895731Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:12:25.4896177Z 2025-03-14T05:12:25.4896842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:25.4897618Z arange: "f32[75][1]cpu" = torch.arange(0.0, 1200, step = 16, dtype = torch.float32) 2025-03-14T05:12:25.4897909Z 2025-03-14T05:12:25.4898307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4898806Z shifts_x: "f32[75][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:12:25.4899069Z 2025-03-14T05:12:25.4899601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:12:25.4900271Z arange_1: "f32[73][1]cpu" = torch.arange(0.0, 1168, step = 16, dtype = torch.float32) 2025-03-14T05:12:25.4900570Z 2025-03-14T05:12:25.4900955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4901454Z shifts_y: "f32[73][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:12:25.4901715Z 2025-03-14T05:12:25.4902187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:12:25.4902798Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:12:25.4903135Z shift_y: "f32[73, 75][1, 0]cpu" = meshgrid[0] 2025-03-14T05:12:25.4903410Z shift_x: "f32[73, 75][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:12:25.4903648Z 2025-03-14T05:12:25.4904068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:12:25.4904691Z shift_x_1: "f32[5475][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:12:25.4904934Z 2025-03-14T05:12:25.4905356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:12:25.4905868Z shift_y_1: "f32[5475][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:12:25.4906111Z 2025-03-14T05:12:25.4906587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:12:25.4907281Z shifts: "f32[5475, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:12:25.4907615Z 2025-03-14T05:12:25.4908125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:12:25.4908753Z view: "f32[5475, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:12:25.4909255Z view_1: "f32[1, 15, 4][60, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:12:25.4909743Z add: "f32[5475, 15, 4][60, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:12:25.4910031Z x: "f32[82125, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:12:25.4910267Z 2025-03-14T05:12:25.4910659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:25.4911142Z tensor: "f32[82125, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:12:25.4911385Z 2025-03-14T05:12:25.4911739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:12:25.4912661Z x_1: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.conv2d(l_features_res4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_res4_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:12:25.4913374Z 2025-03-14T05:12:25.4913743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:12:25.4914274Z x_2: "f32[4, 1024, 73, 75][5606400, 5475, 75, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:12:25.4914604Z 2025-03-14T05:12:25.4915063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:12:25.4916092Z score: "f32[4, 15, 73, 75][82125, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:12:25.4916810Z 2025-03-14T05:12:25.4917261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:12:25.4918276Z x_3: "f32[4, 60, 73, 75][328500, 5475, 75, 1]cpu" = torch.conv2d(x_2, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_2 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:12:25.4919023Z 2025-03-14T05:12:25.4919450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:12:25.4919995Z permute: "f32[4, 73, 75, 15][82125, 75, 1, 5475]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:12:25.4920359Z logits_i: "f32[4, 82125][82125, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:12:25.4920626Z 2025-03-14T05:12:25.4921134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:12:25.4921753Z view_2: "f32[4, 15, 4, 73, 75][328500, 21900, 5475, 75, 1]cpu" = x_3.view(4, -1, 4, 73, 75); x_3 = None 2025-03-14T05:12:25.4922149Z permute_1: "f32[4, 73, 75, 15, 4][328500, 75, 1, 21900, 5475]cpu" = view_2.permute(0, 3, 4, 1, 2); view_2 = None 2025-03-14T05:12:25.4922558Z pred_anchor_deltas_i: "f32[4, 82125, 4][328500, 4, 1]cpu" = permute_1.flatten(1, -2); permute_1 = None 2025-03-14T05:12:25.4922852Z 2025-03-14T05:12:25.4923344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:12:25.4924005Z pred_anchor_deltas_i_1: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:12:25.4924333Z 2025-03-14T05:12:25.4924852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:12:25.4926369Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:12:25.4926730Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:12:25.4927060Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:12:25.4927321Z 2025-03-14T05:12:25.4927783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:25.4928415Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:12:25.4928721Z 2025-03-14T05:12:25.4929115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:25.4929616Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:12:25.4929872Z 2025-03-14T05:12:25.4930267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:25.4930763Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:25.4931066Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:25.4931393Z widths: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:12:25.4931661Z 2025-03-14T05:12:25.4932080Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:25.4932561Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:25.4932857Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:25.4933174Z heights: "f32[328500][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:25.4933439Z 2025-03-14T05:12:25.4933831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:25.4934314Z getitem_6: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:25.4934600Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:12:25.4934865Z ctr_x: "f32[328500][1]cpu" = getitem_6 + mul; getitem_6 = mul = None 2025-03-14T05:12:25.4935106Z 2025-03-14T05:12:25.4935499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:25.4936019Z getitem_7: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:25.4936306Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:12:25.4936572Z ctr_y: "f32[328500][1]cpu" = getitem_7 + mul_1; getitem_7 = mul_1 = None 2025-03-14T05:12:25.4936816Z 2025-03-14T05:12:25.4937232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:25.4937732Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:25.4938059Z dx: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:12:25.4938294Z 2025-03-14T05:12:25.4938682Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:25.4939174Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:25.4939495Z dy: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:12:25.4939728Z 2025-03-14T05:12:25.4940103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:25.4940593Z getitem_10: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:25.4940913Z dw: "f32[328500, 1][1, 1]cpu" = getitem_10 / 1.0; getitem_10 = None 2025-03-14T05:12:25.4941152Z 2025-03-14T05:12:25.4941557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:25.4942101Z getitem_11: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:25.4942447Z dh: "f32[328500, 1][1, 1]cpu" = getitem_11 / 1.0; getitem_11 = None 2025-03-14T05:12:25.4942677Z 2025-03-14T05:12:25.4943085Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:25.4943620Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:25.4943873Z 2025-03-14T05:12:25.4944396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:25.4944944Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:25.4945206Z 2025-03-14T05:12:25.4945651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:25.4947162Z getitem_12: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:25.4947507Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_12; dx = getitem_12 = None 2025-03-14T05:12:25.4947836Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:25.4948182Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_13; mul_2 = getitem_13 = None 2025-03-14T05:12:25.4948484Z 2025-03-14T05:12:25.4948925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:25.4949471Z getitem_14: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:25.4949793Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_14; dy = getitem_14 = None 2025-03-14T05:12:25.4950138Z getitem_15: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:25.4950484Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_15; mul_3 = getitem_15 = None 2025-03-14T05:12:25.4950740Z 2025-03-14T05:12:25.4951161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:25.4951664Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:25.4951988Z getitem_16: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:25.4952340Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_16; exp = getitem_16 = None 2025-03-14T05:12:25.4952591Z 2025-03-14T05:12:25.4953012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:25.4953508Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:25.4953843Z getitem_17: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:25.4954192Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_17; exp_1 = getitem_17 = None 2025-03-14T05:12:25.4954445Z 2025-03-14T05:12:25.4954851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:25.4955331Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:25.4955614Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:25.4955857Z 2025-03-14T05:12:25.4956252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:25.4956712Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:25.4956973Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:25.4957210Z 2025-03-14T05:12:25.4957605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:25.4958081Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:25.4958378Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:25.4958634Z 2025-03-14T05:12:25.4959027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:25.4959502Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:25.4959793Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:25.4960033Z 2025-03-14T05:12:25.4960463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:25.4961039Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:25.4961334Z 2025-03-14T05:12:25.4961786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:25.4962332Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:12:25.4962612Z 2025-03-14T05:12:25.4963093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:12:25.4963685Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:12:25.4963969Z 2025-03-14T05:12:25.4964526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:12:25.4965194Z arange_2: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:12:25.4965441Z 2025-03-14T05:12:25.4965814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4966294Z batch_idx: "i64[4][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:12:25.4966551Z 2025-03-14T05:12:25.4967068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:12:25.4967665Z topk = logits_i.topk(6000, dim = 1); logits_i = None 2025-03-14T05:12:25.4967936Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:12:25.4968202Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:12:25.4968436Z 2025-03-14T05:12:25.4968997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:12:25.4969670Z getitem_20: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:12:25.4970115Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_20, topk_idx)]; proposals_i_1 = getitem_20 = topk_idx = None 2025-03-14T05:12:25.4970454Z 2025-03-14T05:12:25.4970999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:12:25.4971675Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:12:25.4971961Z 2025-03-14T05:12:25.4972340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:25.4972846Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:12:25.4973117Z 2025-03-14T05:12:25.4973586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:12:25.4974169Z getitem_22: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:12:25.4974437Z 2025-03-14T05:12:25.4974824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:25.4975321Z tensor_1: "f32[6000, 4][4, 1]cpu" = getitem_22.to(torch.float32); getitem_22 = None 2025-03-14T05:12:25.4975607Z 2025-03-14T05:12:25.4976076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:12:25.4976648Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:12:25.4976912Z 2025-03-14T05:12:25.4977499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:12:25.4978168Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor_1); tensor_1 = None 2025-03-14T05:12:25.4978482Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:25.4978810Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:12:25.4979151Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:12:25.4979407Z 2025-03-14T05:12:25.4979863Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:12:25.4980401Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:12:25.4980639Z 2025-03-14T05:12:26.0199105Z 2025-03-14T05:12:26.0203479Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:26.0207726Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 82125, 4][328500, 4, 1]cpu", L_anchors_0_tensor: "f32[82125, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 82125][82125, 1]cpu"): 2025-03-14T05:12:26.0208695Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:12:26.0209029Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:12:26.0209372Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:12:26.0209962Z 2025-03-14T05:12:26.0210681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:12:26.0211433Z pred_anchor_deltas_i: "f32[328500, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:12:26.0211782Z 2025-03-14T05:12:26.0212323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:12:26.0213009Z unsqueeze: "f32[1, 82125, 4][328500, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:12:26.0213407Z expand: "f32[4, 82125, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:12:26.0213756Z anchors_i: "f32[328500, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:12:26.0214020Z 2025-03-14T05:12:26.0214495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:26.0215093Z deltas: "f32[328500, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:12:26.0215382Z 2025-03-14T05:12:26.0215786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:26.0216299Z boxes: "f32[328500, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:12:26.0216564Z 2025-03-14T05:12:26.0217024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:26.0217533Z getitem: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:26.0217842Z getitem_1: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:26.0218169Z widths: "f32[328500][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:12:26.0218435Z 2025-03-14T05:12:26.0218903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:26.0219405Z getitem_2: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:26.0219709Z getitem_3: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:26.0220033Z heights: "f32[328500][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:12:26.0220304Z 2025-03-14T05:12:26.0220705Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:26.0221197Z getitem_4: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:26.0221466Z mul: "f32[328500][1]cpu" = 0.5 * widths 2025-03-14T05:12:26.0221732Z ctr_x: "f32[328500][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:12:26.0221976Z 2025-03-14T05:12:26.0222373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:26.0222881Z getitem_5: "f32[328500][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:26.0223172Z mul_1: "f32[328500][1]cpu" = 0.5 * heights 2025-03-14T05:12:26.0223449Z ctr_y: "f32[328500][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:12:26.0223697Z 2025-03-14T05:12:26.0224477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:26.0225045Z getitem_6: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:26.0225398Z dx: "f32[328500, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:12:26.0225637Z 2025-03-14T05:12:26.0226033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:26.0226536Z getitem_7: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:26.0226861Z dy: "f32[328500, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:12:26.0227090Z 2025-03-14T05:12:26.0227476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:26.0227972Z getitem_8: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:26.0228287Z dw: "f32[328500, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:12:26.0228520Z 2025-03-14T05:12:26.0228921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:26.0229460Z getitem_9: "f32[328500, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:26.0229805Z dh: "f32[328500, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:12:26.0230038Z 2025-03-14T05:12:26.0230467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:26.0231033Z dw_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:26.0231296Z 2025-03-14T05:12:26.0231720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:26.0232276Z dh_1: "f32[328500, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:26.0232533Z 2025-03-14T05:12:26.0232957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:26.0233492Z getitem_10: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:26.0233811Z mul_2: "f32[328500, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:12:26.0234146Z getitem_11: "f32[328500, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:26.0234496Z pred_ctr_x: "f32[328500, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:12:26.0234756Z 2025-03-14T05:12:26.0235187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:26.0235726Z getitem_12: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:26.0236039Z mul_3: "f32[328500, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:12:26.0236365Z getitem_13: "f32[328500, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:26.0236708Z pred_ctr_y: "f32[328500, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:12:26.0236968Z 2025-03-14T05:12:26.0237402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:26.0237935Z exp: "f32[328500, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:26.0238265Z getitem_14: "f32[328500, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:26.0238609Z pred_w: "f32[328500, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:12:26.0238864Z 2025-03-14T05:12:26.0239286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:26.0239792Z exp_1: "f32[328500, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:26.0240130Z getitem_15: "f32[328500, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:26.0241315Z pred_h: "f32[328500, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:12:26.0241590Z 2025-03-14T05:12:26.0242009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:26.0242711Z mul_6: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:26.0243005Z x1: "f32[328500, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:26.0243250Z 2025-03-14T05:12:26.0243663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:26.0244131Z mul_7: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:26.0244399Z y1: "f32[328500, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:26.0244668Z 2025-03-14T05:12:26.0245057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:26.0245533Z mul_8: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:26.0245821Z x2: "f32[328500, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:26.0246073Z 2025-03-14T05:12:26.0246484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:26.0246960Z mul_9: "f32[328500, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:26.0247255Z y2: "f32[328500, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:26.0247502Z 2025-03-14T05:12:26.0247936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:26.0248518Z pred_boxes: "f32[328500, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:26.0248825Z 2025-03-14T05:12:26.0249236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:26.0249770Z proposals_i: "f32[328500, 4][4, 1]cpu" = pred_boxes.reshape((328500, 4)); pred_boxes = None 2025-03-14T05:12:26.0250045Z 2025-03-14T05:12:26.0250505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:12:26.0251090Z proposals_i_1: "f32[4, 82125, 4][328500, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:12:26.0251376Z 2025-03-14T05:12:26.0251942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:12:26.0252637Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:12:26.0252880Z 2025-03-14T05:12:26.0253262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:26.0253751Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:12:26.0254009Z 2025-03-14T05:12:26.0254543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:12:26.0255187Z topk = l_pred_objectness_logits_0_.topk(6000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:12:26.0255520Z topk_scores_i: "f32[4, 6000][6000, 1]cpu" = topk[0] 2025-03-14T05:12:26.0255791Z topk_idx: "i64[4, 6000][6000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:12:26.0256027Z 2025-03-14T05:12:26.0256574Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:12:26.0257254Z getitem_18: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:12:26.0257708Z topk_proposals_i: "f32[4, 6000, 4][24000, 4, 1]cpu" = proposals_i_1[(getitem_18, topk_idx)]; proposals_i_1 = getitem_18 = topk_idx = None 2025-03-14T05:12:26.0258120Z 2025-03-14T05:12:26.0258701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:12:26.0259381Z full: "i64[6000][1]cpu" = torch.full((6000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:12:26.0259670Z 2025-03-14T05:12:26.0260068Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:12:26.0260584Z level_ids: "i64[6000][1]cpu" = full.to(device(type='cpu')); full = level_ids = None 2025-03-14T05:12:26.0260864Z 2025-03-14T05:12:26.0261341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:12:26.0261927Z getitem_20: "f32[6000, 4][4, 1]cpu" = topk_proposals_i[0]; topk_proposals_i = None 2025-03-14T05:12:26.0262196Z 2025-03-14T05:12:26.0262582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:12:26.0263076Z tensor: "f32[6000, 4][4, 1]cpu" = getitem_20.to(torch.float32); getitem_20 = None 2025-03-14T05:12:26.0263339Z 2025-03-14T05:12:26.0263803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:12:26.0264438Z scores_per_img: "f32[6000][1]cpu" = topk_scores_i[0]; topk_scores_i = None 2025-03-14T05:12:26.0264710Z 2025-03-14T05:12:26.0265310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:12:26.0266042Z isfinite: "b8[6000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:12:26.0266374Z all_1: "b8[6000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:26.0266704Z isfinite_1: "b8[6000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:12:26.0267056Z valid_mask: "b8[6000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:12:26.0267324Z 2025-03-14T05:12:26.0267798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:12:26.0268354Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:12:26.0268603Z 2025-03-14T05:12:41.2888082Z 2025-03-14T05:12:41.2893007Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:41.2897264Z def forward(self, L_stack0_: "f32[3233, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:41.2898707Z l_stack0_ = L_stack0_ 2025-03-14T05:12:41.2899110Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:12:41.2900959Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:12:41.2901533Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:12:41.2902096Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:12:41.2902660Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2903081Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2903489Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2903894Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2904350Z 2025-03-14T05:12:41.2905109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:12:41.2905836Z mean: "f32[3233, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:12:41.2906115Z 2025-03-14T05:12:41.2906529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:12:41.2907525Z scores: "f32[3233, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:12:41.2908241Z 2025-03-14T05:12:41.2908711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:12:41.2910248Z proposal_deltas: "f32[3233, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:12:41.2911013Z 2025-03-14T05:12:41.2911396Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.2911862Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.2912121Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:41.2912361Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:41.2912638Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.2912908Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:41.2913162Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:41.2913384Z 2025-03-14T05:12:41.2913759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:41.2914691Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.2915406Z 2025-03-14T05:12:41.2915865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:41.2916484Z deltas: "f32[3233, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:12:41.2916761Z 2025-03-14T05:12:41.2917160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:41.2917700Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:41.2917982Z 2025-03-14T05:12:41.2918388Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:41.2918894Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:41.2919203Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.2919520Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:41.2919787Z 2025-03-14T05:12:41.2920198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:41.2920695Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:41.2920993Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:41.2921312Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:41.2921577Z 2025-03-14T05:12:41.2921970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:41.2922456Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.2922720Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:41.2923004Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:41.2923262Z 2025-03-14T05:12:41.2923663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:41.2924174Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:41.2924462Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:41.2924729Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:41.2924972Z 2025-03-14T05:12:41.2925393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:41.2925903Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:41.2926225Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:41.2926458Z 2025-03-14T05:12:41.2926849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:41.2927356Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:41.2927679Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:41.2927912Z 2025-03-14T05:12:41.2928298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:41.2928797Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:41.2929136Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:41.2929370Z 2025-03-14T05:12:41.2929761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:41.2930291Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:41.2930653Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:41.2930888Z 2025-03-14T05:12:41.2931315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:41.2931842Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:41.2932119Z 2025-03-14T05:12:41.2932775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:41.2933317Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:41.2933579Z 2025-03-14T05:12:41.2934017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:41.2934554Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:41.2934873Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:41.2935201Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:41.2935544Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:41.2935805Z 2025-03-14T05:12:41.2936306Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:41.2936870Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:41.2937188Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:41.2937523Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:41.2937870Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:41.2938134Z 2025-03-14T05:12:41.2938569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:41.2939090Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:41.2939434Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:41.2939789Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:41.2940050Z 2025-03-14T05:12:41.2940834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:41.2941352Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:41.2941689Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:41.2942039Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:41.2942298Z 2025-03-14T05:12:41.2942702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:41.2943209Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:41.2943483Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:41.2943727Z 2025-03-14T05:12:41.2944142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:41.2944724Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:41.2945000Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:41.2945249Z 2025-03-14T05:12:41.2945643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:41.2946115Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:41.2946403Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:41.2946653Z 2025-03-14T05:12:41.2947147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:41.2947731Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:41.2948022Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:41.2948271Z 2025-03-14T05:12:41.2948702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:41.2949278Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:41.2949573Z 2025-03-14T05:12:41.2950011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:41.2950580Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:41.2950869Z 2025-03-14T05:12:41.2951313Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:41.2951923Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:41.2952288Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:41.2952581Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:41.2952888Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:41.2953209Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:41.2953474Z 2025-03-14T05:12:41.2953861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.2954428Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.2954782Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:41.2955027Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:41.2955395Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.2955747Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:41.2955989Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:41.2956215Z 2025-03-14T05:12:41.2956659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:41.2957215Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:12:41.2957506Z 2025-03-14T05:12:41.2957972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:41.2958573Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:41.2958936Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:41.2959227Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:41.2959531Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:41.2959850Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:41.2960111Z 2025-03-14T05:12:41.2960664Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:41.2961357Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:41.2961699Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:41.2962041Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:41.2962382Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:41.2962677Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:41.2962920Z 2025-03-14T05:12:41.2963375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:41.2963913Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:41.2964146Z 2025-03-14T05:12:41.2964295Z 2025-03-14T05:12:41.2964397Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:41.2965765Z def forward(self, L_stack0_: "f32[3233, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:41.2967088Z l_stack0_ = L_stack0_ 2025-03-14T05:12:41.2967477Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:12:41.2968038Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:12:41.2968596Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:12:41.2969148Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:12:41.2969617Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2970046Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2970450Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2970851Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:41.2971151Z 2025-03-14T05:12:41.2971710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:12:41.2972342Z mean: "f32[3233, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:12:41.2972611Z 2025-03-14T05:12:41.2973009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:12:41.2973975Z scores: "f32[3233, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:12:41.2974691Z 2025-03-14T05:12:41.2975103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:12:41.2976108Z proposal_deltas: "f32[3233, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:12:41.2976852Z 2025-03-14T05:12:41.2977240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.2977720Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.2978011Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:41.2978250Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:41.2978530Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.2978797Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:41.2979050Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:41.2979281Z 2025-03-14T05:12:41.2979669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:41.2980630Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.2981362Z 2025-03-14T05:12:41.2982835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:41.2983475Z deltas: "f32[3233, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:12:41.2983773Z 2025-03-14T05:12:41.2984282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:41.2984859Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:41.2985275Z 2025-03-14T05:12:41.2985727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:41.2986295Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:41.2986702Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.2987234Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:41.2987511Z 2025-03-14T05:12:41.2987932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:41.2988445Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:41.2988753Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:41.2989075Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:41.2989345Z 2025-03-14T05:12:41.2989756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:41.2990256Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.2990521Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:41.2990787Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:41.2991034Z 2025-03-14T05:12:41.2991446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:41.2991966Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:41.2992258Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:41.2992532Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:41.2992812Z 2025-03-14T05:12:41.2993267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:41.2993857Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:41.2994282Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:41.2994527Z 2025-03-14T05:12:41.2994929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:41.2995522Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:41.2995892Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:41.2996132Z 2025-03-14T05:12:41.2996526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:41.2997041Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:41.2997366Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:41.2997612Z 2025-03-14T05:12:41.2998000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:41.2998531Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:41.2998871Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:41.2999129Z 2025-03-14T05:12:41.2999557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:41.3000084Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:41.3000346Z 2025-03-14T05:12:41.3000786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:41.3001311Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:41.3001569Z 2025-03-14T05:12:41.3002003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:41.3002537Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:41.3002855Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:41.3003188Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:41.3003532Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:41.3003789Z 2025-03-14T05:12:41.3004226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:41.3004761Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:41.3005076Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:41.3005403Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:41.3005748Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:41.3006003Z 2025-03-14T05:12:41.3006441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:41.3006960Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:41.3007286Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:41.3007616Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:41.3007866Z 2025-03-14T05:12:41.3008288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:41.3008788Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:41.3009123Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:41.3009479Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:41.3009743Z 2025-03-14T05:12:41.3010157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:41.3010639Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:41.3010905Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:41.3011139Z 2025-03-14T05:12:41.3011532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:41.3011984Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:41.3012268Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:41.3012502Z 2025-03-14T05:12:41.3012895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:41.3013369Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:41.3013680Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:41.3013929Z 2025-03-14T05:12:41.3014324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:41.3014795Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:41.3015083Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:41.3015333Z 2025-03-14T05:12:41.3015770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:41.3016354Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:41.3016647Z 2025-03-14T05:12:41.3017070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:41.3017625Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:41.3017910Z 2025-03-14T05:12:41.3018352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:41.3018967Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:41.3019352Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:41.3019659Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:41.3019962Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:41.3020282Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:41.3020543Z 2025-03-14T05:12:41.3020929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.3021486Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3021831Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:41.3022073Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:41.3022442Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3022802Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:41.3023057Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:41.3023285Z 2025-03-14T05:12:41.3023724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:41.3024393Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:12:41.3024703Z 2025-03-14T05:12:41.3025161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:41.3025784Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:41.3026192Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:41.3026501Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:41.3026820Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:41.3027172Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:41.3027450Z 2025-03-14T05:12:41.3028011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:41.3028723Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:41.3029073Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:41.3029425Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:41.3029775Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:41.3030079Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:41.3030327Z 2025-03-14T05:12:41.3030779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:41.3031310Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:41.3031556Z 2025-03-14T05:12:41.3031702Z 2025-03-14T05:12:41.3031797Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:41.3033239Z def forward(self, L_stack0_: "f32[3233, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:41.3034612Z l_stack0_ = L_stack0_ 2025-03-14T05:12:41.3035012Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:12:41.3035588Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:12:41.3036159Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:12:41.3036728Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:12:41.3037215Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3037706Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3038260Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3038674Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3038960Z 2025-03-14T05:12:41.3039481Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:12:41.3040143Z mean: "f32[3233, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:12:41.3040412Z 2025-03-14T05:12:41.3040812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:12:41.3041810Z scores: "f32[3233, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:12:41.3042533Z 2025-03-14T05:12:41.3042952Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:12:41.3043954Z proposal_deltas: "f32[3233, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:12:41.3044683Z 2025-03-14T05:12:41.3045060Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.3045518Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.3045775Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:41.3046011Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:41.3046292Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.3046560Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:41.3046808Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:41.3047059Z 2025-03-14T05:12:41.3048013Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:41.3048956Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3049669Z 2025-03-14T05:12:41.3050157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:41.3050729Z deltas: "f32[3233, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:12:41.3051002Z 2025-03-14T05:12:41.3051400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:41.3051919Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:41.3052201Z 2025-03-14T05:12:41.3052605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:41.3053102Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:41.3053407Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.3053728Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:41.3054023Z 2025-03-14T05:12:41.3054425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:41.3054922Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:41.3055219Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:41.3055556Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:41.3055826Z 2025-03-14T05:12:41.3056221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:41.3056705Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.3056963Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:41.3057227Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:41.3057470Z 2025-03-14T05:12:41.3057874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:41.3058378Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:41.3058798Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:41.3059153Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:41.3059710Z 2025-03-14T05:12:41.3060193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:41.3060803Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:41.3061224Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:41.3061666Z 2025-03-14T05:12:41.3062174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:41.3062961Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:41.3063354Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:41.3063699Z 2025-03-14T05:12:41.3064260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:41.3064879Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:41.3065297Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:41.3065616Z 2025-03-14T05:12:41.3066104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:41.3066727Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:41.3067226Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:41.3067577Z 2025-03-14T05:12:41.3068069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:41.3068695Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:41.3069038Z 2025-03-14T05:12:41.3069525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:41.3070165Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:41.3070488Z 2025-03-14T05:12:41.3070977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:41.3071613Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:41.3072116Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:41.3072535Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:41.3072961Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:41.3073301Z 2025-03-14T05:12:41.3073831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:41.3074449Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:41.3074830Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:41.3075251Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:41.3075665Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:41.3076005Z 2025-03-14T05:12:41.3076593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:41.3077166Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:41.3077579Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:41.3077999Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:41.3078313Z 2025-03-14T05:12:41.3078858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:41.3079457Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:41.3079893Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:41.3091908Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:41.3092286Z 2025-03-14T05:12:41.3092765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:41.3093261Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:41.3093543Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:41.3093774Z 2025-03-14T05:12:41.3094196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:41.3094679Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:41.3094953Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:41.3095205Z 2025-03-14T05:12:41.3095618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:41.3096109Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:41.3096418Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:41.3096676Z 2025-03-14T05:12:41.3097240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:41.3097715Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:41.3098003Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:41.3098252Z 2025-03-14T05:12:41.3098737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:41.3099324Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:41.3099622Z 2025-03-14T05:12:41.3100048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:41.3100622Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:41.3100919Z 2025-03-14T05:12:41.3101376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:41.3101996Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:41.3102371Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:41.3102672Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:41.3102981Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:41.3103304Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:41.3103572Z 2025-03-14T05:12:41.3104003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.3104702Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3105071Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:41.3105332Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:41.3105718Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3106087Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:41.3106349Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:41.3106588Z 2025-03-14T05:12:41.3107019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:41.3107591Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:12:41.3107886Z 2025-03-14T05:12:41.3108341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:41.3108957Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:41.3109321Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:41.3109619Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:41.3109924Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:41.3110245Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:41.3110512Z 2025-03-14T05:12:41.3111091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:41.3111787Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:41.3112129Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:41.3112490Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:41.3112838Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:41.3113135Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:41.3113377Z 2025-03-14T05:12:41.3113824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:41.3114350Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:41.3114581Z 2025-03-14T05:12:41.3173599Z 2025-03-14T05:12:41.3174705Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:41.3176441Z def forward(self, L_stack0_: "f32[3233, 2048, 7, 7][100352, 49, 7, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 2048][2048, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:41.3184808Z l_stack0_ = L_stack0_ 2025-03-14T05:12:41.3189621Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:12:41.3218675Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:12:41.3221445Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:12:41.3222206Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:12:41.3222830Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3223372Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3223912Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3224514Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:41.3224948Z 2025-03-14T05:12:41.3225643Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/roi_heads.py:480 in torch_dynamo_resume_in_forward_at_477, code: predictions = self.box_predictor(box_features.mean(dim=[2, 3])) 2025-03-14T05:12:41.3226470Z mean: "f32[3233, 2048][2048, 1]cpu" = l_stack0_.mean(dim = [2, 3]); l_stack0_ = None 2025-03-14T05:12:41.3226885Z 2025-03-14T05:12:41.3231129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:12:41.3232386Z scores: "f32[3233, 81][81, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:12:41.3233412Z 2025-03-14T05:12:41.3233873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:12:41.3235009Z proposal_deltas: "f32[3233, 320][320, 1]cpu" = torch._C._nn.linear(mean, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); mean = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:12:41.3235853Z 2025-03-14T05:12:41.3236273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.3236769Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.3237040Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:41.3237287Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:41.3237577Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:41.3237851Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:41.3238111Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:41.3238342Z 2025-03-14T05:12:41.3238729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:41.3239694Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3240454Z 2025-03-14T05:12:41.3240969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:41.3241559Z deltas: "f32[3233, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:12:41.3241851Z 2025-03-14T05:12:41.3242253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:41.3242776Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:41.3243064Z 2025-03-14T05:12:41.3243470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:41.3243973Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:41.3244283Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.3244604Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:41.3244874Z 2025-03-14T05:12:41.3245274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:41.3245783Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:41.3246073Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:41.3246384Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:41.3246645Z 2025-03-14T05:12:41.3247061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:41.3247543Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:41.3247798Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:41.3248058Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:41.3248300Z 2025-03-14T05:12:41.3248717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:41.3249229Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:41.3249518Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:41.3249782Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:41.3250028Z 2025-03-14T05:12:41.3250442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:41.3250961Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:41.3251282Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:41.3251516Z 2025-03-14T05:12:41.3251897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:41.3252392Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:41.3252713Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:41.3252947Z 2025-03-14T05:12:41.3253335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:41.3253861Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:41.3254252Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:41.3254489Z 2025-03-14T05:12:41.3254879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:41.3255410Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:41.3255761Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:41.3256003Z 2025-03-14T05:12:41.3256431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:41.3256969Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:41.3257237Z 2025-03-14T05:12:41.3257662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:41.3258189Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:41.3258451Z 2025-03-14T05:12:41.3258885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:41.3259426Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:41.3259750Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:41.3260105Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:41.3260457Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:41.3260716Z 2025-03-14T05:12:41.3261151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:41.3261721Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:41.3262038Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:41.3262363Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:41.3262708Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:41.3262970Z 2025-03-14T05:12:41.3263385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:41.3263894Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:41.3264348Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:41.3264709Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:41.3264973Z 2025-03-14T05:12:41.3265410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:41.3265941Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:41.3266308Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:41.3266659Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:41.3266916Z 2025-03-14T05:12:41.3267337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:41.3267819Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:41.3268092Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:41.3268332Z 2025-03-14T05:12:41.3268733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:41.3269191Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:41.3269452Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:41.3269685Z 2025-03-14T05:12:41.3270084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:41.3270563Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:41.3270855Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:41.3271105Z 2025-03-14T05:12:41.3271505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:41.3271988Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:41.3272278Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:41.3272527Z 2025-03-14T05:12:41.3272966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:41.3273573Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:41.3273876Z 2025-03-14T05:12:41.3274299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:41.3274876Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:41.3275167Z 2025-03-14T05:12:41.3275610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:41.3276219Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:41.3276582Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:41.3276870Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:41.3277175Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:41.3277497Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:41.3277760Z 2025-03-14T05:12:41.3278143Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:41.3278704Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3279050Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:41.3279293Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:41.3279658Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:41.3280005Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:41.3280272Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:41.3280509Z 2025-03-14T05:12:41.3280934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:41.3281669Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:12:41.3281973Z 2025-03-14T05:12:41.3282425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:41.3283039Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:41.3283405Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:41.3283709Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:41.3284023Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:41.3284350Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:41.3284617Z 2025-03-14T05:12:41.3285174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:41.3285869Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:41.3286213Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:41.3286555Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:41.3286952Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:41.3287250Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:41.3287491Z 2025-03-14T05:12:41.3287931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:41.3288474Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:41.3288708Z 2025-03-14T05:12:42.9776336Z 2025-03-14T05:12:42.9778741Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:42.9779874Z def forward(self, L_predictions_0_: "f32[3233, 81][81, 1]cpu", L_predictions_1_: "f32[3233, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:42.9780774Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:12:42.9781025Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:12:42.9781370Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9781951Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9782385Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9782805Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9783121Z 2025-03-14T05:12:42.9783570Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:42.9784082Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:42.9784815Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:42.9785160Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:42.9785474Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:42.9785769Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:42.9786046Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:42.9786296Z 2025-03-14T05:12:42.9786745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:42.9787819Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9788627Z 2025-03-14T05:12:42.9789160Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:42.9789813Z deltas: "f32[3233, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:12:42.9790119Z 2025-03-14T05:12:42.9790584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:42.9791177Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:42.9791548Z 2025-03-14T05:12:42.9792470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:42.9793152Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:42.9793502Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:42.9793849Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:42.9794130Z 2025-03-14T05:12:42.9794621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:42.9795148Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:42.9795457Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:42.9795789Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:42.9796068Z 2025-03-14T05:12:42.9796491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:42.9797038Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:42.9797416Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:42.9797693Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:42.9797939Z 2025-03-14T05:12:42.9798368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:42.9798901Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:42.9799211Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:42.9799533Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:42.9799787Z 2025-03-14T05:12:42.9800229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:42.9800800Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:42.9801184Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:42.9801429Z 2025-03-14T05:12:42.9801915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:42.9802634Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:42.9802972Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:42.9803214Z 2025-03-14T05:12:42.9803614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:42.9804142Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:42.9804471Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:42.9804713Z 2025-03-14T05:12:42.9805113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:42.9805672Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:42.9806032Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:42.9806272Z 2025-03-14T05:12:42.9806709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:42.9807279Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:42.9807543Z 2025-03-14T05:12:42.9807978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:42.9808513Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:42.9808772Z 2025-03-14T05:12:42.9809234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:42.9809793Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:42.9810120Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:42.9810463Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:42.9810823Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:42.9811089Z 2025-03-14T05:12:42.9811539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:42.9812093Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:42.9812418Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:42.9812748Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:42.9813100Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:42.9813366Z 2025-03-14T05:12:42.9813803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:42.9814337Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:42.9814689Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:42.9815042Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:42.9815300Z 2025-03-14T05:12:42.9815735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:42.9816250Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:42.9816590Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:42.9816985Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:42.9817242Z 2025-03-14T05:12:42.9817647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:42.9818114Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:42.9818380Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:42.9818617Z 2025-03-14T05:12:42.9819014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:42.9819472Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:42.9819734Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:42.9819968Z 2025-03-14T05:12:42.9820363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:42.9820918Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:42.9821217Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:42.9821470Z 2025-03-14T05:12:42.9821874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:42.9822353Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:42.9822646Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:42.9822895Z 2025-03-14T05:12:42.9823330Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:42.9823916Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:42.9824330Z 2025-03-14T05:12:42.9824780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:42.9825368Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:42.9825676Z 2025-03-14T05:12:42.9826156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:42.9826791Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:42.9827207Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:42.9827510Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:42.9827848Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:42.9828194Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:42.9828464Z 2025-03-14T05:12:42.9828931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:42.9829787Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9830322Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:42.9830613Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:42.9830987Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9831346Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:42.9831601Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:42.9831832Z 2025-03-14T05:12:42.9832327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:42.9832952Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:12:42.9833291Z 2025-03-14T05:12:42.9833745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:42.9834358Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:42.9834727Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:42.9835061Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:42.9835374Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:42.9835701Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:42.9835972Z 2025-03-14T05:12:42.9836555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:42.9837279Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:42.9837634Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:42.9837983Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:42.9838337Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:42.9838642Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:42.9838893Z 2025-03-14T05:12:42.9839349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:42.9839886Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:42.9840126Z 2025-03-14T05:12:42.9840268Z 2025-03-14T05:12:42.9840365Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:42.9841198Z def forward(self, L_predictions_0_: "f32[3233, 81][81, 1]cpu", L_predictions_1_: "f32[3233, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:42.9842028Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:12:42.9842288Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:12:42.9842608Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9843020Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9843421Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9843821Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9844119Z 2025-03-14T05:12:42.9844510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:42.9844997Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:42.9845254Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:42.9845492Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:42.9845768Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:42.9846029Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:42.9846278Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:42.9846503Z 2025-03-14T05:12:42.9846876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:42.9847821Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9848551Z 2025-03-14T05:12:42.9849016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:42.9849591Z deltas: "f32[3233, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:12:42.9849877Z 2025-03-14T05:12:42.9850302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:42.9850846Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:42.9851138Z 2025-03-14T05:12:42.9851558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:42.9852081Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:42.9852404Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:42.9852740Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:42.9853018Z 2025-03-14T05:12:42.9853437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:42.9853966Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:42.9854269Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:42.9854598Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:42.9854876Z 2025-03-14T05:12:42.9855298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:42.9855817Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:42.9856111Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:42.9856370Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:42.9856615Z 2025-03-14T05:12:42.9857024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:42.9857540Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:42.9857830Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:42.9858099Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:42.9858351Z 2025-03-14T05:12:42.9858774Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:42.9859301Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:42.9859635Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:42.9859878Z 2025-03-14T05:12:42.9860274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:42.9860790Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:42.9861118Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:42.9861356Z 2025-03-14T05:12:42.9861752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:42.9862286Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:42.9862617Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:42.9862860Z 2025-03-14T05:12:42.9863262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:42.9863824Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:42.9864303Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:42.9864583Z 2025-03-14T05:12:42.9865064Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:42.9865672Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:42.9865952Z 2025-03-14T05:12:42.9866411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:42.9866951Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:42.9867213Z 2025-03-14T05:12:42.9867659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:42.9868214Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:42.9868542Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:42.9868883Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:42.9869243Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:42.9869534Z 2025-03-14T05:12:42.9870014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:42.9871150Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:42.9871535Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:42.9871877Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:42.9872234Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:42.9872560Z 2025-03-14T05:12:42.9873212Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:42.9873826Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:42.9874152Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:42.9874499Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:42.9874758Z 2025-03-14T05:12:42.9875191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:42.9875706Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:42.9876043Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:42.9876399Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:42.9876695Z 2025-03-14T05:12:42.9877113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:42.9877577Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:42.9877841Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:42.9878076Z 2025-03-14T05:12:42.9878495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:42.9878955Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:42.9879221Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:42.9879455Z 2025-03-14T05:12:42.9879846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:42.9880323Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:42.9880619Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:42.9880870Z 2025-03-14T05:12:42.9881261Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:42.9881904Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:42.9882196Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:42.9882447Z 2025-03-14T05:12:42.9882878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:42.9883455Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:42.9883751Z 2025-03-14T05:12:42.9884265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:42.9884864Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:42.9885156Z 2025-03-14T05:12:42.9885604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:42.9886221Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:42.9886590Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:42.9886883Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:42.9887188Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:42.9887508Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:42.9887774Z 2025-03-14T05:12:42.9888157Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:42.9888714Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9889062Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:42.9889300Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:42.9889663Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9890015Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:42.9890313Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:42.9890534Z 2025-03-14T05:12:42.9890958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:42.9891563Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:12:42.9892376Z 2025-03-14T05:12:42.9892957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:42.9894241Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:42.9894633Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:42.9894946Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:42.9895278Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:42.9895616Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:42.9895893Z 2025-03-14T05:12:42.9896480Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:42.9897220Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:42.9897584Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:42.9897936Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:42.9898296Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:42.9898610Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:42.9898913Z 2025-03-14T05:12:42.9899406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:42.9899957Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:42.9900211Z 2025-03-14T05:12:42.9900375Z 2025-03-14T05:12:42.9900472Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:42.9901331Z def forward(self, L_predictions_0_: "f32[3233, 81][81, 1]cpu", L_predictions_1_: "f32[3233, 320][320, 1]cpu", L_proposals_0_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", L_proposals_1_fields_proposal_boxes_tensor: "f32[1000, 4][4, 1]cpu", s0: "Sym(s0)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(1233 - s0)", L_proposals_3_fields_proposal_boxes_tensor: "f32[1233 - s0, 4][4, 1]cpu"): 2025-03-14T05:12:42.9902128Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:12:42.9902362Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:12:42.9902683Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9903086Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9903477Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9903873Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:12:42.9904231Z 2025-03-14T05:12:42.9904649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:42.9905146Z size = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:42.9905442Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:12:42.9905698Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:12:42.9905981Z size_1 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:12:42.9906249Z getitem_2: "Sym(1233 - s0)" = size_1[0] 2025-03-14T05:12:42.9906512Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:12:42.9906734Z 2025-03-14T05:12:42.9907132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:12:42.9908078Z proposal_boxes: "f32[3233, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0); l_proposals_0_fields_proposal_boxes_tensor = l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9908792Z 2025-03-14T05:12:42.9909255Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:12:42.9909838Z deltas: "f32[3233, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:12:42.9910110Z 2025-03-14T05:12:42.9910512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:12:42.9911041Z boxes: "f32[3233, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:12:42.9911319Z 2025-03-14T05:12:42.9911724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:12:42.9912226Z getitem_4: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:12:42.9912529Z getitem_5: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:42.9912863Z widths: "f32[3233][1]cpu" = getitem_4 - getitem_5; getitem_4 = getitem_5 = None 2025-03-14T05:12:42.9913140Z 2025-03-14T05:12:42.9913552Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:12:42.9914055Z getitem_6: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:12:42.9914354Z getitem_7: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:12:42.9914671Z heights: "f32[3233][1]cpu" = getitem_6 - getitem_7; getitem_6 = getitem_7 = None 2025-03-14T05:12:42.9914934Z 2025-03-14T05:12:42.9915337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:12:42.9915819Z getitem_8: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:12:42.9916080Z mul: "f32[3233][1]cpu" = 0.5 * widths 2025-03-14T05:12:42.9916340Z ctr_x: "f32[3233][1]cpu" = getitem_8 + mul; getitem_8 = mul = None 2025-03-14T05:12:42.9916580Z 2025-03-14T05:12:42.9916983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:12:42.9917487Z getitem_9: "f32[3233][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:12:42.9917774Z mul_1: "f32[3233][1]cpu" = 0.5 * heights 2025-03-14T05:12:42.9918044Z ctr_y: "f32[3233][1]cpu" = getitem_9 + mul_1; getitem_9 = mul_1 = None 2025-03-14T05:12:42.9918281Z 2025-03-14T05:12:42.9921346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:12:42.9921878Z getitem_10: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:12:42.9922214Z dx: "f32[3233, 80][80, 1]cpu" = getitem_10 / 10.0; getitem_10 = None 2025-03-14T05:12:42.9922457Z 2025-03-14T05:12:42.9922851Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:12:42.9923385Z getitem_11: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:12:42.9923715Z dy: "f32[3233, 80][80, 1]cpu" = getitem_11 / 10.0; getitem_11 = None 2025-03-14T05:12:42.9923954Z 2025-03-14T05:12:42.9924340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:12:42.9924877Z getitem_12: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:12:42.9925206Z dw: "f32[3233, 80][80, 1]cpu" = getitem_12 / 5.0; getitem_12 = None 2025-03-14T05:12:42.9925445Z 2025-03-14T05:12:42.9925833Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:12:42.9926368Z getitem_13: "f32[3233, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:12:42.9926712Z dh: "f32[3233, 80][80, 1]cpu" = getitem_13 / 5.0; getitem_13 = None 2025-03-14T05:12:42.9926944Z 2025-03-14T05:12:42.9927367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:12:42.9927897Z dw_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:12:42.9928154Z 2025-03-14T05:12:42.9928611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:12:42.9929147Z dh_1: "f32[3233, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:12:42.9929404Z 2025-03-14T05:12:42.9929842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:12:42.9930377Z getitem_14: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:12:42.9930696Z mul_2: "f32[3233, 80][80, 1]cpu" = dx * getitem_14; dx = getitem_14 = None 2025-03-14T05:12:42.9931031Z getitem_15: "f32[3233, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:12:42.9931378Z pred_ctr_x: "f32[3233, 80][80, 1]cpu" = mul_2 + getitem_15; mul_2 = getitem_15 = None 2025-03-14T05:12:42.9931632Z 2025-03-14T05:12:42.9932150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:12:42.9932702Z getitem_16: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:12:42.9933023Z mul_3: "f32[3233, 80][80, 1]cpu" = dy * getitem_16; dy = getitem_16 = None 2025-03-14T05:12:42.9933358Z getitem_17: "f32[3233, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:12:42.9933703Z pred_ctr_y: "f32[3233, 80][80, 1]cpu" = mul_3 + getitem_17; mul_3 = getitem_17 = None 2025-03-14T05:12:42.9933969Z 2025-03-14T05:12:42.9934393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:12:42.9934993Z exp: "f32[3233, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:12:42.9935322Z getitem_18: "f32[3233, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:12:42.9935668Z pred_w: "f32[3233, 80][80, 1]cpu" = exp * getitem_18; exp = getitem_18 = None 2025-03-14T05:12:42.9935921Z 2025-03-14T05:12:42.9936362Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:12:42.9936869Z exp_1: "f32[3233, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:12:42.9937197Z getitem_19: "f32[3233, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:12:42.9937550Z pred_h: "f32[3233, 80][80, 1]cpu" = exp_1 * getitem_19; exp_1 = getitem_19 = None 2025-03-14T05:12:42.9937807Z 2025-03-14T05:12:42.9938218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:12:42.9938692Z mul_6: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:12:42.9938960Z x1: "f32[3233, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:12:42.9939197Z 2025-03-14T05:12:42.9939598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:12:42.9940061Z mul_7: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:12:42.9940325Z y1: "f32[3233, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:12:42.9940563Z 2025-03-14T05:12:42.9940960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:12:42.9941440Z mul_8: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:12:42.9941756Z x2: "f32[3233, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:12:42.9942018Z 2025-03-14T05:12:42.9942408Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:12:42.9942877Z mul_9: "f32[3233, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:12:42.9943163Z y2: "f32[3233, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:12:42.9943409Z 2025-03-14T05:12:42.9943840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:12:42.9944600Z pred_boxes: "f32[3233, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:12:42.9944915Z 2025-03-14T05:12:42.9945379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:12:42.9945961Z predict_boxes: "f32[3233, 320][320, 1]cpu" = pred_boxes.reshape((3233, 320)); pred_boxes = None 2025-03-14T05:12:42.9946270Z 2025-03-14T05:12:42.9946748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:12:42.9947411Z split = predict_boxes.split([1000, 1000, getitem, getitem_2]); predict_boxes = getitem = getitem_2 = None 2025-03-14T05:12:42.9947802Z boxes_per_image: "f32[1000, 320][320, 1]cpu" = split[0] 2025-03-14T05:12:42.9948317Z getitem_21: "f32[1000, 320][320, 1]cpu" = split[1]; getitem_21 = None 2025-03-14T05:12:42.9948637Z getitem_22: "f32[s0, 320][320, 1]cpu" = split[2]; getitem_22 = None 2025-03-14T05:12:42.9948978Z getitem_23: "f32[1233 - s0, 320][320, 1]cpu" = split[3]; split = getitem_23 = None 2025-03-14T05:12:42.9949263Z 2025-03-14T05:12:42.9949669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:12:42.9950281Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9950657Z getitem_24: "Sym(s0)" = size_2[0] 2025-03-14T05:12:42.9950922Z getitem_25 = size_2[1]; size_2 = getitem_25 = None 2025-03-14T05:12:42.9951317Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:12:42.9951700Z getitem_26: "Sym(1233 - s0)" = size_3[0] 2025-03-14T05:12:42.9951972Z getitem_27 = size_3[1]; size_3 = getitem_27 = None 2025-03-14T05:12:42.9952211Z 2025-03-14T05:12:42.9952670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:12:42.9953315Z probs: "f32[3233, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:12:42.9953666Z 2025-03-14T05:12:42.9954151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:12:42.9954797Z split_1 = probs.split([1000, 1000, getitem_24, getitem_26], dim = 0); probs = getitem_24 = getitem_26 = None 2025-03-14T05:12:42.9955210Z scores_per_image: "f32[1000, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:12:42.9955510Z getitem_29: "f32[1000, 81][81, 1]cpu" = split_1[1]; getitem_29 = None 2025-03-14T05:12:42.9955824Z getitem_30: "f32[s0, 81][81, 1]cpu" = split_1[2]; getitem_30 = None 2025-03-14T05:12:42.9956178Z getitem_31: "f32[1233 - s0, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_31 = None 2025-03-14T05:12:42.9956455Z 2025-03-14T05:12:42.9957008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:42.9957707Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:12:42.9958051Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:42.9958391Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:12:42.9958734Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:42.9959031Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:42.9959273Z 2025-03-14T05:12:42.9959713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:42.9960228Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:42.9960464Z 2025-03-14T05:12:45.3794112Z 2025-03-14T05:12:45.3799144Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:45.3800991Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:12:45.3801625Z l_scores_0_ = L_scores_0_ 2025-03-14T05:12:45.3801877Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:12:45.3802135Z 2025-03-14T05:12:45.3802834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:45.3804088Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:12:45.3804490Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:45.3804900Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:12:45.3805363Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:45.3805666Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:45.3805915Z 2025-03-14T05:12:45.3806377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:45.3806919Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:45.3807165Z 2025-03-14T05:12:45.3807266Z 2025-03-14T05:12:45.3807360Z class GraphModule(torch.nn.Module): 2025-03-14T05:12:45.3807682Z def forward(self, L_scores_0_: "f32[1000, 81][81, 1]cpu", L_boxes_0_: "f32[1000, 320][320, 1]cpu"): 2025-03-14T05:12:45.3807989Z l_scores_0_ = L_scores_0_ 2025-03-14T05:12:45.3808208Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:12:45.3808409Z 2025-03-14T05:12:45.3808969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:12:45.3809637Z isfinite: "b8[1000, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:12:45.3809963Z all_1: "b8[1000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:12:45.3810292Z isfinite_1: "b8[1000, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:12:45.3810620Z all_2: "b8[1000][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:12:45.3810971Z valid_mask: "b8[1000][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:12:45.3811256Z 2025-03-14T05:12:45.3811700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:12:45.3812224Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:12:45.3812462Z 2025-03-14T05:13:17.9994496Z Compilation time (from dynamo_timed): 44.87914605 2025-03-14T05:13:17.9999013Z pass 2025-03-14T05:13:18.0001467Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:13:18.0002447Z TIMING: entire_frame_compile:44.87915 gc:0.05092 _recursive_pre_grad_passes:0.04783 async_compile.wait:15.81765 backend_compile:29.78361 _recursive_joint_graph_passes:0.17487 inductor_compile:19.31838 _recursive_post_grad_passes:0.06998 code_gen:18.25363 total_wall_time:44.87915 2025-03-14T05:13:18.0007259Z STATS: call_* op count: 766 | FakeTensorMode.__torch_dispatch__:15675 | FakeTensor.__torch_dispatch__:940 | ProxyTorchDispatchMode.__torch_dispatch__:3040 | attempt fast:161 | slow no contiguity match:24 | fast is_contiguous:133 | slow both tensors nontrivially broadcast:4 2025-03-14T05:13:18.0008320Z Dynamo produced 67 graphs covering 766 ops with 56 graph breaks (8 unique) 2025-03-14T05:13:24.1735969Z 2025-03-14T05:13:32.0109178Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:13:32.0109692Z loading model: 0it [00:07, ?it/s] 2025-03-14T05:13:32.0110114Z cpu eval detectron2_maskrcnn_r_50_fpn 2025-03-14T05:13:46.1411576Z WARNING:common:fp64 golden ref were not generated for detectron2_maskrcnn_r_50_fpn. Setting accuracy check to cosine 2025-03-14T05:13:46.1627961Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:13:57.2785794Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:14:07.4566928Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:14:18.6052158Z 2025-03-14T05:14:18.6052809Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:18.6133014Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:14:18.6199406Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:14:18.6199996Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6201091Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6202028Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6202921Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6203802Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6204673Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6205594Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6206574Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6207571Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6208506Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6209389Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6210304Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6211263Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6212176Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6213003Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6213784Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6214637Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6215498Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6216362Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6217172Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6217977Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.6218816Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6219709Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6220583Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6221455Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6222265Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6223078Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6223942Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6224920Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6225794Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6226633Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6227450Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6228345Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6229202Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6230036Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6230810Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6231621Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6232480Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6233320Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6234129Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6234909Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6235740Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6236629Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6237471Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6238277Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6239056Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6239864Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6240735Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6241569Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6242439Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6243216Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6244042Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6244905Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6245747Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6246558Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6247341Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6248146Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6249005Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6249861Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6250703Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6251481Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6252292Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6253151Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6253993Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6254810Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6255585Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6256444Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6257323Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6258175Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6258999Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6259805Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.6260662Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6261568Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6262450Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6263328Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6264270Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6265202Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6266180Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6267147Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6268066Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6268937Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6269855Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6270875Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6271846Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6272783Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6273667Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6274580Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6275507Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6276411Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6277327Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6278108Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6278938Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6279814Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6280650Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6281639Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6282433Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6283249Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6284110Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6284956Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6285818Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6286598Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6287428Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6288286Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6289130Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6289946Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6290725Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6291531Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6292811Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6293692Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6294511Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6295294Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6296109Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6296979Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6297827Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6298645Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6299454Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6300269Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6301155Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6301997Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6302812Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6303593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6304537Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6305458Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6306319Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6307186Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6308031Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6308896Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6309804Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6310694Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6311549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6312382Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6313244Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6314168Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6314983Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6315783Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6316549Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.6317368Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6318234Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6319080Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6319900Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6320691Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6321502Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6322350Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6323195Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6324020Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6324803Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6325596Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6326437Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6327270Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6328061Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6328844Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6329641Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6330513Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6331354Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6332172Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6332952Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6333770Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6334658Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6335528Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6336339Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6337117Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6337926Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6338785Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6339618Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6340426Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6341223Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6342034Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6342934Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6343777Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6344657Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6345441Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6346249Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6347122Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6347962Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6348797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6349592Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6350415Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6351260Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6352090Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6352884Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6353648Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6354435Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6355298Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6356145Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6356942Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6357700Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6358493Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6359332Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6360148Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6360956Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6361748Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6362562Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6363424Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6364264Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6365079Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6365859Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6366671Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6367529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6368389Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6369203Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6370008Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6370814Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6371674Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6372512Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6373322Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6374102Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6374911Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6375795Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6376624Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6377408Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6378163Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6378948Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6379786Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6380606Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6381416Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6382350Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6383160Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6384066Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6384992Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6385868Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6386646Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6387453Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6388311Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6389187Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6390019Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6390802Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6391614Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6393458Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6394365Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6395186Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6395990Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.6396844Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6397818Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6398715Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6399561Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6400334Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6401144Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6402008Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6402842Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6403647Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6404452Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6405289Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6406162Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6407004Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6407814Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6408595Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6409403Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6410262Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6411129Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6411937Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6412730Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.6413533Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6414389Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6415222Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6416031Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6416809Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.6417614Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6418484Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6419335Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6420150Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6420932Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.6421750Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.6422614Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.6423452Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.6424328Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.6425019Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:14:18.6425553Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:14:18.6426073Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:14:18.6426574Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:14:18.6427068Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:14:18.6427567Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:14:18.6428060Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:14:18.6428546Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:14:18.6429034Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:14:18.6429528Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:14:18.6430015Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:14:18.6430499Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:14:18.6430994Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:14:18.6431500Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:14:18.6432011Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:14:18.6432502Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:14:18.6433124Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:14:18.6433884Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:14:18.6434636Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:14:18.6435388Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:14:18.6436133Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:14:18.6436867Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:14:18.6437559Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:14:18.6438320Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:14:18.6439108Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:14:18.6439897Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:14:18.6440649Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:14:18.6441121Z 2025-03-14T05:14:18.6441527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6442403Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6443049Z 2025-03-14T05:14:18.6443418Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6445438Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6447277Z 2025-03-14T05:14:18.6447656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:14:18.6448132Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:14:18.6448394Z 2025-03-14T05:14:18.6448841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:14:18.6449486Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:14:18.6449843Z 2025-03-14T05:14:18.6450183Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6450994Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6451593Z 2025-03-14T05:14:18.6451970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6454125Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6456038Z 2025-03-14T05:14:18.6456420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6456908Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:14:18.6457167Z 2025-03-14T05:14:18.6457512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6458327Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6458944Z 2025-03-14T05:14:18.6459302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6461448Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6463381Z 2025-03-14T05:14:18.6463759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6464336Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:14:18.6464625Z 2025-03-14T05:14:18.6464994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6465887Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6466524Z 2025-03-14T05:14:18.6466887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6468995Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6470880Z 2025-03-14T05:14:18.6471220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6472033Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.6472650Z 2025-03-14T05:14:18.6473002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6475230Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6477346Z 2025-03-14T05:14:18.6477720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6478207Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:14:18.6478471Z 2025-03-14T05:14:18.6478845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6479335Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:14:18.6479607Z 2025-03-14T05:14:18.6479950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6480792Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6481398Z 2025-03-14T05:14:18.6481936Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6484192Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6486192Z 2025-03-14T05:14:18.6486587Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6487100Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:14:18.6487378Z 2025-03-14T05:14:18.6487739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6488627Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6489288Z 2025-03-14T05:14:18.6489663Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6491870Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6494149Z 2025-03-14T05:14:18.6494529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6495014Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:14:18.6495322Z 2025-03-14T05:14:18.6495662Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6496463Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6497081Z 2025-03-14T05:14:18.6497456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6499561Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6501450Z 2025-03-14T05:14:18.6501817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6502312Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:14:18.6502590Z 2025-03-14T05:14:18.6502975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6503487Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:14:18.6503767Z 2025-03-14T05:14:18.6504147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6505104Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6505755Z 2025-03-14T05:14:18.6506109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6508221Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6510134Z 2025-03-14T05:14:18.6510510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6510997Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:14:18.6511262Z 2025-03-14T05:14:18.6511620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6512428Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6513043Z 2025-03-14T05:14:18.6513397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6515514Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6517388Z 2025-03-14T05:14:18.6517763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6518246Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:14:18.6518513Z 2025-03-14T05:14:18.6518849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6519649Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6520262Z 2025-03-14T05:14:18.6520619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6522731Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6524619Z 2025-03-14T05:14:18.6524988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6525495Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:14:18.6525773Z 2025-03-14T05:14:18.6526147Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6526659Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:14:18.6526951Z 2025-03-14T05:14:18.6527316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6528127Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6528759Z 2025-03-14T05:14:18.6529115Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6531348Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6533339Z 2025-03-14T05:14:18.6533733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6534254Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:14:18.6534538Z 2025-03-14T05:14:18.6534898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6535748Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6536393Z 2025-03-14T05:14:18.6536768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6539010Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6540984Z 2025-03-14T05:14:18.6541378Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6541884Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:14:18.6542164Z 2025-03-14T05:14:18.6542531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6543425Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6544117Z 2025-03-14T05:14:18.6544592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6546918Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6548970Z 2025-03-14T05:14:18.6549329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6550183Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.6550841Z 2025-03-14T05:14:18.6551213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6553511Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6555834Z 2025-03-14T05:14:18.6556239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6556766Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:14:18.6557052Z 2025-03-14T05:14:18.6557446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6557972Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:14:18.6558261Z 2025-03-14T05:14:18.6558623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6559465Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6560098Z 2025-03-14T05:14:18.6560468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6562730Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6564741Z 2025-03-14T05:14:18.6565138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6565653Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:14:18.6565936Z 2025-03-14T05:14:18.6566295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6567142Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6567809Z 2025-03-14T05:14:18.6568192Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6570425Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6572417Z 2025-03-14T05:14:18.6572808Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6573319Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:14:18.6573600Z 2025-03-14T05:14:18.6573946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6574796Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6575464Z 2025-03-14T05:14:18.6575855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6578110Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6580106Z 2025-03-14T05:14:18.6580503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6581029Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:14:18.6581321Z 2025-03-14T05:14:18.6581848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6582441Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:14:18.6582729Z 2025-03-14T05:14:18.6583081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6583953Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6584653Z 2025-03-14T05:14:18.6585035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6587263Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6589213Z 2025-03-14T05:14:18.6589613Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6590125Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:14:18.6590437Z 2025-03-14T05:14:18.6590820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6591670Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6592345Z 2025-03-14T05:14:18.6593599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6595943Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6597981Z 2025-03-14T05:14:18.6598385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6598903Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:14:18.6599181Z 2025-03-14T05:14:18.6599539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6600412Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6601053Z 2025-03-14T05:14:18.6601421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6603515Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6605389Z 2025-03-14T05:14:18.6605772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6606292Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:14:18.6606575Z 2025-03-14T05:14:18.6606956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6607459Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:14:18.6607733Z 2025-03-14T05:14:18.6608073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6608873Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6609480Z 2025-03-14T05:14:18.6609831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6611940Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6613830Z 2025-03-14T05:14:18.6614226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6614716Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:14:18.6614983Z 2025-03-14T05:14:18.6615322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6616126Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6616741Z 2025-03-14T05:14:18.6617097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6619208Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6621089Z 2025-03-14T05:14:18.6621459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6621944Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:14:18.6622209Z 2025-03-14T05:14:18.6622546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6623342Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6623970Z 2025-03-14T05:14:18.6624431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6626773Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6628897Z 2025-03-14T05:14:18.6629301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6629855Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:14:18.6630164Z 2025-03-14T05:14:18.6630578Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6631123Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:14:18.6631428Z 2025-03-14T05:14:18.6631807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6632658Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6633251Z 2025-03-14T05:14:18.6633600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6635701Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6637567Z 2025-03-14T05:14:18.6637934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6638408Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:14:18.6638665Z 2025-03-14T05:14:18.6639003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6639792Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6640414Z 2025-03-14T05:14:18.6640767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6642858Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6644727Z 2025-03-14T05:14:18.6645103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6645578Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:14:18.6645830Z 2025-03-14T05:14:18.6646151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6646934Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6647518Z 2025-03-14T05:14:18.6648455Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6650530Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6652340Z 2025-03-14T05:14:18.6652676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6653453Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.6654049Z 2025-03-14T05:14:18.6654392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6656501Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6658529Z 2025-03-14T05:14:18.6658898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6659368Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:14:18.6659630Z 2025-03-14T05:14:18.6660000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6660477Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:14:18.6660738Z 2025-03-14T05:14:18.6661075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6661872Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6662471Z 2025-03-14T05:14:18.6662813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6665031Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6666979Z 2025-03-14T05:14:18.6667381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6667886Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:14:18.6668164Z 2025-03-14T05:14:18.6668526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6669400Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6670041Z 2025-03-14T05:14:18.6670432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6672658Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6674645Z 2025-03-14T05:14:18.6675019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6675497Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:14:18.6675764Z 2025-03-14T05:14:18.6676104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6676925Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6677562Z 2025-03-14T05:14:18.6677914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6679993Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6682080Z 2025-03-14T05:14:18.6682451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6682992Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:14:18.6683259Z 2025-03-14T05:14:18.6683632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6684123Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:14:18.6684389Z 2025-03-14T05:14:18.6684759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6685552Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6686149Z 2025-03-14T05:14:18.6686497Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6688561Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6690389Z 2025-03-14T05:14:18.6690814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6691304Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:14:18.6691559Z 2025-03-14T05:14:18.6691902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6692701Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6693308Z 2025-03-14T05:14:18.6693661Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6695732Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6697556Z 2025-03-14T05:14:18.6697925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6698397Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:14:18.6698667Z 2025-03-14T05:14:18.6698998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6699802Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6700408Z 2025-03-14T05:14:18.6700759Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6702863Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6704906Z 2025-03-14T05:14:18.6705316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6705825Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:14:18.6706099Z 2025-03-14T05:14:18.6706460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6706934Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:14:18.6707197Z 2025-03-14T05:14:18.6707535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6708317Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6708916Z 2025-03-14T05:14:18.6709266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6711372Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6713302Z 2025-03-14T05:14:18.6713681Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6714164Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:14:18.6714433Z 2025-03-14T05:14:18.6714780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6715584Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6716208Z 2025-03-14T05:14:18.6716567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6718701Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6720573Z 2025-03-14T05:14:18.6720934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6721399Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:14:18.6721649Z 2025-03-14T05:14:18.6721980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6722759Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6723346Z 2025-03-14T05:14:18.6723691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6725782Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6727606Z 2025-03-14T05:14:18.6727965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6728434Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:14:18.6728695Z 2025-03-14T05:14:18.6729054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6729533Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:14:18.6729797Z 2025-03-14T05:14:18.6730136Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6730947Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6731541Z 2025-03-14T05:14:18.6731914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6733967Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6735790Z 2025-03-14T05:14:18.6736156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6736623Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:14:18.6736878Z 2025-03-14T05:14:18.6737205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6737980Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6738585Z 2025-03-14T05:14:18.6738928Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6741013Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6742891Z 2025-03-14T05:14:18.6743270Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6743752Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:14:18.6744017Z 2025-03-14T05:14:18.6744443Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6745323Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6745979Z 2025-03-14T05:14:18.6746336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6748446Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6750347Z 2025-03-14T05:14:18.6750707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6751195Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:14:18.6751462Z 2025-03-14T05:14:18.6751859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6752355Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:14:18.6752621Z 2025-03-14T05:14:18.6752963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6753805Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6754400Z 2025-03-14T05:14:18.6754751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6756860Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6758712Z 2025-03-14T05:14:18.6759083Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6759577Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:14:18.6759850Z 2025-03-14T05:14:18.6760184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6760980Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6761584Z 2025-03-14T05:14:18.6761933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6764056Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6766014Z 2025-03-14T05:14:18.6766394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6766882Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:14:18.6767142Z 2025-03-14T05:14:18.6767494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6768318Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6768939Z 2025-03-14T05:14:18.6769300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6771440Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6773355Z 2025-03-14T05:14:18.6773750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6774268Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:14:18.6774540Z 2025-03-14T05:14:18.6774921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6775418Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:14:18.6775682Z 2025-03-14T05:14:18.6776019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6776807Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6777403Z 2025-03-14T05:14:18.6777756Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6779845Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6781903Z 2025-03-14T05:14:18.6782289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6782767Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:14:18.6783033Z 2025-03-14T05:14:18.6783377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6784207Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6784819Z 2025-03-14T05:14:18.6785173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6787327Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6789238Z 2025-03-14T05:14:18.6789612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6790091Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:14:18.6790356Z 2025-03-14T05:14:18.6790695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6791498Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6793158Z 2025-03-14T05:14:18.6793529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6795707Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6797647Z 2025-03-14T05:14:18.6797992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6798791Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.6799402Z 2025-03-14T05:14:18.6799755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6801940Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6804033Z 2025-03-14T05:14:18.6804404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6804884Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:14:18.6805145Z 2025-03-14T05:14:18.6805521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6806007Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:14:18.6806274Z 2025-03-14T05:14:18.6806614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6807405Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6807978Z 2025-03-14T05:14:18.6808323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6810400Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6812216Z 2025-03-14T05:14:18.6812577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6813041Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:14:18.6813293Z 2025-03-14T05:14:18.6813619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6814388Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6814967Z 2025-03-14T05:14:18.6817965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6820146Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6822043Z 2025-03-14T05:14:18.6822419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6822903Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:14:18.6823155Z 2025-03-14T05:14:18.6823494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6825658Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6826403Z 2025-03-14T05:14:18.6826758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6829147Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6831044Z 2025-03-14T05:14:18.6831426Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6831918Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:14:18.6832189Z 2025-03-14T05:14:18.6832559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6833043Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:14:18.6833305Z 2025-03-14T05:14:18.6833644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6834515Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.6835133Z 2025-03-14T05:14:18.6835487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6837590Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6839461Z 2025-03-14T05:14:18.6839828Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6840301Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:14:18.6840588Z 2025-03-14T05:14:18.6840918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6841694Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.6842277Z 2025-03-14T05:14:18.6842641Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6844703Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6846505Z 2025-03-14T05:14:18.6846870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6847338Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:14:18.6847633Z 2025-03-14T05:14:18.6847965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6848744Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.6849350Z 2025-03-14T05:14:18.6849720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.6851752Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.6853584Z 2025-03-14T05:14:18.6853948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.6854440Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:14:18.6854705Z 2025-03-14T05:14:18.6855062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.6855536Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:14:18.6855791Z 2025-03-14T05:14:18.6856129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6856990Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:14:18.6857655Z 2025-03-14T05:14:18.6857985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6858807Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:14:18.6859451Z 2025-03-14T05:14:18.6859950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.6860697Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:14:18.6861074Z 2025-03-14T05:14:18.6861406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6862274Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:14:18.6862933Z 2025-03-14T05:14:18.6863356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.6863934Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:14:18.6864318Z 2025-03-14T05:14:18.6864659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6865550Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:14:18.6866246Z 2025-03-14T05:14:18.6866743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.6867527Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:14:18.6867984Z 2025-03-14T05:14:18.6868327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6869225Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:14:18.6869909Z 2025-03-14T05:14:18.6870341Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.6870952Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:14:18.6871279Z 2025-03-14T05:14:18.6871615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6872492Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:14:18.6873179Z 2025-03-14T05:14:18.6873667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.6874455Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:14:18.6874899Z 2025-03-14T05:14:18.6875259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6876154Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:14:18.6876851Z 2025-03-14T05:14:18.6877283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.6877901Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:14:18.6878233Z 2025-03-14T05:14:18.6878573Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6879514Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:14:18.6880256Z 2025-03-14T05:14:18.6880700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:14:18.6881323Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:14:18.6881803Z 2025-03-14T05:14:18.6882327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6883018Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:14:18.6883290Z 2025-03-14T05:14:18.6883670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6884152Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:14:18.6884409Z 2025-03-14T05:14:18.6884923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6885547Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:14:18.6885821Z 2025-03-14T05:14:18.6886196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6886676Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:14:18.6886933Z 2025-03-14T05:14:18.6887379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.6887970Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:14:18.6888340Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:14:18.6888614Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:14:18.6888885Z 2025-03-14T05:14:18.6889298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.6889804Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:14:18.6890054Z 2025-03-14T05:14:18.6890463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.6890957Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:14:18.6891203Z 2025-03-14T05:14:18.6891667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.6892304Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:14:18.6892629Z 2025-03-14T05:14:18.6893125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.6893705Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:14:18.6894296Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:14:18.6894903Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:14:18.6895203Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:14:18.6895441Z 2025-03-14T05:14:18.6895945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6896574Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:14:18.6896838Z 2025-03-14T05:14:18.6897216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6897742Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:14:18.6898003Z 2025-03-14T05:14:18.6898510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6899124Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:14:18.6899387Z 2025-03-14T05:14:18.6899758Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6900230Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:14:18.6900487Z 2025-03-14T05:14:18.6900933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.6901551Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:14:18.6901900Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:14:18.6902174Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:14:18.6902433Z 2025-03-14T05:14:18.6902842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.6903348Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:14:18.6903600Z 2025-03-14T05:14:18.6903999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.6904577Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:14:18.6904837Z 2025-03-14T05:14:18.6905320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.6905975Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:14:18.6906305Z 2025-03-14T05:14:18.6906799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.6907381Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:14:18.6907974Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:14:18.6908579Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:14:18.6908874Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:14:18.6909104Z 2025-03-14T05:14:18.6909610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6910283Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:14:18.6910547Z 2025-03-14T05:14:18.6910924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6911400Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:14:18.6911659Z 2025-03-14T05:14:18.6912161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6912773Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:14:18.6913033Z 2025-03-14T05:14:18.6913404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6913876Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:14:18.6914132Z 2025-03-14T05:14:18.6914580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.6915225Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:14:18.6915568Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:14:18.6915851Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:14:18.6916087Z 2025-03-14T05:14:18.6916494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.6916994Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:14:18.6917235Z 2025-03-14T05:14:18.6917638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.6918131Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:14:18.6918373Z 2025-03-14T05:14:18.6918827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.6919455Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:14:18.6919781Z 2025-03-14T05:14:18.6920263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.6920837Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:14:18.6921419Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:14:18.6922012Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:14:18.6922310Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:14:18.6922545Z 2025-03-14T05:14:18.6923069Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6923673Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:14:18.6923930Z 2025-03-14T05:14:18.6924300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6924775Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:14:18.6925030Z 2025-03-14T05:14:18.6925530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6926136Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:14:18.6926397Z 2025-03-14T05:14:18.6926767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6927236Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:14:18.6927490Z 2025-03-14T05:14:18.6927954Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.6928556Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:14:18.6928897Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:14:18.6929182Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:14:18.6929416Z 2025-03-14T05:14:18.6929822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.6930316Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:14:18.6930559Z 2025-03-14T05:14:18.6930972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.6931462Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:14:18.6931699Z 2025-03-14T05:14:18.6932152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.6932778Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:14:18.6933097Z 2025-03-14T05:14:18.6933582Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.6934164Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:14:18.6934751Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:14:18.6935358Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:14:18.6935654Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:14:18.6935885Z 2025-03-14T05:14:18.6936411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6937022Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:18.6937284Z 2025-03-14T05:14:18.6937646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6938126Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:14:18.6938381Z 2025-03-14T05:14:18.6938889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.6939497Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:18.6939759Z 2025-03-14T05:14:18.6940131Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.6940606Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:14:18.6940860Z 2025-03-14T05:14:18.6941333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.6941939Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:14:18.6942300Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:14:18.6942565Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:14:18.6942802Z 2025-03-14T05:14:18.6943211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.6943706Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:14:18.6943951Z 2025-03-14T05:14:18.6944436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.6944954Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:14:18.6945202Z 2025-03-14T05:14:18.6945670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.6946307Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:14:18.6946639Z 2025-03-14T05:14:18.6947138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.6947725Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:14:18.6948346Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:14:18.6948933Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:14:18.6949226Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:14:18.6949459Z 2025-03-14T05:14:18.6949865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:18.6950352Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:14:18.6950669Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:14:18.6950976Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:14:18.6951282Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:14:18.6951580Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:14:18.6951827Z 2025-03-14T05:14:18.6952179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6952691Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:14:18.6952766Z 2025-03-14T05:14:18.6953046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.6953275Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:14:18.6953350Z 2025-03-14T05:14:18.6953737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.6954281Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.6954346Z 2025-03-14T05:14:18.6954720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.6955246Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:14:18.6955324Z 2025-03-14T05:14:18.6955579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6956074Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:14:18.6956138Z 2025-03-14T05:14:18.6956422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.6956637Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:14:18.6956712Z 2025-03-14T05:14:18.6957084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.6957616Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.6957690Z 2025-03-14T05:14:18.6958037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.6958556Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:14:18.6958625Z 2025-03-14T05:14:18.6958883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6959335Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:14:18.6959408Z 2025-03-14T05:14:18.6959667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.6959869Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:14:18.6959933Z 2025-03-14T05:14:18.6960302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.6960799Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.6960870Z 2025-03-14T05:14:18.6961220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.6961705Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:14:18.6961776Z 2025-03-14T05:14:18.6962019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6962480Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:14:18.6962544Z 2025-03-14T05:14:18.6962813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.6963008Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:14:18.6963079Z 2025-03-14T05:14:18.6963441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.6963947Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.6964010Z 2025-03-14T05:14:18.6964361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.6964852Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:14:18.6964917Z 2025-03-14T05:14:18.6965168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.6965897Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:14:18.6965974Z 2025-03-14T05:14:18.6966252Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.6966431Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:14:18.6966510Z 2025-03-14T05:14:18.6966876Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.6967693Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:14:18.6967769Z 2025-03-14T05:14:18.6968114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.6968892Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:14:18.6968965Z 2025-03-14T05:14:18.6969288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:14:18.6969474Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:14:18.6969615Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:14:18.6969779Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:14:18.6969953Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:14:18.6970112Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:14:18.6970248Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:14:18.6970398Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:14:18.6970530Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:14:18.6970678Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:14:18.6970806Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:14:18.6970878Z 2025-03-14T05:14:18.6971287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:14:18.6971468Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:14:18.6971653Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:14:18.6971845Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:14:18.6972014Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:14:18.6972197Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:14:18.6972375Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:14:18.6972521Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:14:18.6972688Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:14:18.6972850Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:14:18.6973002Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:14:18.6973156Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:14:18.6973329Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:14:18.6973464Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:14:18.6973627Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:14:18.6973785Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:14:18.6973857Z 2025-03-14T05:14:18.6974246Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.6974473Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:14:18.6974537Z 2025-03-14T05:14:18.6974966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.6975144Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:14:18.6975289Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:14:18.6975434Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:14:18.6975497Z 2025-03-14T05:14:18.6975867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.6976034Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:14:18.6976104Z 2025-03-14T05:14:18.6976406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.6976550Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:14:18.6976615Z 2025-03-14T05:14:18.6976923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.6977052Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:18.6977185Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:18.6977348Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:18.6977417Z 2025-03-14T05:14:18.6977728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.6977874Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:18.6977992Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:18.6978151Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:14:18.6978215Z 2025-03-14T05:14:18.6978519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.6978642Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:18.6978742Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:14:18.6978868Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:14:18.6978941Z 2025-03-14T05:14:18.6979245Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.6979396Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:18.6979487Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:14:18.6979624Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:14:18.6979688Z 2025-03-14T05:14:18.6980021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.6980196Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.6980323Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:14:18.6980387Z 2025-03-14T05:14:18.6980691Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.6980842Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.6980981Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:14:18.6981045Z 2025-03-14T05:14:18.6981344Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.6981677Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.6981807Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:14:18.6981872Z 2025-03-14T05:14:18.6982175Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.6982368Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:18.6982481Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:14:18.6982554Z 2025-03-14T05:14:18.6982882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.6983030Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:18.6983095Z 2025-03-14T05:14:18.6983473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.6983608Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:18.6983701Z 2025-03-14T05:14:18.6984034Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.6984233Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:18.6984370Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:14:18.6984534Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:18.6984676Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:14:18.6984756Z 2025-03-14T05:14:18.6985108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.6985261Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:18.6985396Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:14:18.6985554Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:18.6985689Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:14:18.6985765Z 2025-03-14T05:14:18.6986093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.6986252Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:18.6986414Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:18.6986555Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:14:18.6986622Z 2025-03-14T05:14:18.6986964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.6987106Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:18.6987283Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:18.6987419Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:14:18.6987495Z 2025-03-14T05:14:18.6987812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.6987921Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:18.6988042Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:18.6988117Z 2025-03-14T05:14:18.6988427Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.6988534Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:18.6988651Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:18.6988727Z 2025-03-14T05:14:18.6989028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.6989170Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:18.6989300Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:18.6989375Z 2025-03-14T05:14:18.6989676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.6989813Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:18.6989940Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:18.6990012Z 2025-03-14T05:14:18.6990358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.6990548Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:18.6990622Z 2025-03-14T05:14:18.6990958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.6991129Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:14:18.6991195Z 2025-03-14T05:14:18.6991588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.6991764Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:14:18.6991837Z 2025-03-14T05:14:18.6992724Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.6993006Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:14:18.6993074Z 2025-03-14T05:14:18.6993521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.6993693Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:14:18.6993856Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:14:18.6993997Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:14:18.6994072Z 2025-03-14T05:14:18.6994445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.6994626Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:14:18.6994694Z 2025-03-14T05:14:18.6995012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.6995160Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:14:18.6995234Z 2025-03-14T05:14:18.6995543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.6995686Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:14:18.6995815Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:18.6996014Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:14:18.6996081Z 2025-03-14T05:14:18.6996404Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.6996545Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:14:18.6996678Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:14:18.6996832Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:14:18.6996908Z 2025-03-14T05:14:18.6997220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.6997355Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:18.6997453Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:14:18.6997597Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:14:18.6997665Z 2025-03-14T05:14:18.6997990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.6998142Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:14:18.6998247Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:14:18.6998378Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:14:18.6998451Z 2025-03-14T05:14:18.6998767Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.6998943Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.6999075Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:14:18.6999141Z 2025-03-14T05:14:18.6999441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.6999606Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.6999727Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:14:18.6999789Z 2025-03-14T05:14:18.7000100Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7000246Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7000365Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:14:18.7000428Z 2025-03-14T05:14:18.7000728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7000913Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:14:18.7001031Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:14:18.7001093Z 2025-03-14T05:14:18.7001422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7001561Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:14:18.7001635Z 2025-03-14T05:14:18.7001978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7002123Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:14:18.7002201Z 2025-03-14T05:14:18.7002540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7002677Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:14:18.7002809Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:14:18.7002961Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:14:18.7003112Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:14:18.7003176Z 2025-03-14T05:14:18.7003519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7003656Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:14:18.7003786Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:14:18.7003944Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:14:18.7004082Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:14:18.7004154Z 2025-03-14T05:14:18.7004473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7004613Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:14:18.7004771Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:14:18.7004911Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:14:18.7004975Z 2025-03-14T05:14:18.7005319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7005430Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:14:18.7005601Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:14:18.7005732Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:14:18.7005803Z 2025-03-14T05:14:18.7006105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7006208Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:14:18.7006326Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:14:18.7006395Z 2025-03-14T05:14:18.7006695Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7006798Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:14:18.7006912Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:14:18.7006983Z 2025-03-14T05:14:18.7007278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7007416Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:14:18.7007547Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:14:18.7007635Z 2025-03-14T05:14:18.7007932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7008056Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:14:18.7008186Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:14:18.7008261Z 2025-03-14T05:14:18.7008595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7008798Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:14:18.7008864Z 2025-03-14T05:14:18.7009198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7009365Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:14:18.7009441Z 2025-03-14T05:14:18.7009814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7010021Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:14:18.7010088Z 2025-03-14T05:14:18.7010499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7010703Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:14:18.7010778Z 2025-03-14T05:14:18.7011208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7011368Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:14:18.7011524Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:14:18.7011658Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:14:18.7011730Z 2025-03-14T05:14:18.7012096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7012267Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:14:18.7012331Z 2025-03-14T05:14:18.7012644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7012786Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:14:18.7012856Z 2025-03-14T05:14:18.7013163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7013296Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7013435Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7013586Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:14:18.7013674Z 2025-03-14T05:14:18.7013992Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7014114Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7014236Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7014382Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:14:18.7014454Z 2025-03-14T05:14:18.7014751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7014878Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7014970Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:14:18.7015105Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:14:18.7015168Z 2025-03-14T05:14:18.7015476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7015622Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:14:18.7015721Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:14:18.7015846Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:14:18.7015916Z 2025-03-14T05:14:18.7016230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7016387Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7016499Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:14:18.7016571Z 2025-03-14T05:14:18.7016868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7017045Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7017156Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:14:18.7017228Z 2025-03-14T05:14:18.7017519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7017673Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7017790Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:14:18.7017856Z 2025-03-14T05:14:18.7018156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7018334Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:14:18.7018449Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:14:18.7018512Z 2025-03-14T05:14:18.7018848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7019005Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:14:18.7019079Z 2025-03-14T05:14:18.7019412Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7019570Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:14:18.7019635Z 2025-03-14T05:14:18.7019994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7020128Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:14:18.7020263Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:14:18.7020417Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:14:18.7020570Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:14:18.7020635Z 2025-03-14T05:14:18.7020989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7021128Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:14:18.7021258Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:14:18.7021407Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:14:18.7021553Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:14:18.7021619Z 2025-03-14T05:14:18.7021975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7022092Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:14:18.7022266Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:14:18.7022400Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:14:18.7022474Z 2025-03-14T05:14:18.7022823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7022946Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:14:18.7023114Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:14:18.7023257Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:14:18.7023322Z 2025-03-14T05:14:18.7023640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7023744Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:14:18.7023867Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:14:18.7023933Z 2025-03-14T05:14:18.7024325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7024432Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:14:18.7024561Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:14:18.7024628Z 2025-03-14T05:14:18.7024970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7025094Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:14:18.7025255Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:14:18.7025325Z 2025-03-14T05:14:18.7025658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7025784Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:14:18.7025913Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:14:18.7025989Z 2025-03-14T05:14:18.7026339Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7026542Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:14:18.7026609Z 2025-03-14T05:14:18.7026953Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7027116Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:14:18.7027190Z 2025-03-14T05:14:18.7027569Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7027752Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:14:18.7027873Z 2025-03-14T05:14:18.7028279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7028484Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:14:18.7028557Z 2025-03-14T05:14:18.7029003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7029161Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:14:18.7029310Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:14:18.7029456Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:14:18.7029525Z 2025-03-14T05:14:18.7029911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7030081Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:14:18.7030156Z 2025-03-14T05:14:18.7030472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7030626Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:14:18.7030691Z 2025-03-14T05:14:18.7031016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7031168Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7031304Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7031453Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:14:18.7031544Z 2025-03-14T05:14:18.7031860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7031993Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7032116Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7032274Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:14:18.7032340Z 2025-03-14T05:14:18.7032659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7032792Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7032885Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:14:18.7033022Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:14:18.7033087Z 2025-03-14T05:14:18.7033405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7033552Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:14:18.7033652Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:14:18.7033783Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:14:18.7033872Z 2025-03-14T05:14:18.7034184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7034347Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7034462Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:14:18.7034535Z 2025-03-14T05:14:18.7034853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7035011Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7035121Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:14:18.7035196Z 2025-03-14T05:14:18.7035490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7035645Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7035757Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:14:18.7035830Z 2025-03-14T05:14:18.7036125Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7036318Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:14:18.7036428Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:14:18.7036504Z 2025-03-14T05:14:18.7036834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7037006Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:14:18.7037074Z 2025-03-14T05:14:18.7037410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7037564Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:14:18.7037637Z 2025-03-14T05:14:18.7037977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7038121Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:14:18.7038248Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:14:18.7038411Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:14:18.7038558Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:14:18.7038624Z 2025-03-14T05:14:18.7038971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7039109Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:14:18.7039240Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:14:18.7039391Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:14:18.7039539Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:14:18.7039626Z 2025-03-14T05:14:18.7039963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7040079Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:14:18.7040249Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:14:18.7040383Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:14:18.7040470Z 2025-03-14T05:14:18.7040802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7040923Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:14:18.7041088Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:14:18.7041231Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:14:18.7041298Z 2025-03-14T05:14:18.7041612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7041713Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:14:18.7041838Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:14:18.7041905Z 2025-03-14T05:14:18.7042218Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7042313Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:14:18.7042436Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:14:18.7042504Z 2025-03-14T05:14:18.7042832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7042949Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:14:18.7043103Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:14:18.7043171Z 2025-03-14T05:14:18.7043485Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7043602Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:14:18.7043741Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:14:18.7043808Z 2025-03-14T05:14:18.7044161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7044362Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:14:18.7044442Z 2025-03-14T05:14:18.7044766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7044933Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:14:18.7045000Z 2025-03-14T05:14:18.7045385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7045559Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:14:18.7045649Z 2025-03-14T05:14:18.7046045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7046261Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:14:18.7046334Z 2025-03-14T05:14:18.7046775Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7046931Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:14:18.7047079Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:14:18.7047222Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:14:18.7047288Z 2025-03-14T05:14:18.7047668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7047833Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:14:18.7047906Z 2025-03-14T05:14:18.7048216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7048362Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:14:18.7048428Z 2025-03-14T05:14:18.7048760Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7048890Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7049021Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7049182Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:14:18.7049254Z 2025-03-14T05:14:18.7049571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7049701Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7049818Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7049981Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:14:18.7050050Z 2025-03-14T05:14:18.7050364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7050485Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7050582Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:14:18.7050712Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:14:18.7050785Z 2025-03-14T05:14:18.7051092Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7051246Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:14:18.7051339Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:14:18.7051473Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:14:18.7051558Z 2025-03-14T05:14:18.7051870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7052026Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7052148Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:14:18.7052214Z 2025-03-14T05:14:18.7052959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7053111Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7053231Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:14:18.7053299Z 2025-03-14T05:14:18.7053608Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7053764Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7053875Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:14:18.7053949Z 2025-03-14T05:14:18.7054251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7054439Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:14:18.7054548Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:14:18.7054622Z 2025-03-14T05:14:18.7054972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7055121Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:14:18.7055186Z 2025-03-14T05:14:18.7055532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7055667Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:14:18.7055744Z 2025-03-14T05:14:18.7056081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7056225Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:14:18.7056350Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:14:18.7056512Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:14:18.7056647Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:14:18.7056720Z 2025-03-14T05:14:18.7057062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7057204Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:14:18.7057324Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:14:18.7057482Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:14:18.7057616Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:14:18.7057703Z 2025-03-14T05:14:18.7058036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7058160Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:14:18.7058319Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:14:18.7058497Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:14:18.7058564Z 2025-03-14T05:14:18.7058903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7059016Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:14:18.7059192Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:14:18.7059323Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:14:18.7059397Z 2025-03-14T05:14:18.7059704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7059810Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:14:18.7059928Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:14:18.7060004Z 2025-03-14T05:14:18.7060308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7060409Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:14:18.7060521Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:14:18.7060597Z 2025-03-14T05:14:18.7060914Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7061053Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:14:18.7061190Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:14:18.7061255Z 2025-03-14T05:14:18.7061566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7061679Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:14:18.7061812Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:14:18.7061878Z 2025-03-14T05:14:18.7062231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7062416Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:14:18.7062490Z 2025-03-14T05:14:18.7062820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7062986Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:14:18.7063051Z 2025-03-14T05:14:18.7063437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7063625Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:14:18.7063697Z 2025-03-14T05:14:18.7064247Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:14:18.7064409Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:14:18.7064478Z 2025-03-14T05:14:18.7064807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7064953Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:14:18.7065028Z 2025-03-14T05:14:18.7065473Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7065600Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:14:18.7065705Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:14:18.7065830Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:14:18.7065896Z 2025-03-14T05:14:18.7066359Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7066493Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7066728Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:14:18.7066796Z 2025-03-14T05:14:18.7067279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7067464Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7067539Z 2025-03-14T05:14:18.7067839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7067971Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:14:18.7068038Z 2025-03-14T05:14:18.7068478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7068611Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:14:18.7068723Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:14:18.7068854Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:14:18.7068923Z 2025-03-14T05:14:18.7069389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7069525Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7069780Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:14:18.7090634Z 2025-03-14T05:14:18.7091345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7091693Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7091792Z 2025-03-14T05:14:18.7092139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7092328Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:14:18.7092431Z 2025-03-14T05:14:18.7092890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7093026Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:14:18.7093151Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:14:18.7093298Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:14:18.7093370Z 2025-03-14T05:14:18.7093872Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7094030Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7094304Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:14:18.7094375Z 2025-03-14T05:14:18.7094902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7095087Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7095184Z 2025-03-14T05:14:18.7095532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7095682Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:14:18.7095754Z 2025-03-14T05:14:18.7096207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7096325Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:14:18.7096444Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:14:18.7096569Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:14:18.7096643Z 2025-03-14T05:14:18.7097101Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7097251Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7097493Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:14:18.7097573Z 2025-03-14T05:14:18.7098032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7098220Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7098295Z 2025-03-14T05:14:18.7098601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7098742Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:14:18.7098813Z 2025-03-14T05:14:18.7099278Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7099398Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:14:18.7099516Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:14:18.7099635Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:14:18.7099713Z 2025-03-14T05:14:18.7100171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7100350Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:14:18.7100586Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:14:18.7100663Z 2025-03-14T05:14:18.7101120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7101298Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7101384Z 2025-03-14T05:14:18.7101693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7101836Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:14:18.7101913Z 2025-03-14T05:14:18.7102198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.7102586Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:14:18.7102654Z 2025-03-14T05:14:18.7102946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.7103412Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:14:18.7103491Z 2025-03-14T05:14:18.7103778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.7103987Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:14:18.7104063Z 2025-03-14T05:14:18.7104551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:14:18.7104737Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:14:18.7104806Z 2025-03-14T05:14:18.7105124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:18.7105284Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:14:18.7105363Z 2025-03-14T05:14:18.7105776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:14:18.7105928Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:14:18.7105998Z 2025-03-14T05:14:18.7106513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:14:18.7106662Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:14:18.7106801Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:18.7106964Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:14:18.7107112Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:14:18.7107182Z 2025-03-14T05:14:18.7107572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:14:18.7107696Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:14:18.7107773Z 2025-03-14T05:14:18.7108361Z 2025-03-14T05:14:18.7108463Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:18.7173825Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:14:18.7174437Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:14:18.7174880Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7175369Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7175866Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7176338Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7176781Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7177212Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7177680Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7178185Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7178653Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7179510Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7179964Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7180485Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7181035Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7181711Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7182173Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7182620Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7183134Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7183696Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7184156Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7184685Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7185182Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7185708Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7186203Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7186687Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7187154Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7187559Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7188059Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7188519Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7189004Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7189433Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7189849Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7190319Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7190772Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7191211Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7191656Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7192081Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7192519Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7192987Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7193434Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7193862Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7194268Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7194712Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7195188Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7195610Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7196051Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7196435Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7196873Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7197327Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7197747Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7198169Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7198567Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7199022Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7199498Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7199933Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7200348Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7200729Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7201189Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7201640Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7202053Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7202499Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7202899Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7203376Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7203819Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7204260Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7204672Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7205057Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7205505Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7205960Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7206380Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7206806Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7207210Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7207664Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7208126Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7208567Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7208987Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7209367Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7209821Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7210283Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7210697Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7211126Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7211515Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7211964Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7212409Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7212843Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7213259Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7213654Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7214102Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7214546Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7214966Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7215383Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7215760Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7216205Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7216659Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7217082Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7217506Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7217886Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7218333Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7218769Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7219195Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7219598Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7220001Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7220448Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7220903Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7221323Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7221732Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7222119Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7222560Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7223004Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7223424Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7223850Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7224369Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7224918Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7225438Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7225865Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7226319Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7226746Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7227230Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7227744Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7228212Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7228670Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7229081Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7229572Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7230064Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7230529Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7230978Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7231414Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7231899Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7232401Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7232856Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7233310Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7233721Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7234207Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7234639Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7235081Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7235495Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7235909Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7236369Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7236816Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7237250Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7237674Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7238055Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7238501Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7238957Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7239378Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7239797Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7240184Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7240626Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7241067Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7241488Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7241888Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7242291Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7242731Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7243193Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7243603Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7244017Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7244399Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7244843Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7245285Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7245718Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7246129Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7246526Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7246978Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7247421Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7247837Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7248254Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7248634Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7249105Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7249544Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7249988Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7250410Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7250787Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7251234Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7251670Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7252094Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7252500Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7252902Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7253356Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7253811Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7254233Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7254642Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7255028Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7255487Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7255927Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7256363Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7256768Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7257172Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7257613Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7258063Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7258475Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7258889Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7259274Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7259715Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7260169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7260597Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7261011Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7261394Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7261842Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7262286Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7262702Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7263116Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7263513Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7263975Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7264473Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7264895Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7265313Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7265692Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7266146Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7266582Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7267030Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7267445Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7267877Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7268327Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7268762Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7269183Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7269597Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7269978Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7270444Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7270880Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7271313Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7271715Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7272100Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7272541Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7272985Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7273407Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7273811Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7274221Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7274663Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7275122Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7275537Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7275953Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7276352Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7276804Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7277264Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7277720Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7278172Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7278564Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7279016Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7279479Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7279902Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7280316Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7280695Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7281177Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7281831Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7282305Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7282721Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7283109Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7283564Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7283974Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7284373Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7284791Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7285163Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7285616Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7286017Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7286401Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7286773Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7287131Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7287533Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7287939Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7288359Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7288734Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7289101Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7289508Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7289919Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7290311Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7290686Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7290925Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:14:18.7291145Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:14:18.7291389Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:14:18.7291601Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:14:18.7291845Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:14:18.7292059Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:14:18.7292282Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:14:18.7292489Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:14:18.7292724Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:14:18.7292935Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:14:18.7293162Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:14:18.7293368Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:14:18.7293596Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:14:18.7293807Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:14:18.7294033Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:14:18.7294273Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:14:18.7294628Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:14:18.7294988Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:14:18.7295352Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:14:18.7295707Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:14:18.7296052Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:14:18.7296381Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:14:18.7296696Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:14:18.7297068Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:14:18.7297437Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:14:18.7297808Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:14:18.7298169Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:14:18.7298237Z 2025-03-14T05:14:18.7298535Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7299082Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7299163Z 2025-03-14T05:14:18.7299444Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7301179Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7301273Z 2025-03-14T05:14:18.7301567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:14:18.7301715Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:14:18.7301779Z 2025-03-14T05:14:18.7302162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:14:18.7302399Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:14:18.7302473Z 2025-03-14T05:14:18.7302729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7303217Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7303283Z 2025-03-14T05:14:18.7303560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7305539Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7305645Z 2025-03-14T05:14:18.7305976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7306124Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:14:18.7306214Z 2025-03-14T05:14:18.7306468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7306969Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7307044Z 2025-03-14T05:14:18.7307310Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7309131Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7309226Z 2025-03-14T05:14:18.7309514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7309666Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:14:18.7309733Z 2025-03-14T05:14:18.7309989Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7310494Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7310568Z 2025-03-14T05:14:18.7310831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7312622Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7312711Z 2025-03-14T05:14:18.7312967Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7313472Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7313541Z 2025-03-14T05:14:18.7313816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7315668Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7315752Z 2025-03-14T05:14:18.7316044Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7316192Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:14:18.7316266Z 2025-03-14T05:14:18.7316555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7316713Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:14:18.7316780Z 2025-03-14T05:14:18.7317039Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7317525Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7317597Z 2025-03-14T05:14:18.7317879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7319645Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7319737Z 2025-03-14T05:14:18.7320026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7320177Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:14:18.7320244Z 2025-03-14T05:14:18.7320499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7320996Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7321080Z 2025-03-14T05:14:18.7321357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7323137Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7323214Z 2025-03-14T05:14:18.7323507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7323659Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:14:18.7323732Z 2025-03-14T05:14:18.7323974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7324471Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7324537Z 2025-03-14T05:14:18.7324809Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7326594Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7326673Z 2025-03-14T05:14:18.7326960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7327114Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:14:18.7327187Z 2025-03-14T05:14:18.7327467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7327625Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:14:18.7327707Z 2025-03-14T05:14:18.7327969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7328449Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7328524Z 2025-03-14T05:14:18.7328804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7330564Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7330639Z 2025-03-14T05:14:18.7330923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7331096Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:14:18.7331163Z 2025-03-14T05:14:18.7331421Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7331921Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7331997Z 2025-03-14T05:14:18.7332262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7334040Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7334132Z 2025-03-14T05:14:18.7334414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7334578Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:14:18.7334642Z 2025-03-14T05:14:18.7334896Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7335407Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7335473Z 2025-03-14T05:14:18.7335739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7337513Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7337590Z 2025-03-14T05:14:18.7337889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7338045Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:14:18.7338130Z 2025-03-14T05:14:18.7338410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7338571Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:14:18.7338637Z 2025-03-14T05:14:18.7338892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7339374Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7339447Z 2025-03-14T05:14:18.7339706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7341546Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7341644Z 2025-03-14T05:14:18.7341959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7342133Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:14:18.7342202Z 2025-03-14T05:14:18.7342483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7343003Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7343081Z 2025-03-14T05:14:18.7343367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7345379Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7345488Z 2025-03-14T05:14:18.7345800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7345960Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:14:18.7346028Z 2025-03-14T05:14:18.7346305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7346797Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7346873Z 2025-03-14T05:14:18.7347132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7348906Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7349658Z 2025-03-14T05:14:18.7349911Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7350415Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7350488Z 2025-03-14T05:14:18.7350750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7352605Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7352691Z 2025-03-14T05:14:18.7352974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7353135Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:14:18.7353201Z 2025-03-14T05:14:18.7353495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7353648Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:14:18.7353723Z 2025-03-14T05:14:18.7353972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7354472Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7354538Z 2025-03-14T05:14:18.7354812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7356608Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7356709Z 2025-03-14T05:14:18.7357000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7357150Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:14:18.7357225Z 2025-03-14T05:14:18.7357471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7357972Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7358038Z 2025-03-14T05:14:18.7358314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7360129Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7360221Z 2025-03-14T05:14:18.7360523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7360668Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:14:18.7360744Z 2025-03-14T05:14:18.7360999Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7361503Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7361569Z 2025-03-14T05:14:18.7361846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7363648Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7363717Z 2025-03-14T05:14:18.7364006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7364161Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:14:18.7364235Z 2025-03-14T05:14:18.7364513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7364674Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:14:18.7364740Z 2025-03-14T05:14:18.7364995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7365506Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7365588Z 2025-03-14T05:14:18.7365859Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7367657Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7367733Z 2025-03-14T05:14:18.7368027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7368169Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:14:18.7368240Z 2025-03-14T05:14:18.7368488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7368996Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7369062Z 2025-03-14T05:14:18.7369332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7371109Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7371189Z 2025-03-14T05:14:18.7371479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7371621Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:14:18.7371694Z 2025-03-14T05:14:18.7371958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7372462Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7372541Z 2025-03-14T05:14:18.7372817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7374612Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7374681Z 2025-03-14T05:14:18.7374970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7375125Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:14:18.7375257Z 2025-03-14T05:14:18.7375543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7375704Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:14:18.7375775Z 2025-03-14T05:14:18.7376033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7376544Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7376617Z 2025-03-14T05:14:18.7376894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7378704Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7378781Z 2025-03-14T05:14:18.7379067Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7379230Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:14:18.7379295Z 2025-03-14T05:14:18.7379558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7380059Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7380125Z 2025-03-14T05:14:18.7380400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7382392Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7382529Z 2025-03-14T05:14:18.7382825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7382966Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:14:18.7383044Z 2025-03-14T05:14:18.7383318Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7383818Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7383887Z 2025-03-14T05:14:18.7384156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7386039Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7386140Z 2025-03-14T05:14:18.7386429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7386584Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:14:18.7386657Z 2025-03-14T05:14:18.7386939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7387094Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:14:18.7387161Z 2025-03-14T05:14:18.7387419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7387909Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7387991Z 2025-03-14T05:14:18.7388283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7390163Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7390257Z 2025-03-14T05:14:18.7390561Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7390720Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:14:18.7390789Z 2025-03-14T05:14:18.7391066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7391588Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7391672Z 2025-03-14T05:14:18.7391960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7393870Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7393967Z 2025-03-14T05:14:18.7394267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7394421Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:14:18.7394490Z 2025-03-14T05:14:18.7394761Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7395287Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7395355Z 2025-03-14T05:14:18.7395636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7397494Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7397571Z 2025-03-14T05:14:18.7397830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7398317Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7398392Z 2025-03-14T05:14:18.7398656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7400523Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7400614Z 2025-03-14T05:14:18.7400894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7401043Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:14:18.7401111Z 2025-03-14T05:14:18.7401401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7401546Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:14:18.7401619Z 2025-03-14T05:14:18.7401871Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7402348Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7402434Z 2025-03-14T05:14:18.7402706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7404493Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7404562Z 2025-03-14T05:14:18.7404855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7404992Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:14:18.7405067Z 2025-03-14T05:14:18.7405319Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7405809Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7405879Z 2025-03-14T05:14:18.7406162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7407937Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7408031Z 2025-03-14T05:14:18.7408326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7408459Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:14:18.7408534Z 2025-03-14T05:14:18.7408784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7409276Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7409391Z 2025-03-14T05:14:18.7409652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7411433Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7411511Z 2025-03-14T05:14:18.7411786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7411945Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:14:18.7412010Z 2025-03-14T05:14:18.7412297Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7412439Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:14:18.7412512Z 2025-03-14T05:14:18.7412773Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7413256Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7413336Z 2025-03-14T05:14:18.7413611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7415374Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7415451Z 2025-03-14T05:14:18.7415743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7415895Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:14:18.7415968Z 2025-03-14T05:14:18.7416215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7416714Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7416782Z 2025-03-14T05:14:18.7417058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7418834Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7418905Z 2025-03-14T05:14:18.7419198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7419352Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:14:18.7419428Z 2025-03-14T05:14:18.7419678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7420196Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7420262Z 2025-03-14T05:14:18.7420532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7422304Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7422390Z 2025-03-14T05:14:18.7422683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7422829Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:14:18.7422905Z 2025-03-14T05:14:18.7423187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7423349Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:14:18.7423414Z 2025-03-14T05:14:18.7423670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7424161Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7424297Z 2025-03-14T05:14:18.7424597Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7426489Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7426588Z 2025-03-14T05:14:18.7426905Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7427046Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:14:18.7427124Z 2025-03-14T05:14:18.7427389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7428899Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7428998Z 2025-03-14T05:14:18.7429299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7431189Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7431304Z 2025-03-14T05:14:18.7431638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7431782Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:14:18.7431859Z 2025-03-14T05:14:18.7432120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7432642Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7432712Z 2025-03-14T05:14:18.7432997Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7434893Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7434980Z 2025-03-14T05:14:18.7435288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7435441Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:14:18.7435521Z 2025-03-14T05:14:18.7435820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7435978Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:14:18.7436050Z 2025-03-14T05:14:18.7436323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7436800Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7436874Z 2025-03-14T05:14:18.7437133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7438928Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7439006Z 2025-03-14T05:14:18.7439288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7439430Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:14:18.7439496Z 2025-03-14T05:14:18.7439749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7440235Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7440300Z 2025-03-14T05:14:18.7440564Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7442328Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7442419Z 2025-03-14T05:14:18.7442710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7442844Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:14:18.7442916Z 2025-03-14T05:14:18.7443165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7443655Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7443735Z 2025-03-14T05:14:18.7444008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7445778Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7445855Z 2025-03-14T05:14:18.7446140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7446286Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:14:18.7446358Z 2025-03-14T05:14:18.7446638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7446786Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:14:18.7446852Z 2025-03-14T05:14:18.7447105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7447590Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7447680Z 2025-03-14T05:14:18.7447943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7449703Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7449784Z 2025-03-14T05:14:18.7450065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7450208Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:14:18.7450271Z 2025-03-14T05:14:18.7450544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7451026Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7451105Z 2025-03-14T05:14:18.7451382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7453145Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7453225Z 2025-03-14T05:14:18.7453506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7453648Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:14:18.7453713Z 2025-03-14T05:14:18.7453985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7454477Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7454562Z 2025-03-14T05:14:18.7454831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7456592Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7456668Z 2025-03-14T05:14:18.7456951Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7457116Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:14:18.7457188Z 2025-03-14T05:14:18.7457465Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7457627Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:14:18.7457691Z 2025-03-14T05:14:18.7457964Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7458431Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7458505Z 2025-03-14T05:14:18.7458765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7460555Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7460632Z 2025-03-14T05:14:18.7460926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7461066Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:14:18.7461131Z 2025-03-14T05:14:18.7461387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7461865Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7461939Z 2025-03-14T05:14:18.7462198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7464003Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7464099Z 2025-03-14T05:14:18.7464461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7464630Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:14:18.7464701Z 2025-03-14T05:14:18.7464974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7465489Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7465568Z 2025-03-14T05:14:18.7465845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7467750Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7467850Z 2025-03-14T05:14:18.7468116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7468641Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7468719Z 2025-03-14T05:14:18.7469000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7470948Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7471042Z 2025-03-14T05:14:18.7471338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7471495Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:14:18.7471562Z 2025-03-14T05:14:18.7471882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7472033Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:14:18.7472108Z 2025-03-14T05:14:18.7472371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7472879Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7472949Z 2025-03-14T05:14:18.7473233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7475100Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7475205Z 2025-03-14T05:14:18.7475493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7475625Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:14:18.7475699Z 2025-03-14T05:14:18.7475950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7476429Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7476496Z 2025-03-14T05:14:18.7476766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7478567Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7478650Z 2025-03-14T05:14:18.7478942Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7479073Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:14:18.7479148Z 2025-03-14T05:14:18.7479400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7479898Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7479965Z 2025-03-14T05:14:18.7480236Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7482226Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7482366Z 2025-03-14T05:14:18.7482654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7482818Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:14:18.7482898Z 2025-03-14T05:14:18.7483195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7483360Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:14:18.7483429Z 2025-03-14T05:14:18.7483702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7484213Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7484313Z 2025-03-14T05:14:18.7484586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7486375Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7486456Z 2025-03-14T05:14:18.7486749Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7486887Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:14:18.7486960Z 2025-03-14T05:14:18.7487208Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7487699Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7487767Z 2025-03-14T05:14:18.7488035Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7489805Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7489879Z 2025-03-14T05:14:18.7490171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7490314Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:14:18.7490388Z 2025-03-14T05:14:18.7490638Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7491134Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7491220Z 2025-03-14T05:14:18.7491489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7493284Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7493352Z 2025-03-14T05:14:18.7493640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7493790Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:14:18.7493863Z 2025-03-14T05:14:18.7494141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7494305Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:14:18.7494370Z 2025-03-14T05:14:18.7494626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7495207Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:14:18.7495281Z 2025-03-14T05:14:18.7495527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7496078Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:14:18.7496152Z 2025-03-14T05:14:18.7496563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.7496841Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:14:18.7496906Z 2025-03-14T05:14:18.7497161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7497719Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:14:18.7497807Z 2025-03-14T05:14:18.7498150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.7498365Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:14:18.7498431Z 2025-03-14T05:14:18.7498686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7499243Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:14:18.7499316Z 2025-03-14T05:14:18.7499722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.7500040Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:14:18.7500114Z 2025-03-14T05:14:18.7500361Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7500947Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:14:18.7501026Z 2025-03-14T05:14:18.7501372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.7501582Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:14:18.7501655Z 2025-03-14T05:14:18.7501898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7502480Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:14:18.7502555Z 2025-03-14T05:14:18.7502949Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.7503281Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:14:18.7503347Z 2025-03-14T05:14:18.7503600Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7504251Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:14:18.7504338Z 2025-03-14T05:14:18.7504719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.7504948Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:14:18.7505016Z 2025-03-14T05:14:18.7505284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7505935Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:14:18.7506014Z 2025-03-14T05:14:18.7506373Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:14:18.7506610Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:14:18.7506690Z 2025-03-14T05:14:18.7507163Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7507336Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:14:18.7507406Z 2025-03-14T05:14:18.7507750Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7507901Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:14:18.7507978Z 2025-03-14T05:14:18.7508428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7508597Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:14:18.7508668Z 2025-03-14T05:14:18.7508980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7509128Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:14:18.7509208Z 2025-03-14T05:14:18.7509596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.7509792Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:14:18.7509900Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:14:18.7510035Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:14:18.7510104Z 2025-03-14T05:14:18.7510456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.7510612Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:14:18.7510685Z 2025-03-14T05:14:18.7511024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.7511164Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:14:18.7511232Z 2025-03-14T05:14:18.7511651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.7511876Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:14:18.7511955Z 2025-03-14T05:14:18.7512395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.7512535Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:14:18.7512986Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:14:18.7513125Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:14:18.7513258Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:14:18.7513326Z 2025-03-14T05:14:18.7513806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7513965Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:14:18.7514042Z 2025-03-14T05:14:18.7514365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7514522Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:14:18.7514592Z 2025-03-14T05:14:18.7515058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7515203Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:14:18.7515278Z 2025-03-14T05:14:18.7515566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7515711Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:14:18.7515777Z 2025-03-14T05:14:18.7516151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.7516350Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:14:18.7516463Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:14:18.7516587Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:14:18.7516658Z 2025-03-14T05:14:18.7516983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.7517135Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:14:18.7517200Z 2025-03-14T05:14:18.7517528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.7517654Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:14:18.7517739Z 2025-03-14T05:14:18.7518118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.7518340Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:14:18.7518407Z 2025-03-14T05:14:18.7518825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.7518959Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:14:18.7519381Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:14:18.7519513Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:14:18.7519631Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:14:18.7519702Z 2025-03-14T05:14:18.7520142Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7520301Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:14:18.7520381Z 2025-03-14T05:14:18.7520678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7520817Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:14:18.7520891Z 2025-03-14T05:14:18.7521316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7521469Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:14:18.7521538Z 2025-03-14T05:14:18.7521835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7521975Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:14:18.7522051Z 2025-03-14T05:14:18.7522420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.7522622Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:14:18.7522727Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:14:18.7522858Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:14:18.7522940Z 2025-03-14T05:14:18.7523273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.7523401Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:14:18.7523477Z 2025-03-14T05:14:18.7523803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.7523948Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:14:18.7524014Z 2025-03-14T05:14:18.7524395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.7524603Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:14:18.7524680Z 2025-03-14T05:14:18.7525086Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.7525221Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:14:18.7525635Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:14:18.7525765Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:14:18.7525886Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:14:18.7525952Z 2025-03-14T05:14:18.7526392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7526536Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:14:18.7526622Z 2025-03-14T05:14:18.7526915Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7527061Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:14:18.7527126Z 2025-03-14T05:14:18.7527563Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7527708Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:14:18.7527781Z 2025-03-14T05:14:18.7528072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7528211Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:14:18.7528276Z 2025-03-14T05:14:18.7528659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.7528850Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:14:18.7528974Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:14:18.7530075Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:14:18.7530203Z 2025-03-14T05:14:18.7530782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.7530926Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:14:18.7530995Z 2025-03-14T05:14:18.7531328Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.7531472Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:14:18.7531549Z 2025-03-14T05:14:18.7531927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.7532151Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:14:18.7532218Z 2025-03-14T05:14:18.7532635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.7532763Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:14:18.7533181Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:14:18.7533309Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:14:18.7533423Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:14:18.7533497Z 2025-03-14T05:14:18.7533947Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7534116Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:18.7534183Z 2025-03-14T05:14:18.7534487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7534623Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:14:18.7534697Z 2025-03-14T05:14:18.7535124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.7535275Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:18.7535341Z 2025-03-14T05:14:18.7535640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7535777Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:14:18.7535851Z 2025-03-14T05:14:18.7536224Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.7536422Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:14:18.7536524Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:14:18.7536665Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:14:18.7536731Z 2025-03-14T05:14:18.7537062Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.7537188Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:14:18.7537261Z 2025-03-14T05:14:18.7537594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.7537724Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:14:18.7537789Z 2025-03-14T05:14:18.7538167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.7538377Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:14:18.7538451Z 2025-03-14T05:14:18.7538855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.7538986Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:14:18.7539398Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:14:18.7539526Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:14:18.7539649Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:14:18.7539727Z 2025-03-14T05:14:18.7540033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:18.7540180Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:14:18.7540323Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:14:18.7540448Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:14:18.7540579Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:14:18.7540699Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:14:18.7540772Z 2025-03-14T05:14:18.7541028Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7541540Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:14:18.7541607Z 2025-03-14T05:14:18.7541887Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.7542086Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:14:18.7542161Z 2025-03-14T05:14:18.7542541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.7543105Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.7543172Z 2025-03-14T05:14:18.7543541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.7544078Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:14:18.7544154Z 2025-03-14T05:14:18.7544456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7544969Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:14:18.7545044Z 2025-03-14T05:14:18.7545325Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.7545542Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:14:18.7545606Z 2025-03-14T05:14:18.7545987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.7546524Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.7546616Z 2025-03-14T05:14:18.7546969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.7547491Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:14:18.7547570Z 2025-03-14T05:14:18.7547830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7548308Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:14:18.7548374Z 2025-03-14T05:14:18.7548651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.7548836Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:14:18.7548909Z 2025-03-14T05:14:18.7549279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.7549797Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.7549864Z 2025-03-14T05:14:18.7550221Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.7550730Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:14:18.7550803Z 2025-03-14T05:14:18.7551056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7551527Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:14:18.7551594Z 2025-03-14T05:14:18.7551873Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.7552060Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:14:18.7552126Z 2025-03-14T05:14:18.7552504Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.7553010Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.7553097Z 2025-03-14T05:14:18.7553453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.7553962Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:14:18.7554027Z 2025-03-14T05:14:18.7554290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7555051Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:14:18.7555126Z 2025-03-14T05:14:18.7555407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.7555580Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:14:18.7555668Z 2025-03-14T05:14:18.7556038Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.7556924Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:14:18.7556992Z 2025-03-14T05:14:18.7557355Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.7558166Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:14:18.7558239Z 2025-03-14T05:14:18.7558583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:14:18.7558748Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:14:18.7558898Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:14:18.7559083Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:14:18.7559236Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:14:18.7559390Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:14:18.7559550Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:14:18.7559696Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:14:18.7559835Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:14:18.7559980Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:14:18.7560119Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:14:18.7560187Z 2025-03-14T05:14:18.7560617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:14:18.7560795Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:14:18.7560983Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:14:18.7561165Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:14:18.7561337Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:14:18.7561513Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:14:18.7561711Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:14:18.7561861Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:14:18.7562037Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:14:18.7562205Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:14:18.7562372Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:14:18.7562544Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:14:18.7562712Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:14:18.7562859Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:14:18.7563012Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:14:18.7563185Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:14:18.7563250Z 2025-03-14T05:14:18.7563660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7563859Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:14:18.7563935Z 2025-03-14T05:14:18.7564380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7564548Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:14:18.7564697Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:14:18.7564858Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:14:18.7564924Z 2025-03-14T05:14:18.7565307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7565477Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:14:18.7565549Z 2025-03-14T05:14:18.7565858Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7566011Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:14:18.7566078Z 2025-03-14T05:14:18.7566395Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7566529Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7566666Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7566817Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:18.7566888Z 2025-03-14T05:14:18.7567205Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7567357Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7567477Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7567637Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:14:18.7567702Z 2025-03-14T05:14:18.7568017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7568155Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7568255Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:14:18.7568383Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:14:18.7568457Z 2025-03-14T05:14:18.7568766Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7568924Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:18.7569015Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:14:18.7569155Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:14:18.7569220Z 2025-03-14T05:14:18.7569567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7569734Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7569849Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:14:18.7569921Z 2025-03-14T05:14:18.7570223Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7570400Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7570514Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:14:18.7570603Z 2025-03-14T05:14:18.7570901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7571063Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7571174Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:14:18.7571249Z 2025-03-14T05:14:18.7571554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7571751Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:18.7571866Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:14:18.7571944Z 2025-03-14T05:14:18.7572282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7572436Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:18.7572505Z 2025-03-14T05:14:18.7572846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7572987Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:18.7573065Z 2025-03-14T05:14:18.7573431Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7573580Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:18.7573707Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:14:18.7573867Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:18.7574022Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:14:18.7574094Z 2025-03-14T05:14:18.7574437Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7574583Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:18.7574709Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:14:18.7574867Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:18.7575001Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:14:18.7575074Z 2025-03-14T05:14:18.7575402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7575530Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:18.7575699Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:18.7575830Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:14:18.7575908Z 2025-03-14T05:14:18.7576254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7576381Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:18.7576563Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:18.7576708Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:14:18.7576774Z 2025-03-14T05:14:18.7577091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7577191Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:18.7577316Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:18.7577384Z 2025-03-14T05:14:18.7577700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7577794Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:18.7577917Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:18.7577983Z 2025-03-14T05:14:18.7578289Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7578407Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:18.7578546Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:18.7578611Z 2025-03-14T05:14:18.7578919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7579060Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:18.7579194Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:18.7579260Z 2025-03-14T05:14:18.7579611Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7579806Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:18.7579881Z 2025-03-14T05:14:18.7580214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7580386Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:14:18.7580452Z 2025-03-14T05:14:18.7580841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7581018Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:14:18.7581092Z 2025-03-14T05:14:18.7581738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7581970Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:14:18.7582037Z 2025-03-14T05:14:18.7582478Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7582719Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:14:18.7582879Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:14:18.7583044Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:14:18.7583118Z 2025-03-14T05:14:18.7583488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7583665Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:14:18.7583740Z 2025-03-14T05:14:18.7584046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7584245Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:14:18.7584317Z 2025-03-14T05:14:18.7584636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7584775Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7584917Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7585071Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:14:18.7585145Z 2025-03-14T05:14:18.7585476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7585641Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7585764Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7585923Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:14:18.7585990Z 2025-03-14T05:14:18.7586303Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7586451Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7586556Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:14:18.7586689Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:14:18.7586762Z 2025-03-14T05:14:18.7587072Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7587233Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:14:18.7587328Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:14:18.7587465Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:14:18.7587529Z 2025-03-14T05:14:18.7587840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7587993Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7588113Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:14:18.7588179Z 2025-03-14T05:14:18.7588486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7588650Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7588774Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:14:18.7588852Z 2025-03-14T05:14:18.7589152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7589301Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7589421Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:14:18.7589486Z 2025-03-14T05:14:18.7589789Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7589977Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:14:18.7590097Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:14:18.7590163Z 2025-03-14T05:14:18.7590503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7590650Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:14:18.7590717Z 2025-03-14T05:14:18.7591048Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7591186Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:14:18.7591283Z 2025-03-14T05:14:18.7591625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7591770Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:14:18.7591901Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:14:18.7592066Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:14:18.7592225Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:14:18.7592298Z 2025-03-14T05:14:18.7592644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7592791Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:14:18.7592920Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:14:18.7593080Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:14:18.7593223Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:14:18.7593296Z 2025-03-14T05:14:18.7593624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7593749Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:14:18.7593909Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:14:18.7594053Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:14:18.7594119Z 2025-03-14T05:14:18.7594468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7594597Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:14:18.7594772Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:14:18.7594906Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:14:18.7594981Z 2025-03-14T05:14:18.7595286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7595393Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:14:18.7595512Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:14:18.7595587Z 2025-03-14T05:14:18.7595890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7595996Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:14:18.7596113Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:14:18.7596186Z 2025-03-14T05:14:18.7596487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7596614Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:14:18.7596747Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:14:18.7596821Z 2025-03-14T05:14:18.7597120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7597261Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:14:18.7597391Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:14:18.7597465Z 2025-03-14T05:14:18.7597806Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7598019Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:14:18.7598090Z 2025-03-14T05:14:18.7598425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7598602Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:14:18.7598666Z 2025-03-14T05:14:18.7599056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7599235Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:14:18.7599306Z 2025-03-14T05:14:18.7599702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7599915Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:14:18.7599980Z 2025-03-14T05:14:18.7600441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7600591Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:14:18.7600783Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:14:18.7600920Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:14:18.7600992Z 2025-03-14T05:14:18.7601348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7601518Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:14:18.7601584Z 2025-03-14T05:14:18.7601891Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7602030Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:14:18.7602103Z 2025-03-14T05:14:18.7602406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7602540Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7602659Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7602811Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:14:18.7602873Z 2025-03-14T05:14:18.7603188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7603322Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7603446Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7603592Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:14:18.7603664Z 2025-03-14T05:14:18.7603972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7604097Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7604187Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:14:18.7604324Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:14:18.7604387Z 2025-03-14T05:14:18.7604701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7604844Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:14:18.7604944Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:14:18.7605071Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:14:18.7605142Z 2025-03-14T05:14:18.7605451Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7605603Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7605721Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:14:18.7605788Z 2025-03-14T05:14:18.7606105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7606256Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7606391Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:14:18.7606456Z 2025-03-14T05:14:18.7606753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7606902Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7607020Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:14:18.7607085Z 2025-03-14T05:14:18.7607394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7607578Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:14:18.7607693Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:14:18.7607762Z 2025-03-14T05:14:18.7608104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7608245Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:14:18.7608319Z 2025-03-14T05:14:18.7608654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7608796Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:14:18.7608882Z 2025-03-14T05:14:18.7609219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7609353Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:14:18.7609483Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:14:18.7609647Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:14:18.7609792Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:14:18.7609855Z 2025-03-14T05:14:18.7610198Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7610332Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:14:18.7610471Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:14:18.7610627Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:14:18.7610760Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:14:18.7610832Z 2025-03-14T05:14:18.7611151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7611270Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:14:18.7611422Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:14:18.7611578Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:14:18.7611641Z 2025-03-14T05:14:18.7611969Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7612094Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:14:18.7612260Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:14:18.7612389Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:14:18.7612460Z 2025-03-14T05:14:18.7612754Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7612857Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:14:18.7612974Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:14:18.7613046Z 2025-03-14T05:14:18.7613338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7613442Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:14:18.7613553Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:14:18.7613625Z 2025-03-14T05:14:18.7613916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7614036Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:14:18.7614164Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:14:18.7614249Z 2025-03-14T05:14:18.7614544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7614666Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:14:18.7614794Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:14:18.7614867Z 2025-03-14T05:14:18.7615213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7615409Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:14:18.7615473Z 2025-03-14T05:14:18.7615802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7615960Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:14:18.7616030Z 2025-03-14T05:14:18.7616397Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7616575Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:14:18.7616641Z 2025-03-14T05:14:18.7617036Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7617235Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:14:18.7617310Z 2025-03-14T05:14:18.7617748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7617917Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:14:18.7618071Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:14:18.7618208Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:14:18.7618280Z 2025-03-14T05:14:18.7618644Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7618818Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:14:18.7618885Z 2025-03-14T05:14:18.7619200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7619346Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:14:18.7619419Z 2025-03-14T05:14:18.7619727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7619862Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7619986Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7620141Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:14:18.7620222Z 2025-03-14T05:14:18.7620550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7620673Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7620803Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7620955Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:14:18.7621029Z 2025-03-14T05:14:18.7621352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7621484Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7621576Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:14:18.7621717Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:14:18.7621785Z 2025-03-14T05:14:18.7622098Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7622246Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:14:18.7622349Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:14:18.7622481Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:14:18.7622555Z 2025-03-14T05:14:18.7622855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7623016Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7623127Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:14:18.7623202Z 2025-03-14T05:14:18.7623528Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7623705Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7623817Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:14:18.7623892Z 2025-03-14T05:14:18.7624267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7624442Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7624556Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:14:18.7624635Z 2025-03-14T05:14:18.7624956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7625145Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:14:18.7625269Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:14:18.7625336Z 2025-03-14T05:14:18.7625688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7625840Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:14:18.7625916Z 2025-03-14T05:14:18.7626244Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7626410Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:14:18.7626475Z 2025-03-14T05:14:18.7626822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7626957Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:14:18.7627087Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:14:18.7627253Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:14:18.7627401Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:14:18.7627465Z 2025-03-14T05:14:18.7627816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7627952Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:14:18.7628085Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:14:18.7628237Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:14:18.7628381Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:14:18.7628448Z 2025-03-14T05:14:18.7628783Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7628896Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:14:18.7629063Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:14:18.7629212Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:14:18.7629285Z 2025-03-14T05:14:18.7629609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7629747Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:14:18.7629912Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:14:18.7630051Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:14:18.7630117Z 2025-03-14T05:14:18.7630428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7630526Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:14:18.7630652Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:14:18.7630716Z 2025-03-14T05:14:18.7631025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7631120Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:14:18.7631243Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:14:18.7631309Z 2025-03-14T05:14:18.7631615Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7631731Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:14:18.7631870Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:14:18.7631947Z 2025-03-14T05:14:18.7632259Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7632374Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:14:18.7632510Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:14:18.7632575Z 2025-03-14T05:14:18.7632941Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7633135Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:14:18.7633201Z 2025-03-14T05:14:18.7633539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7633701Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:14:18.7633774Z 2025-03-14T05:14:18.7634152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7634333Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:14:18.7634400Z 2025-03-14T05:14:18.7634800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.7635007Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:14:18.7635095Z 2025-03-14T05:14:18.7635524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.7635694Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:14:18.7635840Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:14:18.7635985Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:14:18.7636051Z 2025-03-14T05:14:18.7636428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.7636592Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:14:18.7636666Z 2025-03-14T05:14:18.7636965Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.7637111Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:14:18.7637176Z 2025-03-14T05:14:18.7637483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.7637608Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:14:18.7637738Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7637878Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:14:18.7637966Z 2025-03-14T05:14:18.7638279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.7638407Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:14:18.7638525Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:14:18.7638676Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:14:18.7638739Z 2025-03-14T05:14:18.7639063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.7639179Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:18.7639276Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:14:18.7639406Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:14:18.7639479Z 2025-03-14T05:14:18.7639778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.7639927Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:14:18.7640024Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:14:18.7640149Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:14:18.7640221Z 2025-03-14T05:14:18.7640514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.7640668Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.7640796Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:14:18.7640867Z 2025-03-14T05:14:18.7641159Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.7641325Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.7641440Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:14:18.7641511Z 2025-03-14T05:14:18.7641798Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.7641947Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.7642054Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:14:18.7642127Z 2025-03-14T05:14:18.7642419Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.7642604Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:14:18.7642713Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:14:18.7642787Z 2025-03-14T05:14:18.7643106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.7643249Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:14:18.7643316Z 2025-03-14T05:14:18.7643642Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.7643787Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:14:18.7643861Z 2025-03-14T05:14:18.7644191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.7644333Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:14:18.7644476Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:14:18.7644635Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:14:18.7644768Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:14:18.7644841Z 2025-03-14T05:14:18.7645177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.7645315Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:14:18.7645439Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:14:18.7645583Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:14:18.7645721Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:14:18.7645786Z 2025-03-14T05:14:18.7646112Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.7646223Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:14:18.7646399Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:14:18.7646528Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:14:18.7646597Z 2025-03-14T05:14:18.7646932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.7647050Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:14:18.7647212Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:14:18.7647349Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:14:18.7647413Z 2025-03-14T05:14:18.7647719Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.7647817Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:14:18.7647935Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:14:18.7647998Z 2025-03-14T05:14:18.7648305Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.7648401Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:14:18.7648521Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:14:18.7648584Z 2025-03-14T05:14:18.7648883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.7649020Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:14:18.7649171Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:14:18.7649236Z 2025-03-14T05:14:18.7649538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.7649651Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:14:18.7649785Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:14:18.7649849Z 2025-03-14T05:14:18.7650204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.7650387Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:14:18.7650462Z 2025-03-14T05:14:18.7650780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.7650942Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:14:18.7651008Z 2025-03-14T05:14:18.7651381Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.7651547Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:14:18.7651620Z 2025-03-14T05:14:18.7652082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:14:18.7652242Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:14:18.7652307Z 2025-03-14T05:14:18.7652603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7652757Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:14:18.7652828Z 2025-03-14T05:14:18.7653253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7653373Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:14:18.7653482Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:14:18.7653594Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:14:18.7653666Z 2025-03-14T05:14:18.7654114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7654252Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7654477Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:14:18.7654547Z 2025-03-14T05:14:18.7654987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7655156Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7655237Z 2025-03-14T05:14:18.7655537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7655657Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:14:18.7655730Z 2025-03-14T05:14:18.7656149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7656285Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:14:18.7656394Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:14:18.7656519Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:14:18.7656582Z 2025-03-14T05:14:18.7657033Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7657163Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7657400Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:14:18.7657465Z 2025-03-14T05:14:18.7657926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7658090Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7658165Z 2025-03-14T05:14:18.7658475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7658613Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:14:18.7658679Z 2025-03-14T05:14:18.7659124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7659238Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:14:18.7659352Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:14:18.7659469Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:14:18.7659543Z 2025-03-14T05:14:18.7660002Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7660135Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7660376Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:14:18.7660443Z 2025-03-14T05:14:18.7660897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7661058Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7661131Z 2025-03-14T05:14:18.7661417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7661565Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:14:18.7661631Z 2025-03-14T05:14:18.7662065Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7662178Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:14:18.7662306Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:14:18.7662422Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:14:18.7662495Z 2025-03-14T05:14:18.7662944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7663085Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.7663313Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:14:18.7663387Z 2025-03-14T05:14:18.7663829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7663997Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7664061Z 2025-03-14T05:14:18.7664435Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7664564Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:14:18.7664659Z 2025-03-14T05:14:18.7665089Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.7665228Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:14:18.7665334Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:14:18.7665460Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:14:18.7665526Z 2025-03-14T05:14:18.7665978Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.7666151Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:14:18.7666386Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:14:18.7666462Z 2025-03-14T05:14:18.7666910Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.7667082Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.7667147Z 2025-03-14T05:14:18.7667446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.7667568Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:14:18.7667665Z 2025-03-14T05:14:18.7667943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.7668323Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:14:18.7668390Z 2025-03-14T05:14:18.7668687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.7669144Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:14:18.7669221Z 2025-03-14T05:14:18.7669492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.7669699Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:14:18.7669766Z 2025-03-14T05:14:18.7670152Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:14:18.7670293Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:14:18.7670374Z 2025-03-14T05:14:18.7670667Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:18.7670824Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:14:18.7670907Z 2025-03-14T05:14:18.7671290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:14:18.7671446Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:14:18.7671512Z 2025-03-14T05:14:18.7671996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:14:18.7672132Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:14:18.7672261Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:18.7672418Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:14:18.7672560Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:14:18.7672624Z 2025-03-14T05:14:18.7672995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:14:18.7673114Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:14:18.7673185Z 2025-03-14T05:14:18.7673196Z 2025-03-14T05:14:18.7673297Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:18.7736069Z def forward(self, L_stack0_tensor: "f32[4, 3, 1184, 1216][4319232, 1439744, 1216, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_: "f32[64, 3, 7, 7][147, 49, 7, 1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_: "f32[64, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_: "f32[64, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_: "f32[64, 64, 3, 3][576, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[64][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_: "f32[256, 64, 1, 1][64, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_: "f32[128, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_: "f32[512, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_: "f32[128, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_: "f32[128, 128, 3, 3][1152, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[128][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_: "f32[512, 128, 1, 1][128, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_: "f32[1024, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_: "f32[256][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_: "f32[1024, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_: "f32[1024][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_: "f32[512, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_: "f32[2048, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_: "f32[512, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_: "f32[512, 512, 3, 3][4608, 9, 3, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_: "f32[512][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_: "f32[2048, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_: "f32[2048][1]cpu", L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_: "f32[2048][1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_weight_: "f32[256, 2048, 1, 1][2048, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_0_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_0_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_weight_: "f32[256, 1024, 1, 1][1024, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_1_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_1_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_weight_: "f32[256, 512, 1, 1][512, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_2_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_2_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_weight_: "f32[256, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_backbone_lateral_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_backbone_output_convs_3_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_backbone_output_convs_3_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:14:18.7736530Z l_stack0_tensor = L_stack0_tensor 2025-03-14T05:14:18.7736873Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7737263Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7737653Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7738026Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7738385Z l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7738745Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7739159Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7739561Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7739939Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7740313Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7740653Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7741071Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7741478Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7741867Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7742240Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7742589Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7742998Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7743392Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7743774Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7744159Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7744678Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7745226Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7745708Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7746199Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7746670Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7747097Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7747581Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7748069Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7748533Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7748998Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7749423Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7749912Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7750412Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7750874Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7751322Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7751745Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7752237Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7752714Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7753100Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7753507Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7753891Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7754330Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7754769Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7755181Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7755610Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7756003Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7756459Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7756901Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7757316Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7757740Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7758117Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7758579Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7759010Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7759390Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7759772Z l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7760110Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7760513Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7760899Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7761281Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7761644Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7762030Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7762436Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7762840Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7763222Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7763586Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7763937Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7764333Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7764734Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7765114Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7765495Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7765857Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7766279Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7766693Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7767084Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7767477Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7767828Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7768226Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7768637Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7769026Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7769400Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7769748Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7770199Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7770646Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7771063Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7771663Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7772024Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7772462Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7772886Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7773272Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7773670Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7774016Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7774432Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7774830Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7775244Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7775616Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7775974Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7776379Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7776770Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7777150Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7777518Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7777867Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7778265Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7778670Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7779050Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7779427Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7779771Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7780166Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7780562Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7780940Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7781303Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7781825Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7782226Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7782648Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7783031Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7783418Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7783772Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7784234Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7784674Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7785084Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7785542Z l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7785892Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7786324Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7786733Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7787114Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7787492Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7787845Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7788257Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7788672Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7789077Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7789456Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7789802Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7790214Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7790611Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7791003Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7791374Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7791764Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7792189Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7792619Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7793025Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7793414Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7793769Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7794173Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7794583Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7794988Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7795360Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7795741Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7796147Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7796555Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7796938Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7797324Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7797679Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7798083Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7798507Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7798894Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7799293Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7799642Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7800059Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7800468Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7800852Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7801232Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7801593Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7802009Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7802431Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7802811Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7803192Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7803537Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7803951Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7804349Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7804768Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7805143Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7805496Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7805891Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7806278Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7806653Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7807022Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7807366Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7807780Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7808169Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7808561Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7808925Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7809268Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7809663Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7810058Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7810437Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7810796Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7811164Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7811559Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7811969Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7812343Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7812717Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7813064Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7813458Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7813854Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7814241Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7814614Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7814969Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7815371Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7815770Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7816144Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7816518Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7816860Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7817265Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7817673Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7818065Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7818438Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7818774Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7819179Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7819569Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7819950Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7820314Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7820686Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7821102Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7821499Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7821879Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7822244Z l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7822595Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7823010Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7823407Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7823812Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7824249Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7824638Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7825043Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7825453Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7825838Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7826226Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7826589Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7827012Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7827424Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7827830Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7828218Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7828584Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ 2025-03-14T05:14:18.7829010Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7829436Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7829834Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7830235Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7830607Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7831022Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7831447Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7831830Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7832212Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7832562Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7832978Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7833380Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7833793Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7834190Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7834540Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7834957Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7835359Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7835750Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7836125Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7836480Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ 2025-03-14T05:14:18.7836908Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7837305Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7837706Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7838080Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7838437Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ 2025-03-14T05:14:18.7838843Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7839260Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7839653Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7840045Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7840412Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ 2025-03-14T05:14:18.7840823Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ 2025-03-14T05:14:18.7841229Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ 2025-03-14T05:14:18.7841610Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ 2025-03-14T05:14:18.7841990Z l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = L_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ 2025-03-14T05:14:18.7842237Z l_self_modules_backbone_lateral_convs_0_parameters_weight_ = L_self_modules_backbone_lateral_convs_0_parameters_weight_ 2025-03-14T05:14:18.7842455Z l_self_modules_backbone_lateral_convs_0_parameters_bias_ = L_self_modules_backbone_lateral_convs_0_parameters_bias_ 2025-03-14T05:14:18.7842680Z l_self_modules_backbone_output_convs_0_parameters_weight_ = L_self_modules_backbone_output_convs_0_parameters_weight_ 2025-03-14T05:14:18.7842887Z l_self_modules_backbone_output_convs_0_parameters_bias_ = L_self_modules_backbone_output_convs_0_parameters_bias_ 2025-03-14T05:14:18.7843112Z l_self_modules_backbone_lateral_convs_1_parameters_weight_ = L_self_modules_backbone_lateral_convs_1_parameters_weight_ 2025-03-14T05:14:18.7843342Z l_self_modules_backbone_lateral_convs_1_parameters_bias_ = L_self_modules_backbone_lateral_convs_1_parameters_bias_ 2025-03-14T05:14:18.7843567Z l_self_modules_backbone_output_convs_1_parameters_weight_ = L_self_modules_backbone_output_convs_1_parameters_weight_ 2025-03-14T05:14:18.7843779Z l_self_modules_backbone_output_convs_1_parameters_bias_ = L_self_modules_backbone_output_convs_1_parameters_bias_ 2025-03-14T05:14:18.7844027Z l_self_modules_backbone_lateral_convs_2_parameters_weight_ = L_self_modules_backbone_lateral_convs_2_parameters_weight_ 2025-03-14T05:14:18.7844239Z l_self_modules_backbone_lateral_convs_2_parameters_bias_ = L_self_modules_backbone_lateral_convs_2_parameters_bias_ 2025-03-14T05:14:18.7844465Z l_self_modules_backbone_output_convs_2_parameters_weight_ = L_self_modules_backbone_output_convs_2_parameters_weight_ 2025-03-14T05:14:18.7844681Z l_self_modules_backbone_output_convs_2_parameters_bias_ = L_self_modules_backbone_output_convs_2_parameters_bias_ 2025-03-14T05:14:18.7844901Z l_self_modules_backbone_lateral_convs_3_parameters_weight_ = L_self_modules_backbone_lateral_convs_3_parameters_weight_ 2025-03-14T05:14:18.7845106Z l_self_modules_backbone_lateral_convs_3_parameters_bias_ = L_self_modules_backbone_lateral_convs_3_parameters_bias_ 2025-03-14T05:14:18.7845325Z l_self_modules_backbone_output_convs_3_parameters_weight_ = L_self_modules_backbone_output_convs_3_parameters_weight_ 2025-03-14T05:14:18.7845526Z l_self_modules_backbone_output_convs_3_parameters_bias_ = L_self_modules_backbone_output_convs_3_parameters_bias_ 2025-03-14T05:14:18.7845887Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:14:18.7846259Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:14:18.7846603Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:14:18.7846968Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:14:18.7847313Z l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:14:18.7847642Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:14:18.7847960Z l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:14:18.7848326Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:14:18.7848676Z l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:14:18.7849026Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:14:18.7849366Z l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:14:18.7849449Z 2025-03-14T05:14:18.7849726Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7850265Z x: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.conv2d(l_stack0_tensor, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_, None, (2, 2), (3, 3), (1, 1), 1); l_stack0_tensor = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7850347Z 2025-03-14T05:14:18.7850617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7852289Z x_1: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.nn.functional.batch_norm(x, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_modules_stem_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7852357Z 2025-03-14T05:14:18.7852645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:357 in forward, code: x = F.relu_(x) 2025-03-14T05:14:18.7853105Z x_2: "f32[4, 64, 592, 608][23035904, 359936, 608, 1]cpu" = torch.relu_(x_1); x_1 = None 2025-03-14T05:14:18.7853172Z 2025-03-14T05:14:18.7853533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:358 in forward, code: x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1) 2025-03-14T05:14:18.7853784Z x_3: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.max_pool2d(x_2, kernel_size = 3, stride = 2, padding = 1); x_2 = None 2025-03-14T05:14:18.7853858Z 2025-03-14T05:14:18.7854104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7854585Z x_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7854651Z 2025-03-14T05:14:18.7854918Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7856659Z x_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7856756Z 2025-03-14T05:14:18.7857051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7857206Z out: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_5); x_5 = None 2025-03-14T05:14:18.7857280Z 2025-03-14T05:14:18.7857532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7858032Z x_6: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7858099Z 2025-03-14T05:14:18.7858371Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7860155Z x_7: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_6, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_6 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7860236Z 2025-03-14T05:14:18.7860532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7860671Z out_1: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_7); x_7 = None 2025-03-14T05:14:18.7860748Z 2025-03-14T05:14:18.7860996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7861500Z x_8: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_1, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_1 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7861568Z 2025-03-14T05:14:18.7861840Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7863630Z x_9: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7863713Z 2025-03-14T05:14:18.7863984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7864558Z x_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); x_3 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7864637Z 2025-03-14T05:14:18.7864912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7866821Z x_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_10, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_10 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7866920Z 2025-03-14T05:14:18.7867210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7867358Z x_9 += x_11; out_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_9; x_9 = x_11 = None 2025-03-14T05:14:18.7867432Z 2025-03-14T05:14:18.7867713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7867872Z out_3: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_2); out_2 = None 2025-03-14T05:14:18.7867940Z 2025-03-14T05:14:18.7868197Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7868684Z x_12: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_3, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7868757Z 2025-03-14T05:14:18.7869022Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7870833Z x_13: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_12, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_12 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7870924Z 2025-03-14T05:14:18.7871211Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7871365Z out_4: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_13); x_13 = None 2025-03-14T05:14:18.7871434Z 2025-03-14T05:14:18.7871692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7872183Z x_14: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_4, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_4 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7872259Z 2025-03-14T05:14:18.7872524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7874308Z x_15: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_14, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_14 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7874397Z 2025-03-14T05:14:18.7874676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7874823Z out_5: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_15); x_15 = None 2025-03-14T05:14:18.7874887Z 2025-03-14T05:14:18.7875133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7875633Z x_16: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_5, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_5 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7875707Z 2025-03-14T05:14:18.7875976Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7877737Z x_17: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_16, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_16 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7877828Z 2025-03-14T05:14:18.7878105Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7878271Z x_17 += out_3; out_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_17; x_17 = out_3 = None 2025-03-14T05:14:18.7878336Z 2025-03-14T05:14:18.7878619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7878765Z out_7: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_6); out_6 = None 2025-03-14T05:14:18.7878839Z 2025-03-14T05:14:18.7879084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7879582Z x_18: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_7, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7879656Z 2025-03-14T05:14:18.7879913Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7881830Z x_19: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_18, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_18 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7881914Z 2025-03-14T05:14:18.7882191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7882341Z out_8: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_19); x_19 = None 2025-03-14T05:14:18.7882407Z 2025-03-14T05:14:18.7882656Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7883133Z x_20: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.conv2d(out_8, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_8 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7883254Z 2025-03-14T05:14:18.7883510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7885267Z x_21: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_20, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_20 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7885342Z 2025-03-14T05:14:18.7885620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7885760Z out_9: "f32[4, 64, 296, 304][5758976, 89984, 304, 1]cpu" = torch.relu_(x_21); x_21 = None 2025-03-14T05:14:18.7885823Z 2025-03-14T05:14:18.7886075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7886588Z x_22: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_9, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_9 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7886717Z 2025-03-14T05:14:18.7886975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7888722Z x_23: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.batch_norm(x_22, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_22 = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_0_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7888798Z 2025-03-14T05:14:18.7889070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7889228Z x_23 += out_7; out_10: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_23; x_23 = out_7 = None 2025-03-14T05:14:18.7889292Z 2025-03-14T05:14:18.7889572Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7889738Z out_11: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.relu_(out_10); out_10 = None 2025-03-14T05:14:18.7889810Z 2025-03-14T05:14:18.7890057Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7890553Z x_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7890619Z 2025-03-14T05:14:18.7890881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7892620Z x_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7892689Z 2025-03-14T05:14:18.7892998Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7893145Z out_12: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_25); x_25 = None 2025-03-14T05:14:18.7893240Z 2025-03-14T05:14:18.7893488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7893984Z x_26: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_12, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_12 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7894055Z 2025-03-14T05:14:18.7894316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7896109Z x_27: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_26, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_26 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7896203Z 2025-03-14T05:14:18.7896488Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7896641Z out_13: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_27); x_27 = None 2025-03-14T05:14:18.7896705Z 2025-03-14T05:14:18.7896981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7897475Z x_28: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_13, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_13 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7897551Z 2025-03-14T05:14:18.7897814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7899610Z x_29: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_28, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_28 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7899687Z 2025-03-14T05:14:18.7899940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7900467Z x_30: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7900532Z 2025-03-14T05:14:18.7900800Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7902634Z x_31: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_30, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_30 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7902722Z 2025-03-14T05:14:18.7903007Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7903158Z x_29 += x_31; out_14: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_29; x_29 = x_31 = None 2025-03-14T05:14:18.7903233Z 2025-03-14T05:14:18.7903514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7903690Z out_15: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_14); out_14 = None 2025-03-14T05:14:18.7903755Z 2025-03-14T05:14:18.7904012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7904545Z x_32: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_15, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7904624Z 2025-03-14T05:14:18.7904889Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7906766Z x_33: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_32, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_32 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7906859Z 2025-03-14T05:14:18.7907150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7907302Z out_16: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_33); x_33 = None 2025-03-14T05:14:18.7907368Z 2025-03-14T05:14:18.7907626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7908132Z x_34: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_16, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_16 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7908199Z 2025-03-14T05:14:18.7908469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7910239Z x_35: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_34, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_34 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7910330Z 2025-03-14T05:14:18.7910632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7910775Z out_17: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_35); x_35 = None 2025-03-14T05:14:18.7910849Z 2025-03-14T05:14:18.7911097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7911596Z x_36: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_17, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_17 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7911662Z 2025-03-14T05:14:18.7911932Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7913725Z x_37: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_36, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_36 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7913814Z 2025-03-14T05:14:18.7914102Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7914259Z x_37 += out_15; out_18: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_37; x_37 = out_15 = None 2025-03-14T05:14:18.7914334Z 2025-03-14T05:14:18.7914618Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7914775Z out_19: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_18); out_18 = None 2025-03-14T05:14:18.7914841Z 2025-03-14T05:14:18.7915099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7915586Z x_38: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_19, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7915658Z 2025-03-14T05:14:18.7915923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7917743Z x_39: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_38, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_38 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7917820Z 2025-03-14T05:14:18.7918096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7918243Z out_20: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_39); x_39 = None 2025-03-14T05:14:18.7918306Z 2025-03-14T05:14:18.7918555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7919028Z x_40: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_20, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_20 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7919101Z 2025-03-14T05:14:18.7919377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7921106Z x_41: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_40, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_40 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7921194Z 2025-03-14T05:14:18.7921472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7921616Z out_21: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_41); x_41 = None 2025-03-14T05:14:18.7921681Z 2025-03-14T05:14:18.7921931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7922411Z x_42: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_21, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_21 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7922495Z 2025-03-14T05:14:18.7922762Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7924514Z x_43: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_42, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_42 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7924589Z 2025-03-14T05:14:18.7924868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7925018Z x_43 += out_19; out_22: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_43; x_43 = out_19 = None 2025-03-14T05:14:18.7925088Z 2025-03-14T05:14:18.7925365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7925518Z out_23: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_22); out_22 = None 2025-03-14T05:14:18.7925584Z 2025-03-14T05:14:18.7925849Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7926317Z x_44: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_23, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7926402Z 2025-03-14T05:14:18.7926659Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7928395Z x_45: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_44, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_44 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7928468Z 2025-03-14T05:14:18.7928743Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7928887Z out_24: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_45); x_45 = None 2025-03-14T05:14:18.7928968Z 2025-03-14T05:14:18.7929220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7929697Z x_46: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.conv2d(out_24, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_24 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7929786Z 2025-03-14T05:14:18.7930046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7931772Z x_47: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_46, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_46 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7931847Z 2025-03-14T05:14:18.7932126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7932289Z out_25: "f32[4, 128, 148, 152][2879488, 22496, 152, 1]cpu" = torch.relu_(x_47); x_47 = None 2025-03-14T05:14:18.7932353Z 2025-03-14T05:14:18.7932603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7933100Z x_48: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.conv2d(out_25, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_25 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7933170Z 2025-03-14T05:14:18.7933425Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7935149Z x_49: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.nn.functional.batch_norm(x_48, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_48 = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_1_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7935224Z 2025-03-14T05:14:18.7935513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7935672Z x_49 += out_23; out_26: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = x_49; x_49 = out_23 = None 2025-03-14T05:14:18.7935736Z 2025-03-14T05:14:18.7936016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7936186Z out_27: "f32[4, 512, 148, 152][11517952, 22496, 152, 1]cpu" = torch.relu_(out_26); out_26 = None 2025-03-14T05:14:18.7936251Z 2025-03-14T05:14:18.7936489Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7936968Z x_50: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7937042Z 2025-03-14T05:14:18.7937302Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7939045Z x_51: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_50, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_50 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7939132Z 2025-03-14T05:14:18.7939409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7939551Z out_28: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_51); x_51 = None 2025-03-14T05:14:18.7939615Z 2025-03-14T05:14:18.7939861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7940330Z x_52: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_28, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_28 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7940403Z 2025-03-14T05:14:18.7940660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7942401Z x_53: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_52, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_52 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7942490Z 2025-03-14T05:14:18.7942787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7942929Z out_29: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_53); x_53 = None 2025-03-14T05:14:18.7942992Z 2025-03-14T05:14:18.7943241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7943710Z x_54: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_29, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_29 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7943782Z 2025-03-14T05:14:18.7944040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7945976Z x_55: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_54, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_54 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7946077Z 2025-03-14T05:14:18.7946333Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7946832Z x_56: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.7946899Z 2025-03-14T05:14:18.7947174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7949008Z x_57: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_56, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_56 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7949097Z 2025-03-14T05:14:18.7949391Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7949546Z x_55 += x_57; out_30: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_55; x_55 = x_57 = None 2025-03-14T05:14:18.7949621Z 2025-03-14T05:14:18.7949902Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7950055Z out_31: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_30); out_30 = None 2025-03-14T05:14:18.7950122Z 2025-03-14T05:14:18.7950377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7950863Z x_58: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_31, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7950929Z 2025-03-14T05:14:18.7951199Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7952983Z x_59: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_58, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_58 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7953072Z 2025-03-14T05:14:18.7953366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7953503Z out_32: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_59); x_59 = None 2025-03-14T05:14:18.7953578Z 2025-03-14T05:14:18.7953825Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7954319Z x_60: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_32, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_32 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7954382Z 2025-03-14T05:14:18.7954652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7956431Z x_61: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_60, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_60 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7956522Z 2025-03-14T05:14:18.7956813Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7956950Z out_33: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_61); x_61 = None 2025-03-14T05:14:18.7957022Z 2025-03-14T05:14:18.7957272Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7957762Z x_62: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_33, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_33 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7957826Z 2025-03-14T05:14:18.7958093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7959871Z x_63: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_62, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_62 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7959952Z 2025-03-14T05:14:18.7960242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7960388Z x_63 += out_31; out_34: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_63; x_63 = out_31 = None 2025-03-14T05:14:18.7960464Z 2025-03-14T05:14:18.7960752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7960902Z out_35: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_34); out_34 = None 2025-03-14T05:14:18.7960965Z 2025-03-14T05:14:18.7961216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7961680Z x_64: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_35, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7961767Z 2025-03-14T05:14:18.7962023Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7963759Z x_65: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_64, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_64 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7963836Z 2025-03-14T05:14:18.7964114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7964255Z out_36: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_65); x_65 = None 2025-03-14T05:14:18.7964318Z 2025-03-14T05:14:18.7964571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7965063Z x_66: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_36, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_36 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7965130Z 2025-03-14T05:14:18.7965413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7967120Z x_67: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_66, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_66 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7967194Z 2025-03-14T05:14:18.7967479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7967607Z out_37: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_67); x_67 = None 2025-03-14T05:14:18.7967678Z 2025-03-14T05:14:18.7967919Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7968428Z x_68: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_37, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_37 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7968504Z 2025-03-14T05:14:18.7968768Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7970492Z x_69: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_68, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_68 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7970569Z 2025-03-14T05:14:18.7970848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7970991Z x_69 += out_35; out_38: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_69; x_69 = out_35 = None 2025-03-14T05:14:18.7971062Z 2025-03-14T05:14:18.7971349Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7971503Z out_39: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_38); out_38 = None 2025-03-14T05:14:18.7971566Z 2025-03-14T05:14:18.7971832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7972299Z x_70: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_39, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7972371Z 2025-03-14T05:14:18.7972630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7974362Z x_71: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_70, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_70 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7974454Z 2025-03-14T05:14:18.7974735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7974874Z out_40: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_71); x_71 = None 2025-03-14T05:14:18.7974939Z 2025-03-14T05:14:18.7975193Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7975682Z x_72: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_40, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_40 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7975753Z 2025-03-14T05:14:18.7976012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7977755Z x_73: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_72, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_72 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7977849Z 2025-03-14T05:14:18.7978126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7978278Z out_41: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_73); x_73 = None 2025-03-14T05:14:18.7978342Z 2025-03-14T05:14:18.7978594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7979075Z x_74: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_41, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_41 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7979137Z 2025-03-14T05:14:18.7979406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7981134Z x_75: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_74, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_74 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_3_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7981227Z 2025-03-14T05:14:18.7981668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7981821Z x_75 += out_39; out_42: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_75; x_75 = out_39 = None 2025-03-14T05:14:18.7981895Z 2025-03-14T05:14:18.7982215Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7982362Z out_43: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_42); out_42 = None 2025-03-14T05:14:18.7982426Z 2025-03-14T05:14:18.7982677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7983145Z x_76: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_43, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7983217Z 2025-03-14T05:14:18.7983472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7985320Z x_77: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_76, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_76 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7985422Z 2025-03-14T05:14:18.7985710Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7985853Z out_44: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_77); x_77 = None 2025-03-14T05:14:18.7985920Z 2025-03-14T05:14:18.7986196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7986696Z x_78: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_44, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_44 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7986776Z 2025-03-14T05:14:18.7987053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7988894Z x_79: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_78, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_78 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7988995Z 2025-03-14T05:14:18.7989291Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7989437Z out_45: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_79); x_79 = None 2025-03-14T05:14:18.7989507Z 2025-03-14T05:14:18.7989772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7990265Z x_80: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_45, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_45 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.7990345Z 2025-03-14T05:14:18.7990619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7992481Z x_81: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_80, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_80 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_4_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7992583Z 2025-03-14T05:14:18.7992868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.7993033Z x_81 += out_43; out_46: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_81; x_81 = out_43 = None 2025-03-14T05:14:18.7993104Z 2025-03-14T05:14:18.7993400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7993552Z out_47: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_46); out_46 = None 2025-03-14T05:14:18.7993627Z 2025-03-14T05:14:18.7993884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7994378Z x_82: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_47, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.7994468Z 2025-03-14T05:14:18.7994727Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7996472Z x_83: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_82, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_82 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7996548Z 2025-03-14T05:14:18.7996829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.7996970Z out_48: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_83); x_83 = None 2025-03-14T05:14:18.7997035Z 2025-03-14T05:14:18.7997300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.7997767Z x_84: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_48, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_48 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.7997853Z 2025-03-14T05:14:18.7998110Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.7999843Z x_85: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_84, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_84 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.7999917Z 2025-03-14T05:14:18.8000194Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8000334Z out_49: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.relu_(x_85); x_85 = None 2025-03-14T05:14:18.8000398Z 2025-03-14T05:14:18.8000647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8001120Z x_86: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.conv2d(out_49, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_49 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.8001209Z 2025-03-14T05:14:18.8001467Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8003207Z x_87: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.nn.functional.batch_norm(x_86, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_86 = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_2_modules_5_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8003282Z 2025-03-14T05:14:18.8003553Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.8003703Z x_87 += out_47; out_50: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = x_87; x_87 = out_47 = None 2025-03-14T05:14:18.8003766Z 2025-03-14T05:14:18.8004046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8004185Z out_51: "f32[4, 1024, 74, 76][5758976, 5624, 76, 1]cpu" = torch.relu_(out_50); out_50 = None 2025-03-14T05:14:18.8004275Z 2025-03-14T05:14:18.8004518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8004999Z x_88: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.8005064Z 2025-03-14T05:14:18.8005329Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8007028Z x_89: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_88, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_88 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8007096Z 2025-03-14T05:14:18.8007377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8007526Z out_52: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_89); x_89 = None 2025-03-14T05:14:18.8007598Z 2025-03-14T05:14:18.8007842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8008334Z x_90: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_52, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_52 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.8008421Z 2025-03-14T05:14:18.8008677Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8010393Z x_91: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_90, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_90 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8010467Z 2025-03-14T05:14:18.8010755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8010892Z out_53: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_91); x_91 = None 2025-03-14T05:14:18.8010955Z 2025-03-14T05:14:18.8011216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8011687Z x_92: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_53, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_53 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.8011760Z 2025-03-14T05:14:18.8012009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8013794Z x_93: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_92, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_92 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8013885Z 2025-03-14T05:14:18.8014138Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8014638Z x_94: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_, None, (2, 2), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_parameters_weight_ = None 2025-03-14T05:14:18.8014704Z 2025-03-14T05:14:18.8014987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8016819Z x_95: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_94, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_94 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_0_modules_shortcut_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8016888Z 2025-03-14T05:14:18.8017174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.8017336Z x_93 += x_95; out_54: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_93; x_93 = x_95 = None 2025-03-14T05:14:18.8017409Z 2025-03-14T05:14:18.8017688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8017851Z out_55: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_54); out_54 = None 2025-03-14T05:14:18.8017916Z 2025-03-14T05:14:18.8018174Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8018643Z x_96: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_55, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.8018719Z 2025-03-14T05:14:18.8018981Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8020743Z x_97: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_96, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_96 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8020835Z 2025-03-14T05:14:18.8021120Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8021263Z out_56: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_97); x_97 = None 2025-03-14T05:14:18.8021330Z 2025-03-14T05:14:18.8021601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8022082Z x_98: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_56, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_56 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.8022156Z 2025-03-14T05:14:18.8022424Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8024244Z x_99: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_98, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_98 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8024341Z 2025-03-14T05:14:18.8024639Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8024784Z out_57: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_99); x_99 = None 2025-03-14T05:14:18.8024863Z 2025-03-14T05:14:18.8025128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8025653Z x_100: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_57, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_57 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.8025725Z 2025-03-14T05:14:18.8026016Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8027861Z x_101: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_100, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_100 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_1_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8027960Z 2025-03-14T05:14:18.8028248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.8028418Z x_101 += out_55; out_58: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_101; x_101 = out_55 = None 2025-03-14T05:14:18.8028493Z 2025-03-14T05:14:18.8028779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8028936Z out_59: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_58); out_58 = None 2025-03-14T05:14:18.8029007Z 2025-03-14T05:14:18.8029274Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8029762Z x_102: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_59, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_parameters_weight_ = None 2025-03-14T05:14:18.8029836Z 2025-03-14T05:14:18.8030096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8031872Z x_103: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_102, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_102 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv1_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8031962Z 2025-03-14T05:14:18.8032248Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:196 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8032395Z out_60: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_103); x_103 = None 2025-03-14T05:14:18.8032461Z 2025-03-14T05:14:18.8032713Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8033192Z x_104: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.conv2d(out_60, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_, None, (1, 1), (1, 1), (1, 1), 1); out_60 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_parameters_weight_ = None 2025-03-14T05:14:18.8033265Z 2025-03-14T05:14:18.8033527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8035309Z x_105: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_104, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_104 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv2_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8035401Z 2025-03-14T05:14:18.8035687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:199 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8035833Z out_61: "f32[4, 512, 37, 38][719872, 1406, 38, 1]cpu" = torch.relu_(x_105); x_105 = None 2025-03-14T05:14:18.8035899Z 2025-03-14T05:14:18.8036158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8036644Z x_106: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.conv2d(out_61, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_, None, (1, 1), (0, 0), (1, 1), 1); out_61 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_parameters_weight_ = None 2025-03-14T05:14:18.8036719Z 2025-03-14T05:14:18.8036988Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/batch_norm.py:58 in forward, code: return F.batch_norm( 2025-03-14T05:14:18.8038775Z x_107: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.nn.functional.batch_norm(x_106, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_, l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_, training = False, eps = 1e-05); x_106 = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_mean_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_running_var_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_weight_ = l_self_modules_backbone_modules_bottom_up_stages_3_modules_2_modules_conv3_modules_norm_buffers_bias_ = None 2025-03-14T05:14:18.8038865Z 2025-03-14T05:14:18.8039148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:208 in forward, code: out += shortcut 2025-03-14T05:14:18.8039312Z x_107 += out_59; out_62: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = x_107; x_107 = out_59 = None 2025-03-14T05:14:18.8039393Z 2025-03-14T05:14:18.8039669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/resnet.py:209 in forward, code: out = F.relu_(out) 2025-03-14T05:14:18.8039818Z out_63: "f32[4, 2048, 37, 38][2879488, 1406, 38, 1]cpu" = torch.relu_(out_62); out_62 = None 2025-03-14T05:14:18.8039882Z 2025-03-14T05:14:18.8040134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8040686Z x_108: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(out_63, l_self_modules_backbone_lateral_convs_0_parameters_weight_, l_self_modules_backbone_lateral_convs_0_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_63 = l_self_modules_backbone_lateral_convs_0_parameters_weight_ = l_self_modules_backbone_lateral_convs_0_parameters_bias_ = None 2025-03-14T05:14:18.8040778Z 2025-03-14T05:14:18.8041024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8041582Z x_109: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_108, l_self_modules_backbone_output_convs_0_parameters_weight_, l_self_modules_backbone_output_convs_0_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_0_parameters_weight_ = l_self_modules_backbone_output_convs_0_parameters_bias_ = None 2025-03-14T05:14:18.8041646Z 2025-03-14T05:14:18.8042053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.8042318Z top_down_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.interpolate(x_108, scale_factor = 2.0, mode = 'nearest'); x_108 = None 2025-03-14T05:14:18.8042392Z 2025-03-14T05:14:18.8042636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8043189Z x_110: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(out_51, l_self_modules_backbone_lateral_convs_1_parameters_weight_, l_self_modules_backbone_lateral_convs_1_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_51 = l_self_modules_backbone_lateral_convs_1_parameters_weight_ = l_self_modules_backbone_lateral_convs_1_parameters_bias_ = None 2025-03-14T05:14:18.8043260Z 2025-03-14T05:14:18.8043610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.8043806Z prev_features: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = x_110 + top_down_features; x_110 = top_down_features = None 2025-03-14T05:14:18.8043883Z 2025-03-14T05:14:18.8044132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8044689Z x_111: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(prev_features, l_self_modules_backbone_output_convs_1_parameters_weight_, l_self_modules_backbone_output_convs_1_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_1_parameters_weight_ = l_self_modules_backbone_output_convs_1_parameters_bias_ = None 2025-03-14T05:14:18.8044761Z 2025-03-14T05:14:18.8045153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.8045476Z top_down_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.interpolate(prev_features, scale_factor = 2.0, mode = 'nearest'); prev_features = None 2025-03-14T05:14:18.8045542Z 2025-03-14T05:14:18.8045793Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8046355Z x_112: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(out_27, l_self_modules_backbone_lateral_convs_2_parameters_weight_, l_self_modules_backbone_lateral_convs_2_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_27 = l_self_modules_backbone_lateral_convs_2_parameters_weight_ = l_self_modules_backbone_lateral_convs_2_parameters_bias_ = None 2025-03-14T05:14:18.8046426Z 2025-03-14T05:14:18.8046782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.8046988Z prev_features_1: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = x_112 + top_down_features_1; x_112 = top_down_features_1 = None 2025-03-14T05:14:18.8047059Z 2025-03-14T05:14:18.8047301Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8047884Z x_113: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(prev_features_1, l_self_modules_backbone_output_convs_2_parameters_weight_, l_self_modules_backbone_output_convs_2_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_self_modules_backbone_output_convs_2_parameters_weight_ = l_self_modules_backbone_output_convs_2_parameters_bias_ = None 2025-03-14T05:14:18.8047948Z 2025-03-14T05:14:18.8048342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:153 in forward, code: top_down_features = F.interpolate(prev_features, scale_factor=2.0, mode="nearest") 2025-03-14T05:14:18.8048656Z top_down_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.interpolate(prev_features_1, scale_factor = 2.0, mode = 'nearest'); prev_features_1 = None 2025-03-14T05:14:18.8048731Z 2025-03-14T05:14:18.8048970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8049536Z x_114: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(out_11, l_self_modules_backbone_lateral_convs_3_parameters_weight_, l_self_modules_backbone_lateral_convs_3_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); out_11 = l_self_modules_backbone_lateral_convs_3_parameters_weight_ = l_self_modules_backbone_lateral_convs_3_parameters_bias_ = None 2025-03-14T05:14:18.8049601Z 2025-03-14T05:14:18.8049958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:155 in forward, code: prev_features = lateral_features + top_down_features 2025-03-14T05:14:18.8050172Z prev_features_2: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = x_114 + top_down_features_2; x_114 = top_down_features_2 = None 2025-03-14T05:14:18.8050252Z 2025-03-14T05:14:18.8050508Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8051108Z x_115: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(prev_features_2, l_self_modules_backbone_output_convs_3_parameters_weight_, l_self_modules_backbone_output_convs_3_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); prev_features_2 = l_self_modules_backbone_output_convs_3_parameters_weight_ = l_self_modules_backbone_output_convs_3_parameters_bias_ = None 2025-03-14T05:14:18.8051181Z 2025-03-14T05:14:18.8051539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/backbone/fpn.py:200 in forward, code: return [F.max_pool2d(x, kernel_size=1, stride=2, padding=0)] 2025-03-14T05:14:18.8051756Z res: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.max_pool2d(x_109, kernel_size = 1, stride = 2, padding = 0) 2025-03-14T05:14:18.8051821Z 2025-03-14T05:14:18.8052260Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8052414Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:14:18.8052488Z 2025-03-14T05:14:18.8052777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8052938Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:14:18.8053003Z 2025-03-14T05:14:18.8053428Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8053577Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:14:18.8053651Z 2025-03-14T05:14:18.8053950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8054098Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:14:18.8054161Z 2025-03-14T05:14:18.8054532Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.8054707Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:14:18.8054815Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:14:18.8054934Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:14:18.8055005Z 2025-03-14T05:14:18.8055327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.8055461Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:14:18.8055526Z 2025-03-14T05:14:18.8055853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.8055996Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:14:18.8056061Z 2025-03-14T05:14:18.8056436Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.8056663Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:14:18.8056731Z 2025-03-14T05:14:18.8057134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.8057265Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:14:18.8057676Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:14:18.8057809Z add_3: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:14:18.8057928Z x_116: "f32[269952, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:14:18.8057999Z 2025-03-14T05:14:18.8058417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8058574Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:14:18.8058639Z 2025-03-14T05:14:18.8058938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8059098Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:14:18.8059172Z 2025-03-14T05:14:18.8059601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8059758Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:14:18.8059824Z 2025-03-14T05:14:18.8060133Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8060270Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:14:18.8060343Z 2025-03-14T05:14:18.8060715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.8060915Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:14:18.8061017Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:14:18.8061147Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:14:18.8061211Z 2025-03-14T05:14:18.8061537Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.8061666Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:14:18.8061739Z 2025-03-14T05:14:18.8062058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.8062207Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:14:18.8062282Z 2025-03-14T05:14:18.8062658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.8062895Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:14:18.8062962Z 2025-03-14T05:14:18.8063379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.8063508Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:14:18.8063931Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:14:18.8064059Z add_4: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:14:18.8064278Z x_117: "f32[67488, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:14:18.8064953Z 2025-03-14T05:14:18.8066210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8066380Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:14:18.8066457Z 2025-03-14T05:14:18.8066751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8066948Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:14:18.8067015Z 2025-03-14T05:14:18.8067458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8067618Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:14:18.8067696Z 2025-03-14T05:14:18.8067994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8068144Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:14:18.8068214Z 2025-03-14T05:14:18.8068603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.8068802Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:14:18.8068918Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:14:18.8069043Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:14:18.8069119Z 2025-03-14T05:14:18.8069460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.8069595Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:14:18.8069662Z 2025-03-14T05:14:18.8070008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.8070142Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:14:18.8070209Z 2025-03-14T05:14:18.8070610Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.8070828Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:14:18.8070903Z 2025-03-14T05:14:18.8071316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.8071453Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:14:18.8071883Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:14:18.8072013Z add_5: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:14:18.8072128Z x_118: "f32[16872, 4][4, 1]cpu" = add_5.reshape(-1, 4); add_5 = None 2025-03-14T05:14:18.8072201Z 2025-03-14T05:14:18.8072625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8072790Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:14:18.8072872Z 2025-03-14T05:14:18.8073168Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8073302Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:14:18.8073377Z 2025-03-14T05:14:18.8073803Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8073967Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:14:18.8074033Z 2025-03-14T05:14:18.8074331Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8074464Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:14:18.8074540Z 2025-03-14T05:14:18.8074906Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.8075108Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:14:18.8075210Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:14:18.8075340Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:14:18.8075408Z 2025-03-14T05:14:18.8075745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.8075878Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:14:18.8075943Z 2025-03-14T05:14:18.8076279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.8076410Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:14:18.8076502Z 2025-03-14T05:14:18.8076882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.8077096Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:14:18.8077161Z 2025-03-14T05:14:18.8077576Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.8077705Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:14:18.8078123Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:14:18.8078248Z add_6: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:14:18.8078370Z x_119: "f32[4218, 4][4, 1]cpu" = add_6.reshape(-1, 4); add_6 = None 2025-03-14T05:14:18.8078437Z 2025-03-14T05:14:18.8078866Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8079008Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:18.8079099Z 2025-03-14T05:14:18.8079385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8079528Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:14:18.8079595Z 2025-03-14T05:14:18.8080040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:18.8080182Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:18.8080257Z 2025-03-14T05:14:18.8080547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8080691Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:14:18.8080758Z 2025-03-14T05:14:18.8081130Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:18.8081319Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:14:18.8081577Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:14:18.8081709Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:14:18.8081783Z 2025-03-14T05:14:18.8082103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:18.8082236Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:14:18.8082303Z 2025-03-14T05:14:18.8082668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:18.8082802Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:14:18.8082889Z 2025-03-14T05:14:18.8083269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:18.8083477Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:14:18.8083552Z 2025-03-14T05:14:18.8083956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:18.8084091Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:14:18.8084502Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_proposal_generator_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:14:18.8084632Z add_7: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:14:18.8084750Z x_120: "f32[1083, 4][4, 1]cpu" = add_7.reshape(-1, 4); add_7 = None 2025-03-14T05:14:18.8084824Z 2025-03-14T05:14:18.8085119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:18.8085255Z tensor: "f32[269952, 4][4, 1]cpu" = x_116.to(torch.float32); x_116 = None 2025-03-14T05:14:18.8085416Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_117.to(torch.float32); x_117 = None 2025-03-14T05:14:18.8085545Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_118.to(torch.float32); x_118 = None 2025-03-14T05:14:18.8085669Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_119.to(torch.float32); x_119 = None 2025-03-14T05:14:18.8085796Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_120.to(torch.float32); x_120 = None 2025-03-14T05:14:18.8085863Z 2025-03-14T05:14:18.8086148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8086653Z x_121: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(x_115, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_115 = None 2025-03-14T05:14:18.8086731Z 2025-03-14T05:14:18.8087008Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.8087215Z x_122: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_121, inplace = False); x_121 = None 2025-03-14T05:14:18.8087281Z 2025-03-14T05:14:18.8087666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.8088192Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.8088258Z 2025-03-14T05:14:18.8088632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.8089148Z x_131: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_122, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_122 = None 2025-03-14T05:14:18.8089246Z 2025-03-14T05:14:18.8089505Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8089991Z x_123: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(x_113, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_113 = None 2025-03-14T05:14:18.8090058Z 2025-03-14T05:14:18.8090342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.8090536Z x_124: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_123, inplace = False); x_123 = None 2025-03-14T05:14:18.8090609Z 2025-03-14T05:14:18.8090984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.8091504Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.8091576Z 2025-03-14T05:14:18.8091946Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.8092464Z x_132: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_124, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_124 = None 2025-03-14T05:14:18.8092530Z 2025-03-14T05:14:18.8092831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8093301Z x_125: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(x_111, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_111 = None 2025-03-14T05:14:18.8093374Z 2025-03-14T05:14:18.8093647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.8093838Z x_126: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_125, inplace = False); x_125 = None 2025-03-14T05:14:18.8093905Z 2025-03-14T05:14:18.8094285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.8094776Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.8094850Z 2025-03-14T05:14:18.8095219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.8095720Z x_133: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_126, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_126 = None 2025-03-14T05:14:18.8095809Z 2025-03-14T05:14:18.8096058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8096525Z x_127: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(x_109, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); x_109 = None 2025-03-14T05:14:18.8096591Z 2025-03-14T05:14:18.8096865Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.8097045Z x_128: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_127, inplace = False); x_127 = None 2025-03-14T05:14:18.8097118Z 2025-03-14T05:14:18.8097482Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.8097976Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:18.8098056Z 2025-03-14T05:14:18.8098415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.8098910Z x_134: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_128, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_128 = None 2025-03-14T05:14:18.8098985Z 2025-03-14T05:14:18.8099254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:18.8100012Z x_129: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(res, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); res = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:14:18.8100088Z 2025-03-14T05:14:18.8100365Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:18.8100554Z x_130: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_129, inplace = False); x_129 = None 2025-03-14T05:14:18.8100620Z 2025-03-14T05:14:18.8101006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:18.8101893Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:14:18.8101984Z 2025-03-14T05:14:18.8102353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:18.8103189Z x_135: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_130, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_130 = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_proposal_generator_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:14:18.8103268Z 2025-03-14T05:14:18.8103619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:14:18.8103802Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:14:18.8103956Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:14:18.8104138Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:14:18.8104349Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:14:18.8104523Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:14:18.8104692Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:14:18.8106132Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:14:18.8106374Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:14:18.8106556Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:14:18.8106694Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:14:18.8106775Z 2025-03-14T05:14:18.8107524Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:14:18.8107721Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_131.view(4, -1, 4, 296, 304); x_131 = None 2025-03-14T05:14:18.8107925Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:14:18.8108110Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:14:18.8108290Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_132.view(4, -1, 4, 148, 152); x_132 = None 2025-03-14T05:14:18.8108469Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:14:18.8108654Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:14:18.8108808Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_133.view(4, -1, 4, 74, 76); x_133 = None 2025-03-14T05:14:18.8108989Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:14:18.8109184Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:14:18.8109343Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_134.view(4, -1, 4, 37, 38); x_134 = None 2025-03-14T05:14:18.8109538Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:14:18.8109721Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:14:18.8109865Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_135.view(4, -1, 4, 19, 19); x_135 = None 2025-03-14T05:14:18.8110036Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:14:18.8110206Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:14:18.8110284Z 2025-03-14T05:14:18.8110706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.8110926Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:14:18.8110993Z 2025-03-14T05:14:18.8111452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.8111615Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:14:18.8111775Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:14:18.8111921Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:14:18.8112022Z 2025-03-14T05:14:18.8112410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.8112598Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:14:18.8112671Z 2025-03-14T05:14:18.8113009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.8113162Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:14:18.8113230Z 2025-03-14T05:14:18.8113562Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.8113702Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:18.8113841Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8113997Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:18.8114073Z 2025-03-14T05:14:18.8114400Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.8114539Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:18.8114664Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:18.8114833Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:14:18.8114900Z 2025-03-14T05:14:18.8115258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.8115389Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8115489Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:14:18.8115637Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:14:18.8115713Z 2025-03-14T05:14:18.8116030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.8116189Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:18.8116284Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:14:18.8116426Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:14:18.8116495Z 2025-03-14T05:14:18.8116846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.8117003Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.8117128Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:14:18.8117193Z 2025-03-14T05:14:18.8117499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.8117653Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.8117777Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:14:18.8117840Z 2025-03-14T05:14:18.8118140Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.8118311Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.8118431Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:14:18.8118497Z 2025-03-14T05:14:18.8118805Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.8119003Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:18.8119125Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:14:18.8119190Z 2025-03-14T05:14:18.8119529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.8119679Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:18.8119744Z 2025-03-14T05:14:18.8120075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.8120212Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:18.8120283Z 2025-03-14T05:14:18.8120626Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.8120773Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:18.8120898Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:14:18.8121077Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:18.8121219Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:14:18.8121291Z 2025-03-14T05:14:18.8121649Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.8121800Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:18.8121926Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:14:18.8122085Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:18.8122223Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:14:18.8122297Z 2025-03-14T05:14:18.8122627Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.8122754Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:18.8122918Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:18.8123058Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:14:18.8123124Z 2025-03-14T05:14:18.8123463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.8123580Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:18.8123753Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:18.8123908Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:14:18.8123986Z 2025-03-14T05:14:18.8124293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.8124403Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:18.8124522Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:18.8124596Z 2025-03-14T05:14:18.8124917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.8125022Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:18.8125138Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:18.8125214Z 2025-03-14T05:14:18.8125530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.8125654Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:18.8125786Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:18.8125860Z 2025-03-14T05:14:18.8126165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.8126286Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:18.8126413Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:18.8126486Z 2025-03-14T05:14:18.8126832Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.8127037Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:18.8127109Z 2025-03-14T05:14:18.8127468Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.8127631Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:14:18.8127705Z 2025-03-14T05:14:18.8128081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.8128266Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:14:18.8128340Z 2025-03-14T05:14:18.8128738Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.8128956Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:14:18.8129023Z 2025-03-14T05:14:18.8129461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.8129617Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:14:18.8129778Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:14:18.8129916Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:14:18.8130012Z 2025-03-14T05:14:18.8130382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.8130562Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:14:18.8130629Z 2025-03-14T05:14:18.8130963Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.8131113Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:14:18.8131186Z 2025-03-14T05:14:18.8131499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.8131645Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:14:18.8131774Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8131934Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:14:18.8132001Z 2025-03-14T05:14:18.8132322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.8132449Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:14:18.8132580Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:14:18.8132732Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:14:18.8132805Z 2025-03-14T05:14:18.8133127Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.8133258Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8133353Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:14:18.8133515Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:14:18.8133579Z 2025-03-14T05:14:18.8133898Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.8134047Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:14:18.8134151Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:14:18.8134281Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:14:18.8134358Z 2025-03-14T05:14:18.8134665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.8134826Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.8134944Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:14:18.8135014Z 2025-03-14T05:14:18.8135323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.8135474Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.8135595Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:14:18.8135659Z 2025-03-14T05:14:18.8135970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.8136141Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.8136262Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:14:18.8136330Z 2025-03-14T05:14:18.8136634Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.8136842Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:14:18.8136963Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:14:18.8137028Z 2025-03-14T05:14:18.8137368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.8137514Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:14:18.8137588Z 2025-03-14T05:14:18.8137917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.8138066Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:14:18.8138131Z 2025-03-14T05:14:18.8138479Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.8138617Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:14:18.8138756Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:14:18.8138933Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:14:18.8139088Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:14:18.8139170Z 2025-03-14T05:14:18.8139523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.8139662Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:14:18.8139795Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:14:18.8139950Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:14:18.8140099Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:14:18.8140165Z 2025-03-14T05:14:18.8140501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.8140619Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:14:18.8140788Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:14:18.8140933Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:14:18.8141001Z 2025-03-14T05:14:18.8141335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.8141472Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:14:18.8141645Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:14:18.8141800Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:14:18.8141872Z 2025-03-14T05:14:18.8142185Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.8142294Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:14:18.8142446Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:14:18.8142521Z 2025-03-14T05:14:18.8142823Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.8142927Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:14:18.8143044Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:14:18.8143118Z 2025-03-14T05:14:18.8143417Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.8143541Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:14:18.8143674Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:14:18.8143746Z 2025-03-14T05:14:18.8144049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.8144244Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:14:18.8144391Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:14:18.8144467Z 2025-03-14T05:14:18.8144844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.8145067Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:14:18.8145153Z 2025-03-14T05:14:18.8145495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.8145672Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:14:18.8145749Z 2025-03-14T05:14:18.8146144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.8146340Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:14:18.8146409Z 2025-03-14T05:14:18.8146829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.8147044Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:14:18.8147122Z 2025-03-14T05:14:18.8147565Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.8147730Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:14:18.8147889Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:14:18.8148058Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:14:18.8148125Z 2025-03-14T05:14:18.8148507Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.8148686Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:14:18.8148754Z 2025-03-14T05:14:18.8149093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.8149241Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:14:18.8149314Z 2025-03-14T05:14:18.8149635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.8149777Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:14:18.8149904Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8150064Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:14:18.8150131Z 2025-03-14T05:14:18.8150462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.8150588Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:14:18.8150717Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:14:18.8150872Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:14:18.8150948Z 2025-03-14T05:14:18.8151279Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.8151432Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8151527Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:14:18.8151670Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:14:18.8151738Z 2025-03-14T05:14:18.8152066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.8152218Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:14:18.8152324Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:14:18.8152460Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:14:18.8152533Z 2025-03-14T05:14:18.8152846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.8153016Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.8153133Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:14:18.8153209Z 2025-03-14T05:14:18.8153519Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.8153684Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.8153800Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:14:18.8153893Z 2025-03-14T05:14:18.8154196Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.8154359Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.8154475Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:14:18.8154555Z 2025-03-14T05:14:18.8154875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.8155074Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:14:18.8155195Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:14:18.8155262Z 2025-03-14T05:14:18.8155612Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.8155754Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:14:18.8155831Z 2025-03-14T05:14:18.8156167Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.8156310Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:14:18.8156375Z 2025-03-14T05:14:18.8156716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.8156848Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:14:18.8156994Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:14:18.8157145Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:14:18.8157304Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:14:18.8157367Z 2025-03-14T05:14:18.8157717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.8157851Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:14:18.8157977Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:14:18.8158124Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:14:18.8158269Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:14:18.8158331Z 2025-03-14T05:14:18.8158665Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.8158779Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:14:18.8158941Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:14:18.8159075Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:14:18.8159148Z 2025-03-14T05:14:18.8159470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.8159589Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:14:18.8159773Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:14:18.8159913Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:14:18.8159979Z 2025-03-14T05:14:18.8160283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.8160380Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:14:18.8160514Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:14:18.8160579Z 2025-03-14T05:14:18.8160881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.8160975Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:14:18.8161097Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:14:18.8161160Z 2025-03-14T05:14:18.8161462Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.8161574Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:14:18.8161712Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:14:18.8161774Z 2025-03-14T05:14:18.8162076Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.8162187Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:14:18.8162326Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:14:18.8162392Z 2025-03-14T05:14:18.8162744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.8162953Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:14:18.8163016Z 2025-03-14T05:14:18.8163340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.8163499Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:14:18.8163569Z 2025-03-14T05:14:18.8163927Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.8164105Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:14:18.8164168Z 2025-03-14T05:14:18.8164558Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.8164757Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:14:18.8164829Z 2025-03-14T05:14:18.8165242Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.8165393Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:14:18.8165555Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:14:18.8165696Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:14:18.8165760Z 2025-03-14T05:14:18.8166129Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.8166308Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:14:18.8166381Z 2025-03-14T05:14:18.8166684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.8166833Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:14:18.8166899Z 2025-03-14T05:14:18.8167213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.8167338Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:14:18.8167470Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8167614Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:14:18.8167685Z 2025-03-14T05:14:18.8167994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.8168122Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:14:18.8168239Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:14:18.8168410Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:14:18.8168477Z 2025-03-14T05:14:18.8168784Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.8168918Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8169017Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:14:18.8169145Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:14:18.8169218Z 2025-03-14T05:14:18.8169521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.8169673Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:14:18.8169767Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:14:18.8169901Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:14:18.8169964Z 2025-03-14T05:14:18.8170269Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.8170428Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.8170543Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:14:18.8170612Z 2025-03-14T05:14:18.8170907Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.8171058Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.8171183Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:14:18.8171255Z 2025-03-14T05:14:18.8171540Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.8171693Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.8171801Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:14:18.8171871Z 2025-03-14T05:14:18.8172182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.8172369Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:14:18.8172476Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:14:18.8172549Z 2025-03-14T05:14:18.8172875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.8173019Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:14:18.8173083Z 2025-03-14T05:14:18.8173413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.8173547Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:14:18.8173620Z 2025-03-14T05:14:18.8173955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.8174095Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:14:18.8174241Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:14:18.8174400Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:14:18.8174555Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:14:18.8174627Z 2025-03-14T05:14:18.8174957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.8175097Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:14:18.8175215Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:14:18.8175369Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:14:18.8175512Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:14:18.8175575Z 2025-03-14T05:14:18.8175899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.8176012Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:14:18.8176173Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:14:18.8176301Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:14:18.8176371Z 2025-03-14T05:14:18.8176687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.8176824Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:14:18.8176985Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:14:18.8177120Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:14:18.8177186Z 2025-03-14T05:14:18.8177495Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.8177608Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:14:18.8177728Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:14:18.8177790Z 2025-03-14T05:14:18.8178103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.8178201Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:14:18.8178323Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:14:18.8178387Z 2025-03-14T05:14:18.8178693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.8178809Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:14:18.8178948Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:14:18.8179015Z 2025-03-14T05:14:18.8179323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.8179434Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:14:18.8179574Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:14:18.8179657Z 2025-03-14T05:14:18.8180010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.8180221Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:14:18.8180295Z 2025-03-14T05:14:18.8180630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.8180800Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:14:18.8180866Z 2025-03-14T05:14:18.8181256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.8181634Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:14:18.8181717Z 2025-03-14T05:14:18.8182128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:18.8182349Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:14:18.8182415Z 2025-03-14T05:14:18.8182862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:18.8183075Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:14:18.8183227Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:14:18.8183369Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:14:18.8183437Z 2025-03-14T05:14:18.8183815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:18.8184013Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:14:18.8184094Z 2025-03-14T05:14:18.8184486Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:18.8184650Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:14:18.8184721Z 2025-03-14T05:14:18.8185063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:18.8185202Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:14:18.8185349Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8185499Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:14:18.8185575Z 2025-03-14T05:14:18.8185901Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:18.8186035Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:14:18.8186160Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:14:18.8186349Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:14:18.8186418Z 2025-03-14T05:14:18.8186744Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:18.8186905Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:18.8187003Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:14:18.8187135Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:14:18.8187207Z 2025-03-14T05:14:18.8187517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:18.8187670Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:14:18.8187766Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:14:18.8187905Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:14:18.8187972Z 2025-03-14T05:14:18.8188293Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:18.8188447Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:18.8188575Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:14:18.8188643Z 2025-03-14T05:14:18.8188958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:18.8189111Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:18.8189292Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:14:18.8189359Z 2025-03-14T05:14:18.8189669Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:18.8189829Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:18.8189946Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:14:18.8190025Z 2025-03-14T05:14:18.8190332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:18.8190520Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:14:18.8190630Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:14:18.8190706Z 2025-03-14T05:14:18.8191046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:18.8191197Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:14:18.8191264Z 2025-03-14T05:14:18.8191607Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:18.8191743Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:14:18.8191815Z 2025-03-14T05:14:18.8193170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:18.8193382Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:14:18.8193509Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:14:18.8193671Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:14:18.8193829Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:14:18.8193901Z 2025-03-14T05:14:18.8194267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:18.8194410Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:14:18.8194529Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:14:18.8194688Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:14:18.8194822Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:14:18.8194894Z 2025-03-14T05:14:18.8195219Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:18.8195340Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:14:18.8195499Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:14:18.8195641Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:14:18.8195707Z 2025-03-14T05:14:18.8196040Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:18.8196174Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:14:18.8196349Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:14:18.8196480Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:14:18.8196553Z 2025-03-14T05:14:18.8196879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:18.8196988Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:14:18.8197102Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:14:18.8197177Z 2025-03-14T05:14:18.8197477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:18.8197585Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:14:18.8197699Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:14:18.8197773Z 2025-03-14T05:14:18.8198075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:18.8198198Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:14:18.8198332Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:14:18.8198406Z 2025-03-14T05:14:18.8198702Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:18.8198824Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:14:18.8198969Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:14:18.8199042Z 2025-03-14T05:14:18.8199382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:18.8199591Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:14:18.8199663Z 2025-03-14T05:14:18.8199993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:18.8200158Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:14:18.8200223Z 2025-03-14T05:14:18.8200603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:18.8200775Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:14:18.8200860Z 2025-03-14T05:14:18.8201335Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:14:18.8201478Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:14:18.8201543Z 2025-03-14T05:14:18.8201845Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8201986Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:14:18.8202075Z 2025-03-14T05:14:18.8202511Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.8202631Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:14:18.8202744Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:14:18.8202863Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:14:18.8202927Z 2025-03-14T05:14:18.8203393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.8203526Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.8203764Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:14:18.8203829Z 2025-03-14T05:14:18.8224156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.8224455Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.8224546Z 2025-03-14T05:14:18.8224894Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8225042Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:14:18.8225118Z 2025-03-14T05:14:18.8225678Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.8225821Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:14:18.8225983Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:14:18.8226116Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:14:18.8226198Z 2025-03-14T05:14:18.8226701Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.8226842Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.8227097Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:14:18.8227171Z 2025-03-14T05:14:18.8227653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.8227830Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.8227906Z 2025-03-14T05:14:18.8228214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8228354Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:14:18.8228423Z 2025-03-14T05:14:18.8228908Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.8229057Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:14:18.8229184Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:14:18.8229319Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:14:18.8229393Z 2025-03-14T05:14:18.8229893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.8230043Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.8230291Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:14:18.8230370Z 2025-03-14T05:14:18.8230843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.8231023Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.8231092Z 2025-03-14T05:14:18.8231406Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8231537Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:14:18.8231612Z 2025-03-14T05:14:18.8232058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.8232201Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:14:18.8232313Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:14:18.8232439Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:14:18.8232525Z 2025-03-14T05:14:18.8233010Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.8233161Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:18.8233410Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:14:18.8233488Z 2025-03-14T05:14:18.8233966Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.8234149Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.8234222Z 2025-03-14T05:14:18.8234541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8234675Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:14:18.8234754Z 2025-03-14T05:14:18.8235204Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:18.8235332Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:14:18.8235466Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:14:18.8235595Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:14:18.8235663Z 2025-03-14T05:14:18.8236145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:18.8236333Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:14:18.8236584Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:14:18.8236653Z 2025-03-14T05:14:18.8237132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:18.8237301Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:18.8237381Z 2025-03-14T05:14:18.8237684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:18.8237819Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:14:18.8237889Z 2025-03-14T05:14:18.8238191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.8238581Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:14:18.8238674Z 2025-03-14T05:14:18.8238975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.8239471Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:14:18.8239547Z 2025-03-14T05:14:18.8239834Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:18.8240052Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:14:18.8240123Z 2025-03-14T05:14:18.8240530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:14:18.8240680Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:14:18.8240756Z 2025-03-14T05:14:18.8241066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:18.8241227Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:14:18.8241296Z 2025-03-14T05:14:18.8241700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:14:18.8241839Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:14:18.8241980Z 2025-03-14T05:14:18.8242484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:14:18.8242638Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:14:18.8242763Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:18.8242948Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:14:18.8243088Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:14:18.8243166Z 2025-03-14T05:14:18.8243551Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:14:18.8243685Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:14:18.8243817Z 2025-03-14T05:14:25.4430778Z 2025-03-14T05:14:25.4435755Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:25.4440609Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:14:25.4443267Z l_features_p2_ = L_features_p2_ 2025-03-14T05:14:25.4443513Z l_features_p3_ = L_features_p3_ 2025-03-14T05:14:25.4443750Z l_features_p4_ = L_features_p4_ 2025-03-14T05:14:25.4443979Z l_features_p5_ = L_features_p5_ 2025-03-14T05:14:25.4444207Z l_features_p6_ = L_features_p6_ 2025-03-14T05:14:25.4444622Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:14:25.4445225Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:14:25.4445813Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:14:25.4446408Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:14:25.4446994Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:14:25.4447563Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:14:25.4448088Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:14:25.4448676Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:14:25.4449258Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:14:25.4449817Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:14:25.4450404Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:14:25.4450769Z 2025-03-14T05:14:25.4451350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4452017Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:14:25.4452290Z 2025-03-14T05:14:25.4452688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4453185Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:14:25.4453444Z 2025-03-14T05:14:25.4453972Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4454604Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:14:25.4454878Z 2025-03-14T05:14:25.4455262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4455773Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:14:25.4456038Z 2025-03-14T05:14:25.4456503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4457123Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:14:25.4457461Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:14:25.4457738Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:14:25.4457986Z 2025-03-14T05:14:25.4458410Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4458926Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:14:25.4459181Z 2025-03-14T05:14:25.4459599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4460104Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:14:25.4460354Z 2025-03-14T05:14:25.4460817Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4461460Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:14:25.4461792Z 2025-03-14T05:14:25.4462296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4462901Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:14:25.4463400Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:14:25.4463891Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:14:25.4464367Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:14:25.4464640Z 2025-03-14T05:14:25.4465232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4465924Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:14:25.4466222Z 2025-03-14T05:14:25.4466625Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4467146Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:14:25.4467433Z 2025-03-14T05:14:25.4467977Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4468643Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:14:25.4468934Z 2025-03-14T05:14:25.4469336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4469864Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:14:25.4470139Z 2025-03-14T05:14:25.4470617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4471291Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:14:25.4471672Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:14:25.4471978Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:14:25.4472234Z 2025-03-14T05:14:25.4472693Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4473254Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:14:25.4473526Z 2025-03-14T05:14:25.4473980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4474537Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:14:25.4474809Z 2025-03-14T05:14:25.4475322Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4476029Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:14:25.4476389Z 2025-03-14T05:14:25.4476938Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4477609Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:14:25.4478137Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:14:25.4478659Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:14:25.4479002Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:14:25.4479243Z 2025-03-14T05:14:25.4479764Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4480392Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:14:25.4480658Z 2025-03-14T05:14:25.4481037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4481910Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:14:25.4482194Z 2025-03-14T05:14:25.4482745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4483408Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:14:25.4483697Z 2025-03-14T05:14:25.4484091Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4484638Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:14:25.4484910Z 2025-03-14T05:14:25.4485380Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4486042Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:14:25.4486402Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:14:25.4486684Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:14:25.4486932Z 2025-03-14T05:14:25.4487357Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4487880Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:14:25.4488136Z 2025-03-14T05:14:25.4488554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4489062Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:14:25.4489311Z 2025-03-14T05:14:25.4489781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4490430Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:14:25.4490764Z 2025-03-14T05:14:25.4491266Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4491903Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:14:25.4492440Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:14:25.4492982Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:14:25.4493358Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:14:25.4493634Z 2025-03-14T05:14:25.4494179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4494840Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:14:25.4495126Z 2025-03-14T05:14:25.4495514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4496023Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:14:25.4496294Z 2025-03-14T05:14:25.4496835Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4497489Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:14:25.4497770Z 2025-03-14T05:14:25.4498165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4498689Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:14:25.4498961Z 2025-03-14T05:14:25.4499442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4500107Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:14:25.4500475Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:14:25.4500764Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:14:25.4501013Z 2025-03-14T05:14:25.4501457Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4501995Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:14:25.4502257Z 2025-03-14T05:14:25.4502696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4503230Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:14:25.4503490Z 2025-03-14T05:14:25.4503983Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4507082Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:14:25.4508411Z 2025-03-14T05:14:25.4509014Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4509707Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:14:25.4510218Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:14:25.4510727Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:14:25.4511074Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:14:25.4511321Z 2025-03-14T05:14:25.4511856Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4512863Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:25.4513201Z 2025-03-14T05:14:25.4513603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4514107Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:14:25.4514376Z 2025-03-14T05:14:25.4515217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4516982Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:25.4518089Z 2025-03-14T05:14:25.4518539Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4519100Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:14:25.4519968Z 2025-03-14T05:14:25.4520688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4521999Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:14:25.4522409Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:14:25.4522707Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:14:25.4522960Z 2025-03-14T05:14:25.4523402Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4524768Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:14:25.4525067Z 2025-03-14T05:14:25.4525958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4526489Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:14:25.4526740Z 2025-03-14T05:14:25.4527214Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4527859Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:14:25.4528194Z 2025-03-14T05:14:25.4529182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4529832Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:14:25.4530332Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:14:25.4530820Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:14:25.4531147Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:14:25.4531387Z 2025-03-14T05:14:25.4531781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:25.4532449Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:14:25.4532768Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:14:25.4533089Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:14:25.4533383Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:14:25.4534028Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:14:25.4534282Z 2025-03-14T05:14:25.4534640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4535386Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:14:25.4535932Z 2025-03-14T05:14:25.4536324Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4536861Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:14:25.4537171Z 2025-03-14T05:14:25.4537867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4538713Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4539401Z 2025-03-14T05:14:25.4539870Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4540717Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:14:25.4541260Z 2025-03-14T05:14:25.4541619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4542361Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:14:25.4542905Z 2025-03-14T05:14:25.4543281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4543830Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:14:25.4544153Z 2025-03-14T05:14:25.4544721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4545614Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4546152Z 2025-03-14T05:14:25.4546617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4547457Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:14:25.4547999Z 2025-03-14T05:14:25.4548354Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4549086Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:14:25.4549611Z 2025-03-14T05:14:25.4549987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4550516Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:14:25.4550832Z 2025-03-14T05:14:25.4551323Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4552174Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4552717Z 2025-03-14T05:14:25.4553170Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4553982Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:14:25.4554505Z 2025-03-14T05:14:25.4554855Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4555568Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:14:25.4556076Z 2025-03-14T05:14:25.4556432Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4556938Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:14:25.4557235Z 2025-03-14T05:14:25.4557706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4558587Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4559218Z 2025-03-14T05:14:25.4559745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4560955Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:14:25.4561528Z 2025-03-14T05:14:25.4561934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4562966Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:14:25.4563746Z 2025-03-14T05:14:25.4564201Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4564808Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:14:25.4565178Z 2025-03-14T05:14:25.4578472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4579778Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:14:25.4580595Z 2025-03-14T05:14:25.4581075Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4582339Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:14:25.4583077Z 2025-03-14T05:14:25.4583530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:14:25.4584114Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:14:25.4584572Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:14:25.4584963Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:14:25.4585356Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:14:25.4585733Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:14:25.4586228Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:14:25.4586586Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:14:25.4586942Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:14:25.4587301Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:14:25.4587689Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:14:25.4587957Z 2025-03-14T05:14:25.4588496Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:14:25.4589168Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:14:25.4589600Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:14:25.4590033Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:14:25.4590585Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:14:25.4590993Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:14:25.4591408Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:14:25.4591796Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:14:25.4592181Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:14:25.4592626Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:14:25.4593020Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:14:25.4593443Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:14:25.4593844Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:14:25.4594228Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:14:25.4594592Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:14:25.4594989Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:14:25.4595292Z 2025-03-14T05:14:25.4595815Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4596505Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:14:25.4596842Z 2025-03-14T05:14:25.4597384Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4598049Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:14:25.4598422Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:14:25.4598810Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:14:25.4599083Z 2025-03-14T05:14:25.4599567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4600187Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:14:25.4600489Z 2025-03-14T05:14:25.4600926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4601459Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:14:25.4601744Z 2025-03-14T05:14:25.4602153Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4602669Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4602990Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4603336Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:25.4603614Z 2025-03-14T05:14:25.4604025Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4604528Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4604838Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4605176Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:14:25.4605457Z 2025-03-14T05:14:25.4605880Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4606384Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4606681Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:14:25.4606960Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:14:25.4607215Z 2025-03-14T05:14:25.4607621Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4608145Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:25.4608450Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:14:25.4608729Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:14:25.4608990Z 2025-03-14T05:14:25.4609422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4609946Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4610285Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:14:25.4610524Z 2025-03-14T05:14:25.4610917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4611431Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4611759Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:14:25.4611996Z 2025-03-14T05:14:25.4612415Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4612931Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4613259Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:14:25.4613496Z 2025-03-14T05:14:25.4613888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4614537Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:25.4614894Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:14:25.4615134Z 2025-03-14T05:14:25.4615566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4616111Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:25.4616379Z 2025-03-14T05:14:25.4616801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4617330Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:25.4617593Z 2025-03-14T05:14:25.4618026Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4618565Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:25.4618890Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:14:25.4619257Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:25.4619622Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:14:25.4619911Z 2025-03-14T05:14:25.4620347Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4620902Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:25.4621232Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:14:25.4621571Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:25.4621924Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:14:25.4622197Z 2025-03-14T05:14:25.4622629Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4623145Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:25.4623491Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:25.4623854Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:14:25.4624121Z 2025-03-14T05:14:25.4624646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4625175Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:25.4625538Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:25.4625970Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:14:25.4626253Z 2025-03-14T05:14:25.4626666Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4627145Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:25.4627427Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:25.4627699Z 2025-03-14T05:14:25.4628108Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4628584Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:25.4628856Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:25.4629104Z 2025-03-14T05:14:25.4629513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4630010Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:25.4630324Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:25.4630584Z 2025-03-14T05:14:25.4630990Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4631485Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:25.4631792Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:25.4632051Z 2025-03-14T05:14:25.4632514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4633122Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:25.4633441Z 2025-03-14T05:14:25.4633874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4634438Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:14:25.4634742Z 2025-03-14T05:14:25.4635217Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4635830Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:14:25.4636130Z 2025-03-14T05:14:25.4636617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4637278Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:14:25.4637607Z 2025-03-14T05:14:25.4638118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4638752Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:14:25.4639111Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:14:25.4639494Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:14:25.4639756Z 2025-03-14T05:14:25.4640206Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4640816Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:14:25.4641107Z 2025-03-14T05:14:25.4641523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4642035Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:14:25.4642297Z 2025-03-14T05:14:25.4642700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4643203Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4643520Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4643861Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:14:25.4644138Z 2025-03-14T05:14:25.4644546Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4645041Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4645349Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4645683Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:14:25.4645963Z 2025-03-14T05:14:25.4646385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4646872Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4647173Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:14:25.4647457Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:14:25.4647712Z 2025-03-14T05:14:25.4648117Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4648642Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:14:25.4648942Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:14:25.4649220Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:14:25.4649474Z 2025-03-14T05:14:25.4649875Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4650390Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4650718Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:14:25.4650957Z 2025-03-14T05:14:25.4651346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4651858Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4652183Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:14:25.4652444Z 2025-03-14T05:14:25.4652827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4653331Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4653661Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:14:25.4653906Z 2025-03-14T05:14:25.4654320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4654855Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:14:25.4655206Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:14:25.4655440Z 2025-03-14T05:14:25.4655862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4656392Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:14:25.4656653Z 2025-03-14T05:14:25.4657063Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4657584Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:14:25.4657838Z 2025-03-14T05:14:25.4658267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4658801Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:14:25.4659145Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:14:25.4659490Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:14:25.4659849Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:14:25.4660135Z 2025-03-14T05:14:25.4660566Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4661116Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:14:25.4661440Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:14:25.4661771Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:14:25.4662122Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:14:25.4662386Z 2025-03-14T05:14:25.4662810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4663316Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:14:25.4663654Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:14:25.4664013Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:14:25.4664356Z 2025-03-14T05:14:25.4664801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4665319Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:14:25.4665715Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:14:25.4666073Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:14:25.4666340Z 2025-03-14T05:14:25.4666745Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4667220Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:14:25.4667521Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:14:25.4667770Z 2025-03-14T05:14:25.4668171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4668643Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:14:25.4668920Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:14:25.4669165Z 2025-03-14T05:14:25.4669571Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4670065Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:14:25.4670387Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:14:25.4670651Z 2025-03-14T05:14:25.4671051Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4671539Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:14:25.4671852Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:14:25.4672115Z 2025-03-14T05:14:25.4672585Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4673198Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:14:25.4673545Z 2025-03-14T05:14:25.4673973Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4674539Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:14:25.4674834Z 2025-03-14T05:14:25.4675320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4675945Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:14:25.4676249Z 2025-03-14T05:14:25.4676753Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4677432Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:14:25.4677766Z 2025-03-14T05:14:25.4678292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4678941Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:14:25.4679333Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:14:25.4679678Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:14:25.4679938Z 2025-03-14T05:14:25.4680394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4681010Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:14:25.4681299Z 2025-03-14T05:14:25.4681853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4682366Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:14:25.4682629Z 2025-03-14T05:14:25.4683032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4683535Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4683851Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4684183Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:14:25.4684456Z 2025-03-14T05:14:25.4684862Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4685355Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4685655Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4686057Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:14:25.4686329Z 2025-03-14T05:14:25.4686731Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4687253Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4687529Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:14:25.4687812Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:14:25.4688069Z 2025-03-14T05:14:25.4688469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4688993Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:14:25.4689302Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:14:25.4689581Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:14:25.4689833Z 2025-03-14T05:14:25.4690229Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4690743Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4691076Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:14:25.4691318Z 2025-03-14T05:14:25.4691704Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4692205Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4692568Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:14:25.4692811Z 2025-03-14T05:14:25.4693200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4693705Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4694030Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:14:25.4694268Z 2025-03-14T05:14:25.4694685Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4695224Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:14:25.4695574Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:14:25.4695808Z 2025-03-14T05:14:25.4696233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4696766Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:14:25.4697031Z 2025-03-14T05:14:25.4697446Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4697979Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:14:25.4698238Z 2025-03-14T05:14:25.4698670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4699204Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:14:25.4699550Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:14:25.4699889Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:14:25.4700266Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:14:25.4700530Z 2025-03-14T05:14:25.4700958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4701500Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:14:25.4701814Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:14:25.4702148Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:14:25.4702500Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:14:25.4702763Z 2025-03-14T05:14:25.4703184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4703683Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:14:25.4704025Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:14:25.4704474Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:14:25.4704746Z 2025-03-14T05:14:25.4705191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4705746Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:14:25.4706086Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:14:25.4706443Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:14:25.4706712Z 2025-03-14T05:14:25.4707113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4707595Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:14:25.4707870Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:14:25.4708114Z 2025-03-14T05:14:25.4708510Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4708978Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:14:25.4709247Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:14:25.4709488Z 2025-03-14T05:14:25.4709883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4710373Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:14:25.4710691Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:14:25.4710952Z 2025-03-14T05:14:25.4711346Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4711827Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:14:25.4712131Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:14:25.4712405Z 2025-03-14T05:14:25.4712843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4713457Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:14:25.4713761Z 2025-03-14T05:14:25.4714181Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4714728Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:14:25.4715010Z 2025-03-14T05:14:25.4715471Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4716078Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:14:25.4716368Z 2025-03-14T05:14:25.4716850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4717499Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:14:25.4717820Z 2025-03-14T05:14:25.4718368Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4718999Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:14:25.4719380Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:14:25.4719725Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:14:25.4719991Z 2025-03-14T05:14:25.4720448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4721056Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:14:25.4721348Z 2025-03-14T05:14:25.4721737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4722258Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:14:25.4722519Z 2025-03-14T05:14:25.4722917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4723418Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4723730Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4724064Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:14:25.4724337Z 2025-03-14T05:14:25.4724739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4725233Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4725535Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4725899Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:14:25.4726174Z 2025-03-14T05:14:25.4726579Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4727090Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4727371Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:14:25.4727657Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:14:25.4727913Z 2025-03-14T05:14:25.4728312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4728826Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:14:25.4729130Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:14:25.4729407Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:14:25.4729661Z 2025-03-14T05:14:25.4730059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4730574Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4730904Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:14:25.4731144Z 2025-03-14T05:14:25.4731531Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4732032Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4732376Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:14:25.4732614Z 2025-03-14T05:14:25.4732996Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4733496Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4733813Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:14:25.4734072Z 2025-03-14T05:14:25.4734461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4735002Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:14:25.4735354Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:14:25.4735592Z 2025-03-14T05:14:25.4736015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4736553Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:14:25.4736818Z 2025-03-14T05:14:25.4737239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4737767Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:14:25.4738029Z 2025-03-14T05:14:25.4738461Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4739020Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:14:25.4739354Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:14:25.4739722Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:14:25.4740090Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:14:25.4740351Z 2025-03-14T05:14:25.4740796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4741954Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:14:25.4742296Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:14:25.4743088Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:14:25.4743472Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:14:25.4743750Z 2025-03-14T05:14:25.4744254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4744795Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:14:25.4745146Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:14:25.4745975Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:14:25.4746565Z 2025-03-14T05:14:25.4747521Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4748528Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:14:25.4749153Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:14:25.4749724Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:14:25.4750077Z 2025-03-14T05:14:25.4750884Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4752172Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:14:25.4752876Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:14:25.4753314Z 2025-03-14T05:14:25.4753940Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4754671Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:14:25.4755089Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:14:25.4755454Z 2025-03-14T05:14:25.4756073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4756818Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:14:25.4757278Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:14:25.4757675Z 2025-03-14T05:14:25.4758113Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4758622Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:14:25.4758978Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:14:25.4759248Z 2025-03-14T05:14:25.4759712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4760367Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:14:25.4760691Z 2025-03-14T05:14:25.4761139Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4761723Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:14:25.4762028Z 2025-03-14T05:14:25.4762527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4763163Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:14:25.4763477Z 2025-03-14T05:14:25.4763987Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4764677Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:14:25.4765019Z 2025-03-14T05:14:25.4765560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4766249Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:14:25.4766623Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:14:25.4766982Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:14:25.4767252Z 2025-03-14T05:14:25.4767755Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4768353Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:14:25.4768645Z 2025-03-14T05:14:25.4769047Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4769567Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:14:25.4769840Z 2025-03-14T05:14:25.4770239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4770746Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4771062Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4771397Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:14:25.4771672Z 2025-03-14T05:14:25.4772088Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4772594Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4772923Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4773263Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:14:25.4773539Z 2025-03-14T05:14:25.4773970Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4774466Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4774743Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:14:25.4775030Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:14:25.4775286Z 2025-03-14T05:14:25.4775689Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4776215Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:14:25.4776532Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:14:25.4776810Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:14:25.4777067Z 2025-03-14T05:14:25.4777474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4777990Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4778321Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:14:25.4778559Z 2025-03-14T05:14:25.4778955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4779493Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4779822Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:14:25.4780061Z 2025-03-14T05:14:25.4780456Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4780964Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4781348Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:14:25.4781731Z 2025-03-14T05:14:25.4782144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4782700Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:14:25.4783064Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:14:25.4783306Z 2025-03-14T05:14:25.4783751Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4784393Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:14:25.4784689Z 2025-03-14T05:14:25.4785154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4785741Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:14:25.4786031Z 2025-03-14T05:14:25.4786476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4787154Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:14:25.4787517Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:14:25.4787928Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:14:25.4788324Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:14:25.4788618Z 2025-03-14T05:14:25.4789106Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4789712Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:14:25.4790071Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:14:25.4790444Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:14:25.4790832Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:14:25.4791124Z 2025-03-14T05:14:25.4791599Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4792169Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:14:25.4792537Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:14:25.4792920Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:14:25.4793185Z 2025-03-14T05:14:25.4793623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4794179Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:14:25.4794522Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:14:25.4794891Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:14:25.4795151Z 2025-03-14T05:14:25.4795594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4796076Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:14:25.4796350Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:14:25.4796597Z 2025-03-14T05:14:25.4797006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4797485Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:14:25.4797753Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:14:25.4797999Z 2025-03-14T05:14:25.4798401Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4798897Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:14:25.4799210Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:14:25.4799469Z 2025-03-14T05:14:25.4799874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4800364Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:14:25.4800692Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:14:25.4800952Z 2025-03-14T05:14:25.4801405Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4802031Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:14:25.4802344Z 2025-03-14T05:14:25.4802776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4803339Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:14:25.4803630Z 2025-03-14T05:14:25.4804118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4804733Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:14:25.4805037Z 2025-03-14T05:14:25.4805628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:14:25.4806336Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:14:25.4806608Z 2025-03-14T05:14:25.4806994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4807507Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:14:25.4807771Z 2025-03-14T05:14:25.4808282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.4808890Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:14:25.4809156Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:14:25.4809447Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:14:25.4809682Z 2025-03-14T05:14:25.4810228Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.4810872Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.4811299Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:14:25.4811648Z 2025-03-14T05:14:25.4812184Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.4812857Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.4813142Z 2025-03-14T05:14:25.4813527Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4814002Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:14:25.4814248Z 2025-03-14T05:14:25.4814780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.4815375Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:14:25.4815676Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:14:25.4815963Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:14:25.4816206Z 2025-03-14T05:14:25.4816752Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.4817395Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.4817826Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:14:25.4818181Z 2025-03-14T05:14:25.4818723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.4819395Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.4819681Z 2025-03-14T05:14:25.4820066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4820544Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:14:25.4820793Z 2025-03-14T05:14:25.4821317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.4821938Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:14:25.4822219Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:14:25.4822499Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:14:25.4822737Z 2025-03-14T05:14:25.4823298Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.4823942Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.4824476Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:14:25.4824868Z 2025-03-14T05:14:25.4825445Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.4826134Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.4826436Z 2025-03-14T05:14:25.4826843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4827349Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:14:25.4827609Z 2025-03-14T05:14:25.4828154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.4828818Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:14:25.4829111Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:14:25.4829424Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:14:25.4829677Z 2025-03-14T05:14:25.4830250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.4830922Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.4831369Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:14:25.4831746Z 2025-03-14T05:14:25.4832317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.4833017Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.4833319Z 2025-03-14T05:14:25.4833709Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4834190Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:14:25.4834436Z 2025-03-14T05:14:25.4834955Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.4835678Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:14:25.4835951Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:14:25.4836228Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:14:25.4836466Z 2025-03-14T05:14:25.4837005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.4837690Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:14:25.4838148Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:14:25.4838502Z 2025-03-14T05:14:25.4839046Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.4839717Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.4840000Z 2025-03-14T05:14:25.4840385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4840864Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:14:25.4841103Z 2025-03-14T05:14:25.4841472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:25.4842210Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:14:25.4842702Z 2025-03-14T05:14:25.4843058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:25.4844406Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:14:25.4844993Z 2025-03-14T05:14:25.4845366Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:25.4845900Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:14:25.4846220Z 2025-03-14T05:14:25.4846698Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:14:25.4847285Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:14:25.4847545Z 2025-03-14T05:14:25.4847930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:25.4848416Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:14:25.4848680Z 2025-03-14T05:14:25.4849126Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:14:25.4849705Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:14:25.4849960Z 2025-03-14T05:14:25.4850523Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:14:25.4851178Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:14:25.4851488Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:25.4851828Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:14:25.4852166Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:14:25.4852413Z 2025-03-14T05:14:25.4852864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:14:25.4853399Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:14:25.4853634Z 2025-03-14T05:14:25.4853919Z 2025-03-14T05:14:25.4854015Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:25.4856189Z def forward(self, L_features_p2_: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu", L_features_p3_: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu", L_features_p4_: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu", L_features_p5_: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu", L_features_p6_: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_: "f32[3, 4][4, 1]cpu", L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_: "f32[3, 4][4, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_weight_: "f32[256, 256, 3, 3][2304, 9, 3, 1]cpu", L_self_modules_rpn_head_modules_conv_parameters_bias_: "f32[256][1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_: "f32[3, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_: "f32[3][1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_: "f32[12, 256, 1, 1][256, 1, 1, 1]cpu", L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_: "f32[12][1]cpu"): 2025-03-14T05:14:25.4858454Z l_features_p2_ = L_features_p2_ 2025-03-14T05:14:25.4858681Z l_features_p3_ = L_features_p3_ 2025-03-14T05:14:25.4858897Z l_features_p4_ = L_features_p4_ 2025-03-14T05:14:25.4859113Z l_features_p5_ = L_features_p5_ 2025-03-14T05:14:25.4859320Z l_features_p6_ = L_features_p6_ 2025-03-14T05:14:25.4859706Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ 2025-03-14T05:14:25.4860255Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ 2025-03-14T05:14:25.4860794Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ 2025-03-14T05:14:25.4861330Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ 2025-03-14T05:14:25.4861860Z l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = L_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ 2025-03-14T05:14:25.4862371Z l_self_modules_rpn_head_modules_conv_parameters_weight_ = L_self_modules_rpn_head_modules_conv_parameters_weight_ 2025-03-14T05:14:25.4862878Z l_self_modules_rpn_head_modules_conv_parameters_bias_ = L_self_modules_rpn_head_modules_conv_parameters_bias_ 2025-03-14T05:14:25.4863408Z l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ 2025-03-14T05:14:25.4863984Z l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = L_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ 2025-03-14T05:14:25.4864607Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ 2025-03-14T05:14:25.4865205Z l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = L_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ 2025-03-14T05:14:25.4865588Z 2025-03-14T05:14:25.4866145Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4866796Z arange: "f32[304][1]cpu" = torch.arange(0.0, 1216, step = 4, dtype = torch.float32) 2025-03-14T05:14:25.4867074Z 2025-03-14T05:14:25.4867463Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4867958Z shifts_x: "f32[304][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:14:25.4868216Z 2025-03-14T05:14:25.4868742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4869379Z arange_1: "f32[296][1]cpu" = torch.arange(0.0, 1184, step = 4, dtype = torch.float32) 2025-03-14T05:14:25.4869653Z 2025-03-14T05:14:25.4870053Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4870543Z shifts_y: "f32[296][1]cpu" = arange_1.to(device(type='cpu')); arange_1 = None 2025-03-14T05:14:25.4870816Z 2025-03-14T05:14:25.4871308Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4871910Z meshgrid = torch.functional.meshgrid(shifts_y, shifts_x); shifts_y = shifts_x = None 2025-03-14T05:14:25.4872247Z shift_y: "f32[296, 304][1, 0]cpu" = meshgrid[0] 2025-03-14T05:14:25.4872519Z shift_x: "f32[296, 304][0, 1]cpu" = meshgrid[1]; meshgrid = None 2025-03-14T05:14:25.4872752Z 2025-03-14T05:14:25.4873171Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4873688Z shift_x_1: "f32[89984][1]cpu" = shift_x.reshape(-1); shift_x = None 2025-03-14T05:14:25.4873940Z 2025-03-14T05:14:25.4874356Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4874864Z shift_y_1: "f32[89984][1]cpu" = shift_y.reshape(-1); shift_y = None 2025-03-14T05:14:25.4875115Z 2025-03-14T05:14:25.4875589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4876238Z shifts: "f32[89984, 4][4, 1]cpu" = torch.stack((shift_x_1, shift_y_1, shift_x_1, shift_y_1), dim = 1); shift_x_1 = shift_y_1 = None 2025-03-14T05:14:25.4876571Z 2025-03-14T05:14:25.4877081Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4877709Z view: "f32[89984, 1, 4][4, 4, 1]cpu" = shifts.view(-1, 1, 4); shifts = None 2025-03-14T05:14:25.4878203Z view_1: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_0_ = None 2025-03-14T05:14:25.4878695Z add: "f32[89984, 3, 4][12, 4, 1]cpu" = view + view_1; view = view_1 = None 2025-03-14T05:14:25.4878989Z x: "f32[269952, 4][4, 1]cpu" = add.reshape(-1, 4); add = None 2025-03-14T05:14:25.4879220Z 2025-03-14T05:14:25.4879728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4880350Z arange_2: "f32[152][1]cpu" = torch.arange(0.0, 1216, step = 8, dtype = torch.float32) 2025-03-14T05:14:25.4880618Z 2025-03-14T05:14:25.4880991Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4881603Z shifts_x_1: "f32[152][1]cpu" = arange_2.to(device(type='cpu')); arange_2 = None 2025-03-14T05:14:25.4881876Z 2025-03-14T05:14:25.4882390Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4883012Z arange_3: "f32[148][1]cpu" = torch.arange(0.0, 1184, step = 8, dtype = torch.float32) 2025-03-14T05:14:25.4883279Z 2025-03-14T05:14:25.4883653Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4884201Z shifts_y_1: "f32[148][1]cpu" = arange_3.to(device(type='cpu')); arange_3 = None 2025-03-14T05:14:25.4884469Z 2025-03-14T05:14:25.4884921Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4885573Z meshgrid_1 = torch.functional.meshgrid(shifts_y_1, shifts_x_1); shifts_y_1 = shifts_x_1 = None 2025-03-14T05:14:25.4885926Z shift_y_2: "f32[148, 152][1, 0]cpu" = meshgrid_1[0] 2025-03-14T05:14:25.4886202Z shift_x_2: "f32[148, 152][0, 1]cpu" = meshgrid_1[1]; meshgrid_1 = None 2025-03-14T05:14:25.4886442Z 2025-03-14T05:14:25.4886852Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4887360Z shift_x_3: "f32[22496][1]cpu" = shift_x_2.reshape(-1); shift_x_2 = None 2025-03-14T05:14:25.4887610Z 2025-03-14T05:14:25.4888017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4888513Z shift_y_3: "f32[22496][1]cpu" = shift_y_2.reshape(-1); shift_y_2 = None 2025-03-14T05:14:25.4888755Z 2025-03-14T05:14:25.4889210Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4889842Z shifts_1: "f32[22496, 4][4, 1]cpu" = torch.stack((shift_x_3, shift_y_3, shift_x_3, shift_y_3), dim = 1); shift_x_3 = shift_y_3 = None 2025-03-14T05:14:25.4890164Z 2025-03-14T05:14:25.4890652Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4891263Z view_2: "f32[22496, 1, 4][4, 4, 1]cpu" = shifts_1.view(-1, 1, 4); shifts_1 = None 2025-03-14T05:14:25.4891754Z view_3: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_1_ = None 2025-03-14T05:14:25.4892260Z add_1: "f32[22496, 3, 4][12, 4, 1]cpu" = view_2 + view_3; view_2 = view_3 = None 2025-03-14T05:14:25.4892563Z x_1: "f32[67488, 4][4, 1]cpu" = add_1.reshape(-1, 4); add_1 = None 2025-03-14T05:14:25.4892800Z 2025-03-14T05:14:25.4893316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4893949Z arange_4: "f32[76][1]cpu" = torch.arange(0.0, 1216, step = 16, dtype = torch.float32) 2025-03-14T05:14:25.4894211Z 2025-03-14T05:14:25.4894580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4895066Z shifts_x_2: "f32[76][1]cpu" = arange_4.to(device(type='cpu')); arange_4 = None 2025-03-14T05:14:25.4895327Z 2025-03-14T05:14:25.4895841Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4896462Z arange_5: "f32[74][1]cpu" = torch.arange(0.0, 1184, step = 16, dtype = torch.float32) 2025-03-14T05:14:25.4896727Z 2025-03-14T05:14:25.4897121Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4897611Z shifts_y_2: "f32[74][1]cpu" = arange_5.to(device(type='cpu')); arange_5 = None 2025-03-14T05:14:25.4897868Z 2025-03-14T05:14:25.4898327Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4898959Z meshgrid_2 = torch.functional.meshgrid(shifts_y_2, shifts_x_2); shifts_y_2 = shifts_x_2 = None 2025-03-14T05:14:25.4899308Z shift_y_4: "f32[74, 76][1, 0]cpu" = meshgrid_2[0] 2025-03-14T05:14:25.4899580Z shift_x_4: "f32[74, 76][0, 1]cpu" = meshgrid_2[1]; meshgrid_2 = None 2025-03-14T05:14:25.4899817Z 2025-03-14T05:14:25.4900231Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4900747Z shift_x_5: "f32[5624][1]cpu" = shift_x_4.reshape(-1); shift_x_4 = None 2025-03-14T05:14:25.4900999Z 2025-03-14T05:14:25.4901414Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4901919Z shift_y_5: "f32[5624][1]cpu" = shift_y_4.reshape(-1); shift_y_4 = None 2025-03-14T05:14:25.4902167Z 2025-03-14T05:14:25.4902635Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4903283Z shifts_2: "f32[5624, 4][4, 1]cpu" = torch.stack((shift_x_5, shift_y_5, shift_x_5, shift_y_5), dim = 1); shift_x_5 = shift_y_5 = None 2025-03-14T05:14:25.4903612Z 2025-03-14T05:14:25.4904111Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4904793Z view_4: "f32[5624, 1, 4][4, 4, 1]cpu" = shifts_2.view(-1, 1, 4); shifts_2 = None 2025-03-14T05:14:25.4905301Z view_5: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_2_ = None 2025-03-14T05:14:25.4905826Z add_2: "f32[5624, 3, 4][12, 4, 1]cpu" = view_4 + view_5; view_4 = view_5 = None 2025-03-14T05:14:25.4906130Z x_2: "f32[16872, 4][4, 1]cpu" = add_2.reshape(-1, 4); add_2 = None 2025-03-14T05:14:25.4906371Z 2025-03-14T05:14:25.4906890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4907518Z arange_6: "f32[38][1]cpu" = torch.arange(0.0, 1216, step = 32, dtype = torch.float32) 2025-03-14T05:14:25.4907786Z 2025-03-14T05:14:25.4908165Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4908650Z shifts_x_3: "f32[38][1]cpu" = arange_6.to(device(type='cpu')); arange_6 = None 2025-03-14T05:14:25.4908910Z 2025-03-14T05:14:25.4909423Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4910047Z arange_7: "f32[37][1]cpu" = torch.arange(0.0, 1184, step = 32, dtype = torch.float32) 2025-03-14T05:14:25.4910314Z 2025-03-14T05:14:25.4910715Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4911201Z shifts_y_3: "f32[37][1]cpu" = arange_7.to(device(type='cpu')); arange_7 = None 2025-03-14T05:14:25.4911460Z 2025-03-14T05:14:25.4911842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4912049Z meshgrid_3 = torch.functional.meshgrid(shifts_y_3, shifts_x_3); shifts_y_3 = shifts_x_3 = None 2025-03-14T05:14:25.4912158Z shift_y_6: "f32[37, 38][1, 0]cpu" = meshgrid_3[0] 2025-03-14T05:14:25.4912275Z shift_x_6: "f32[37, 38][0, 1]cpu" = meshgrid_3[1]; meshgrid_3 = None 2025-03-14T05:14:25.4912350Z 2025-03-14T05:14:25.4912675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4912810Z shift_x_7: "f32[1406][1]cpu" = shift_x_6.reshape(-1); shift_x_6 = None 2025-03-14T05:14:25.4912876Z 2025-03-14T05:14:25.4913213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4913337Z shift_y_7: "f32[1406][1]cpu" = shift_y_6.reshape(-1); shift_y_6 = None 2025-03-14T05:14:25.4913411Z 2025-03-14T05:14:25.4913807Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4914023Z shifts_3: "f32[1406, 4][4, 1]cpu" = torch.stack((shift_x_7, shift_y_7, shift_x_7, shift_y_7), dim = 1); shift_x_7 = shift_y_7 = None 2025-03-14T05:14:25.4914086Z 2025-03-14T05:14:25.4914498Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4915318Z view_6: "f32[1406, 1, 4][4, 4, 1]cpu" = shifts_3.view(-1, 1, 4); shifts_3 = None 2025-03-14T05:14:25.4915625Z view_7: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_3_ = None 2025-03-14T05:14:25.4915763Z add_3: "f32[1406, 3, 4][12, 4, 1]cpu" = view_6 + view_7; view_6 = view_7 = None 2025-03-14T05:14:25.4915882Z x_3: "f32[4218, 4][4, 1]cpu" = add_3.reshape(-1, 4); add_3 = None 2025-03-14T05:14:25.4915945Z 2025-03-14T05:14:25.4916364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:44 in _create_grid_offsets, code: torch.arange(offset * stride, grid_width * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4916508Z arange_8: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:25.4916578Z 2025-03-14T05:14:25.4916860Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4917002Z shifts_x_4: "f32[19][1]cpu" = arange_8.to(device(type='cpu')); arange_8 = None 2025-03-14T05:14:25.4917068Z 2025-03-14T05:14:25.4917484Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:48 in _create_grid_offsets, code: torch.arange(offset * stride, grid_height * stride, step=stride, dtype=torch.float32), 2025-03-14T05:14:25.4917632Z arange_9: "f32[19][1]cpu" = torch.arange(0.0, 1216, step = 64, dtype = torch.float32) 2025-03-14T05:14:25.4917696Z 2025-03-14T05:14:25.4918001Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.4918133Z shifts_y_4: "f32[19][1]cpu" = arange_9.to(device(type='cpu')); arange_9 = None 2025-03-14T05:14:25.4918202Z 2025-03-14T05:14:25.4918559Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:52 in _create_grid_offsets, code: shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) 2025-03-14T05:14:25.4918767Z meshgrid_4 = torch.functional.meshgrid(shifts_y_4, shifts_x_4); shifts_y_4 = shifts_x_4 = None 2025-03-14T05:14:25.4918866Z shift_y_8: "f32[19, 19][1, 0]cpu" = meshgrid_4[0] 2025-03-14T05:14:25.4918989Z shift_x_8: "f32[19, 19][0, 1]cpu" = meshgrid_4[1]; meshgrid_4 = None 2025-03-14T05:14:25.4919053Z 2025-03-14T05:14:25.4919374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:53 in _create_grid_offsets, code: shift_x = shift_x.reshape(-1) 2025-03-14T05:14:25.4919496Z shift_x_9: "f32[361][1]cpu" = shift_x_8.reshape(-1); shift_x_8 = None 2025-03-14T05:14:25.4919570Z 2025-03-14T05:14:25.4919882Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:54 in _create_grid_offsets, code: shift_y = shift_y.reshape(-1) 2025-03-14T05:14:25.4920007Z shift_y_9: "f32[361][1]cpu" = shift_y_8.reshape(-1); shift_y_8 = None 2025-03-14T05:14:25.4920073Z 2025-03-14T05:14:25.4920447Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:175 in _grid_anchors, code: shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) 2025-03-14T05:14:25.4920651Z shifts_4: "f32[361, 4][4, 1]cpu" = torch.stack((shift_x_9, shift_y_9, shift_x_9, shift_y_9), dim = 1); shift_x_9 = shift_y_9 = None 2025-03-14T05:14:25.4920721Z 2025-03-14T05:14:25.4921118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/anchor_generator.py:177 in _grid_anchors, code: anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) 2025-03-14T05:14:25.4921265Z view_8: "f32[361, 1, 4][4, 4, 1]cpu" = shifts_4.view(-1, 1, 4); shifts_4 = None 2025-03-14T05:14:25.4921559Z view_9: "f32[1, 3, 4][12, 4, 1]cpu" = l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_.view(1, -1, 4); l_self_modules_anchor_generator_modules_cell_anchors_buffers_4_ = None 2025-03-14T05:14:25.4921704Z add_4: "f32[361, 3, 4][12, 4, 1]cpu" = view_8 + view_9; view_8 = view_9 = None 2025-03-14T05:14:25.4921816Z x_4: "f32[1083, 4][4, 1]cpu" = add_4.reshape(-1, 4); add_4 = None 2025-03-14T05:14:25.4921891Z 2025-03-14T05:14:25.4922179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:25.4922310Z tensor: "f32[269952, 4][4, 1]cpu" = x.to(torch.float32); x = None 2025-03-14T05:14:25.4922435Z tensor_1: "f32[67488, 4][4, 1]cpu" = x_1.to(torch.float32); x_1 = None 2025-03-14T05:14:25.4922560Z tensor_2: "f32[16872, 4][4, 1]cpu" = x_2.to(torch.float32); x_2 = None 2025-03-14T05:14:25.4922675Z tensor_3: "f32[4218, 4][4, 1]cpu" = x_3.to(torch.float32); x_3 = None 2025-03-14T05:14:25.4922794Z tensor_4: "f32[1083, 4][4, 1]cpu" = x_4.to(torch.float32); x_4 = None 2025-03-14T05:14:25.4922859Z 2025-03-14T05:14:25.4923118Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4923528Z x_5: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.conv2d(l_features_p2_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p2_ = None 2025-03-14T05:14:25.4923602Z 2025-03-14T05:14:25.4924350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4924596Z x_6: "f32[4, 256, 296, 304][23035904, 89984, 304, 1]cpu" = torch.nn.functional.relu(x_5, inplace = False); x_5 = None 2025-03-14T05:14:25.4924702Z 2025-03-14T05:14:25.4925096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4925529Z score: "f32[4, 3, 296, 304][269952, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4925594Z 2025-03-14T05:14:25.4925959Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4926365Z x_15: "f32[4, 12, 296, 304][1079808, 89984, 304, 1]cpu" = torch.conv2d(x_6, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_6 = None 2025-03-14T05:14:25.4926443Z 2025-03-14T05:14:25.4926699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4927108Z x_7: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.conv2d(l_features_p3_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p3_ = None 2025-03-14T05:14:25.4927174Z 2025-03-14T05:14:25.4927452Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4927653Z x_8: "f32[4, 256, 148, 152][5758976, 22496, 152, 1]cpu" = torch.nn.functional.relu(x_7, inplace = False); x_7 = None 2025-03-14T05:14:25.4927731Z 2025-03-14T05:14:25.4928096Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4928512Z score_1: "f32[4, 3, 148, 152][67488, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4928586Z 2025-03-14T05:14:25.4928933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4929324Z x_16: "f32[4, 12, 148, 152][269952, 22496, 152, 1]cpu" = torch.conv2d(x_8, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_8 = None 2025-03-14T05:14:25.4929389Z 2025-03-14T05:14:25.4929646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4930030Z x_9: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.conv2d(l_features_p4_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p4_ = None 2025-03-14T05:14:25.4930104Z 2025-03-14T05:14:25.4930369Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4930550Z x_10: "f32[4, 256, 74, 76][1439744, 5624, 76, 1]cpu" = torch.nn.functional.relu(x_9, inplace = False); x_9 = None 2025-03-14T05:14:25.4930634Z 2025-03-14T05:14:25.4931003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4931401Z score_2: "f32[4, 3, 74, 76][16872, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4931476Z 2025-03-14T05:14:25.4931820Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4932206Z x_17: "f32[4, 12, 74, 76][67488, 5624, 76, 1]cpu" = torch.conv2d(x_10, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_10 = None 2025-03-14T05:14:25.4932280Z 2025-03-14T05:14:25.4932525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4932906Z x_11: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.conv2d(l_features_p5_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p5_ = None 2025-03-14T05:14:25.4932969Z 2025-03-14T05:14:25.4933240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4933411Z x_12: "f32[4, 256, 37, 38][359936, 1406, 38, 1]cpu" = torch.nn.functional.relu(x_11, inplace = False); x_11 = None 2025-03-14T05:14:25.4933485Z 2025-03-14T05:14:25.4933864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4934245Z score_3: "f32[4, 3, 37, 38][4218, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1) 2025-03-14T05:14:25.4934310Z 2025-03-14T05:14:25.4934674Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4935049Z x_18: "f32[4, 12, 37, 38][16872, 1406, 38, 1]cpu" = torch.conv2d(x_12, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_12 = None 2025-03-14T05:14:25.4935121Z 2025-03-14T05:14:25.4935367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:142 in forward, code: x = F.conv2d( 2025-03-14T05:14:25.4935927Z x_13: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.conv2d(l_features_p6_, l_self_modules_rpn_head_modules_conv_parameters_weight_, l_self_modules_rpn_head_modules_conv_parameters_bias_, (1, 1), (1, 1), (1, 1), 1); l_features_p6_ = l_self_modules_rpn_head_modules_conv_parameters_weight_ = l_self_modules_rpn_head_modules_conv_parameters_bias_ = None 2025-03-14T05:14:25.4935999Z 2025-03-14T05:14:25.4936262Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:148 in forward, code: x = self.activation(x) 2025-03-14T05:14:25.4936433Z x_14: "f32[4, 256, 19, 19][92416, 361, 19, 1]cpu" = torch.nn.functional.relu(x_13, inplace = False); x_13 = None 2025-03-14T05:14:25.4936496Z 2025-03-14T05:14:25.4936881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:175 in forward, code: pred_objectness_logits.append(self.objectness_logits(t)) 2025-03-14T05:14:25.4937491Z score_4: "f32[4, 3, 19, 19][1083, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_, l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); l_self_modules_rpn_head_modules_objectness_logits_parameters_weight_ = l_self_modules_rpn_head_modules_objectness_logits_parameters_bias_ = None 2025-03-14T05:14:25.4937582Z 2025-03-14T05:14:25.4937925Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:176 in forward, code: pred_anchor_deltas.append(self.anchor_deltas(t)) 2025-03-14T05:14:25.4938509Z x_19: "f32[4, 12, 19, 19][4332, 361, 19, 1]cpu" = torch.conv2d(x_14, l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_, l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_, (1, 1), (0, 0), (1, 1), 1); x_14 = l_self_modules_rpn_head_modules_anchor_deltas_parameters_weight_ = l_self_modules_rpn_head_modules_anchor_deltas_parameters_bias_ = None 2025-03-14T05:14:25.4938575Z 2025-03-14T05:14:25.4938916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:458 in , code: score.permute(0, 2, 3, 1).flatten(1) 2025-03-14T05:14:25.4939080Z permute: "f32[4, 296, 304, 3][269952, 304, 1, 89984]cpu" = score.permute(0, 2, 3, 1); score = None 2025-03-14T05:14:25.4939232Z logits_i: "f32[4, 269952][269952, 1]cpu" = permute.flatten(1); permute = None 2025-03-14T05:14:25.4939397Z permute_1: "f32[4, 148, 152, 3][67488, 152, 1, 22496]cpu" = score_1.permute(0, 2, 3, 1); score_1 = None 2025-03-14T05:14:25.4939553Z logits_i_1: "f32[4, 67488][67488, 1]cpu" = permute_1.flatten(1); permute_1 = None 2025-03-14T05:14:25.4939733Z permute_2: "f32[4, 74, 76, 3][16872, 76, 1, 5624]cpu" = score_2.permute(0, 2, 3, 1); score_2 = None 2025-03-14T05:14:25.4939873Z logits_i_2: "f32[4, 16872][16872, 1]cpu" = permute_2.flatten(1); permute_2 = None 2025-03-14T05:14:25.4940028Z permute_3: "f32[4, 37, 38, 3][4218, 38, 1, 1406]cpu" = score_3.permute(0, 2, 3, 1); score_3 = None 2025-03-14T05:14:25.4940165Z logits_i_3: "f32[4, 4218][4218, 1]cpu" = permute_3.flatten(1); permute_3 = None 2025-03-14T05:14:25.4940317Z permute_4: "f32[4, 19, 19, 3][1083, 19, 1, 361]cpu" = score_4.permute(0, 2, 3, 1); score_4 = None 2025-03-14T05:14:25.4940463Z logits_i_4: "f32[4, 1083][1083, 1]cpu" = permute_4.flatten(1); permute_4 = None 2025-03-14T05:14:25.4940539Z 2025-03-14T05:14:25.4940961Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:463 in , code: x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) 2025-03-14T05:14:25.4941149Z view_10: "f32[4, 3, 4, 296, 304][1079808, 359936, 89984, 304, 1]cpu" = x_15.view(4, -1, 4, 296, 304); x_15 = None 2025-03-14T05:14:25.4941333Z permute_5: "f32[4, 296, 304, 3, 4][1079808, 304, 1, 359936, 89984]cpu" = view_10.permute(0, 3, 4, 1, 2); view_10 = None 2025-03-14T05:14:25.4941521Z pred_anchor_deltas_i: "f32[4, 269952, 4][1079808, 4, 1]cpu" = permute_5.flatten(1, -2); permute_5 = None 2025-03-14T05:14:25.4941681Z view_11: "f32[4, 3, 4, 148, 152][269952, 89984, 22496, 152, 1]cpu" = x_16.view(4, -1, 4, 148, 152); x_16 = None 2025-03-14T05:14:25.4941865Z permute_6: "f32[4, 148, 152, 3, 4][269952, 152, 1, 89984, 22496]cpu" = view_11.permute(0, 3, 4, 1, 2); view_11 = None 2025-03-14T05:14:25.4942035Z pred_anchor_deltas_i_2: "f32[4, 67488, 4][269952, 4, 1]cpu" = permute_6.flatten(1, -2); permute_6 = None 2025-03-14T05:14:25.4942190Z view_12: "f32[4, 3, 4, 74, 76][67488, 22496, 5624, 76, 1]cpu" = x_17.view(4, -1, 4, 74, 76); x_17 = None 2025-03-14T05:14:25.4942373Z permute_7: "f32[4, 74, 76, 3, 4][67488, 76, 1, 22496, 5624]cpu" = view_12.permute(0, 3, 4, 1, 2); view_12 = None 2025-03-14T05:14:25.4942550Z pred_anchor_deltas_i_4: "f32[4, 16872, 4][67488, 4, 1]cpu" = permute_7.flatten(1, -2); permute_7 = None 2025-03-14T05:14:25.4942710Z view_13: "f32[4, 3, 4, 37, 38][16872, 5624, 1406, 38, 1]cpu" = x_18.view(4, -1, 4, 37, 38); x_18 = None 2025-03-14T05:14:25.4942878Z permute_8: "f32[4, 37, 38, 3, 4][16872, 38, 1, 5624, 1406]cpu" = view_13.permute(0, 3, 4, 1, 2); view_13 = None 2025-03-14T05:14:25.4943046Z pred_anchor_deltas_i_6: "f32[4, 4218, 4][16872, 4, 1]cpu" = permute_8.flatten(1, -2); permute_8 = None 2025-03-14T05:14:25.4943195Z view_14: "f32[4, 3, 4, 19, 19][4332, 1444, 361, 19, 1]cpu" = x_19.view(4, -1, 4, 19, 19); x_19 = None 2025-03-14T05:14:25.4943354Z permute_9: "f32[4, 19, 19, 3, 4][4332, 19, 1, 1444, 361]cpu" = view_14.permute(0, 3, 4, 1, 2); view_14 = None 2025-03-14T05:14:25.4943529Z pred_anchor_deltas_i_8: "f32[4, 1083, 4][4332, 4, 1]cpu" = permute_9.flatten(1, -2); permute_9 = None 2025-03-14T05:14:25.4943594Z 2025-03-14T05:14:25.4944006Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4944265Z pred_anchor_deltas_i_1: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.reshape(-1, 4); pred_anchor_deltas_i = None 2025-03-14T05:14:25.4944338Z 2025-03-14T05:14:25.4944782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4944939Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = tensor.unsqueeze(0); tensor = None 2025-03-14T05:14:25.4945115Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:14:25.4945255Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:14:25.4945330Z 2025-03-14T05:14:25.4945700Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4945882Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:14:25.4945948Z 2025-03-14T05:14:25.4946292Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4946437Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:14:25.4946509Z 2025-03-14T05:14:25.4946826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4946966Z getitem_10: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4947098Z getitem_11: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4947257Z widths: "f32[1079808][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:25.4947324Z 2025-03-14T05:14:25.4947647Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4947773Z getitem_12: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4947902Z getitem_13: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4948055Z heights: "f32[1079808][1]cpu" = getitem_12 - getitem_13; getitem_12 = getitem_13 = None 2025-03-14T05:14:25.4948130Z 2025-03-14T05:14:25.4948458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4948613Z getitem_14: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4948704Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:14:25.4948840Z ctr_x: "f32[1079808][1]cpu" = getitem_14 + mul; getitem_14 = mul = None 2025-03-14T05:14:25.4948907Z 2025-03-14T05:14:25.4949226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4949374Z getitem_15: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:25.4949473Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:14:25.4949607Z ctr_y: "f32[1079808][1]cpu" = getitem_15 + mul_1; getitem_15 = mul_1 = None 2025-03-14T05:14:25.4949680Z 2025-03-14T05:14:25.4950005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4950175Z getitem_16: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4950293Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_16 / 1.0; getitem_16 = None 2025-03-14T05:14:25.4950367Z 2025-03-14T05:14:25.4950668Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4950832Z getitem_17: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4950956Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_17 / 1.0; getitem_17 = None 2025-03-14T05:14:25.4951045Z 2025-03-14T05:14:25.4951352Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4951505Z getitem_18: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4951629Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_18 / 1.0; getitem_18 = None 2025-03-14T05:14:25.4951694Z 2025-03-14T05:14:25.4952017Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4952203Z getitem_19: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:25.4952320Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_19 / 1.0; getitem_19 = None 2025-03-14T05:14:25.4952384Z 2025-03-14T05:14:25.4952729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4952875Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:25.4952951Z 2025-03-14T05:14:25.4953282Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4953429Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:25.4953495Z 2025-03-14T05:14:25.4953846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4953985Z getitem_20: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:25.4954136Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_20; dx = getitem_20 = None 2025-03-14T05:14:25.4954291Z getitem_21: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:25.4954443Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_21; mul_2 = getitem_21 = None 2025-03-14T05:14:25.4954526Z 2025-03-14T05:14:25.4954879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4955022Z getitem_22: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:25.4955156Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_22; dy = getitem_22 = None 2025-03-14T05:14:25.4955307Z getitem_23: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:25.4955457Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_23; mul_3 = getitem_23 = None 2025-03-14T05:14:25.4955523Z 2025-03-14T05:14:25.4955861Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4955982Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:25.4956151Z getitem_24: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:25.4956286Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_24; exp = getitem_24 = None 2025-03-14T05:14:25.4956362Z 2025-03-14T05:14:25.4956692Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4956820Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:25.4957011Z getitem_25: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:25.4957158Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_25; exp_1 = getitem_25 = None 2025-03-14T05:14:25.4957225Z 2025-03-14T05:14:25.4957541Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4957647Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:25.4957783Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:25.4957858Z 2025-03-14T05:14:25.4958161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4958268Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:25.4958388Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:25.4958462Z 2025-03-14T05:14:25.4958763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4958887Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:25.4959017Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:25.4959091Z 2025-03-14T05:14:25.4959389Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4959508Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:25.4959636Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:25.4959710Z 2025-03-14T05:14:25.4960082Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4960267Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:25.4960348Z 2025-03-14T05:14:25.4960675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4960837Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:14:25.4960907Z 2025-03-14T05:14:25.4961273Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4961455Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:14:25.4961521Z 2025-03-14T05:14:25.4961912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4962117Z pred_anchor_deltas_i_3: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_2.reshape(-1, 4); pred_anchor_deltas_i_2 = None 2025-03-14T05:14:25.4962188Z 2025-03-14T05:14:25.4962604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4962765Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = tensor_1.unsqueeze(0); tensor_1 = None 2025-03-14T05:14:25.4962914Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:14:25.4963076Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:14:25.4963140Z 2025-03-14T05:14:25.4963506Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4963677Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:14:25.4963750Z 2025-03-14T05:14:25.4964073Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4964225Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:14:25.4964288Z 2025-03-14T05:14:25.4964601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4964732Z getitem_26: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4964867Z getitem_27: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4965024Z widths_1: "f32[269952][1]cpu" = getitem_26 - getitem_27; getitem_26 = getitem_27 = None 2025-03-14T05:14:25.4965089Z 2025-03-14T05:14:25.4965407Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4965532Z getitem_28: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4965656Z getitem_29: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4965803Z heights_1: "f32[269952][1]cpu" = getitem_28 - getitem_29; getitem_28 = getitem_29 = None 2025-03-14T05:14:25.4965874Z 2025-03-14T05:14:25.4966195Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4966341Z getitem_30: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4966435Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:14:25.4966573Z ctr_x_1: "f32[269952][1]cpu" = getitem_30 + mul_10; getitem_30 = mul_10 = None 2025-03-14T05:14:25.4966638Z 2025-03-14T05:14:25.4966948Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4967093Z getitem_31: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:14:25.4967194Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:14:25.4967326Z ctr_y_1: "f32[269952][1]cpu" = getitem_31 + mul_11; getitem_31 = mul_11 = None 2025-03-14T05:14:25.4967399Z 2025-03-14T05:14:25.4967696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4967857Z getitem_32: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4967970Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_32 / 1.0; getitem_32 = None 2025-03-14T05:14:25.4968042Z 2025-03-14T05:14:25.4968342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4968501Z getitem_33: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4968616Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_33 / 1.0; getitem_33 = None 2025-03-14T05:14:25.4968718Z 2025-03-14T05:14:25.4969027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4969182Z getitem_34: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4969294Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_34 / 1.0; getitem_34 = None 2025-03-14T05:14:25.4969368Z 2025-03-14T05:14:25.4969676Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4969865Z getitem_35: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:14:25.4969975Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_35 / 1.0; getitem_35 = None 2025-03-14T05:14:25.4970051Z 2025-03-14T05:14:25.4970375Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4970521Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:14:25.4970587Z 2025-03-14T05:14:25.4970916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4971052Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:14:25.4971121Z 2025-03-14T05:14:25.4971450Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4971595Z getitem_36: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:14:25.4971744Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_36; dx_1 = getitem_36 = None 2025-03-14T05:14:25.4971901Z getitem_37: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:14:25.4972160Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_37; mul_12 = getitem_37 = None 2025-03-14T05:14:25.4972225Z 2025-03-14T05:14:25.4972591Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4972729Z getitem_38: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:14:25.4972859Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_38; dy_1 = getitem_38 = None 2025-03-14T05:14:25.4973011Z getitem_39: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:14:25.4973161Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_39; mul_13 = getitem_39 = None 2025-03-14T05:14:25.4973225Z 2025-03-14T05:14:25.4973560Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4973677Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:14:25.4973848Z getitem_40: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:14:25.4973984Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_40; exp_2 = getitem_40 = None 2025-03-14T05:14:25.4974057Z 2025-03-14T05:14:25.4974382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4974517Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:14:25.4974680Z getitem_41: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:14:25.4974819Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_41; exp_3 = getitem_41 = None 2025-03-14T05:14:25.4974885Z 2025-03-14T05:14:25.4975188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4975302Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:14:25.4975429Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:14:25.4975492Z 2025-03-14T05:14:25.4975796Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4975894Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:14:25.4976015Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:14:25.4976079Z 2025-03-14T05:14:25.4976383Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4976500Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:14:25.4976640Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:14:25.4976705Z 2025-03-14T05:14:25.4977005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4977119Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:14:25.4977256Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:14:25.4977338Z 2025-03-14T05:14:25.4977686Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4977890Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:14:25.4977964Z 2025-03-14T05:14:25.4978287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4978462Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:14:25.4978527Z 2025-03-14T05:14:25.4978909Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4979090Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:14:25.4979154Z 2025-03-14T05:14:25.4979550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4979755Z pred_anchor_deltas_i_5: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_4.reshape(-1, 4); pred_anchor_deltas_i_4 = None 2025-03-14T05:14:25.4979827Z 2025-03-14T05:14:25.4980250Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4980406Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = tensor_2.unsqueeze(0); tensor_2 = None 2025-03-14T05:14:25.4980572Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:14:25.4980715Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:14:25.4980782Z 2025-03-14T05:14:25.4981149Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4981330Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_5.float(); pred_anchor_deltas_i_5 = None 2025-03-14T05:14:25.4981401Z 2025-03-14T05:14:25.4982015Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.4982169Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:14:25.4982237Z 2025-03-14T05:14:25.4982550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.4982681Z getitem_42: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:14:25.4982813Z getitem_43: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4982962Z widths_2: "f32[67488][1]cpu" = getitem_42 - getitem_43; getitem_42 = getitem_43 = None 2025-03-14T05:14:25.4983035Z 2025-03-14T05:14:25.4983348Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.4983479Z getitem_44: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:14:25.4983600Z getitem_45: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:14:25.4983820Z heights_2: "f32[67488][1]cpu" = getitem_44 - getitem_45; getitem_44 = getitem_45 = None 2025-03-14T05:14:25.4983888Z 2025-03-14T05:14:25.4984307Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.4984479Z getitem_46: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:25.4984587Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:14:25.4984724Z ctr_x_2: "f32[67488][1]cpu" = getitem_46 + mul_20; getitem_46 = mul_20 = None 2025-03-14T05:14:25.4984803Z 2025-03-14T05:14:25.4985122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.4985284Z getitem_47: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:14:25.4985385Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:14:25.4985531Z ctr_y_2: "f32[67488][1]cpu" = getitem_47 + mul_21; getitem_47 = mul_21 = None 2025-03-14T05:14:25.4985600Z 2025-03-14T05:14:25.4985923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.4986084Z getitem_48: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.4986212Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_48 / 1.0; getitem_48 = None 2025-03-14T05:14:25.4986278Z 2025-03-14T05:14:25.4986595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.4986758Z getitem_49: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.4986904Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_49 / 1.0; getitem_49 = None 2025-03-14T05:14:25.4986981Z 2025-03-14T05:14:25.4987287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.4987450Z getitem_50: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.4987562Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_50 / 1.0; getitem_50 = None 2025-03-14T05:14:25.4987662Z 2025-03-14T05:14:25.4987974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.4988173Z getitem_51: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:14:25.4988288Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_51 / 1.0; getitem_51 = None 2025-03-14T05:14:25.4988376Z 2025-03-14T05:14:25.4988720Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.4988872Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:14:25.4988938Z 2025-03-14T05:14:25.4989284Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.4989422Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:14:25.4989496Z 2025-03-14T05:14:25.4989844Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.4990007Z getitem_52: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:14:25.4990138Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_52; dx_2 = getitem_52 = None 2025-03-14T05:14:25.4990337Z getitem_53: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:14:25.4990481Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_53; mul_22 = getitem_53 = None 2025-03-14T05:14:25.4990559Z 2025-03-14T05:14:25.4990917Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.4991067Z getitem_54: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:14:25.4991192Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_54; dy_2 = getitem_54 = None 2025-03-14T05:14:25.4991359Z getitem_55: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:14:25.4991498Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_55; mul_23 = getitem_55 = None 2025-03-14T05:14:25.4991573Z 2025-03-14T05:14:25.4991916Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.4992045Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:14:25.4992215Z getitem_56: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:14:25.4992365Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_56; exp_4 = getitem_56 = None 2025-03-14T05:14:25.4992431Z 2025-03-14T05:14:25.4992779Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.4992927Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:14:25.4993099Z getitem_57: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:14:25.4993243Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_57; exp_5 = getitem_57 = None 2025-03-14T05:14:25.4993309Z 2025-03-14T05:14:25.4993651Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.4993756Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:14:25.4993883Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:14:25.4993950Z 2025-03-14T05:14:25.4994276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.4994380Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:14:25.4994504Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:14:25.4994571Z 2025-03-14T05:14:25.4994899Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.4995019Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:14:25.4995164Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:14:25.4995233Z 2025-03-14T05:14:25.4995554Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.4995671Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:14:25.4995832Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:14:25.4995899Z 2025-03-14T05:14:25.4996264Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.4996477Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:14:25.4996550Z 2025-03-14T05:14:25.4996893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.4997064Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:14:25.4997131Z 2025-03-14T05:14:25.4997543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.4997713Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:14:25.4997785Z 2025-03-14T05:14:25.4998172Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.4998380Z pred_anchor_deltas_i_7: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_6.reshape(-1, 4); pred_anchor_deltas_i_6 = None 2025-03-14T05:14:25.4998443Z 2025-03-14T05:14:25.4998868Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.4999037Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = tensor_3.unsqueeze(0); tensor_3 = None 2025-03-14T05:14:25.4999192Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:14:25.4999327Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:14:25.4999399Z 2025-03-14T05:14:25.4999772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.4999946Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_7.float(); pred_anchor_deltas_i_7 = None 2025-03-14T05:14:25.5000010Z 2025-03-14T05:14:25.5000320Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.5000473Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:14:25.5000537Z 2025-03-14T05:14:25.5000850Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.5000978Z getitem_58: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:14:25.5001109Z getitem_59: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:25.5001255Z widths_3: "f32[16872][1]cpu" = getitem_58 - getitem_59; getitem_58 = getitem_59 = None 2025-03-14T05:14:25.5001325Z 2025-03-14T05:14:25.5001632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.5001759Z getitem_60: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:14:25.5001896Z getitem_61: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:14:25.5002051Z heights_3: "f32[16872][1]cpu" = getitem_60 - getitem_61; getitem_60 = getitem_61 = None 2025-03-14T05:14:25.5002115Z 2025-03-14T05:14:25.5002438Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.5002557Z getitem_62: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:25.5002658Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:14:25.5002785Z ctr_x_3: "f32[16872][1]cpu" = getitem_62 + mul_30; getitem_62 = mul_30 = None 2025-03-14T05:14:25.5002857Z 2025-03-14T05:14:25.5003155Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.5003307Z getitem_63: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:14:25.5003399Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:14:25.5003531Z ctr_y_3: "f32[16872][1]cpu" = getitem_63 + mul_31; getitem_63 = mul_31 = None 2025-03-14T05:14:25.5003596Z 2025-03-14T05:14:25.5003892Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.5004040Z getitem_64: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.5004158Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_64 / 1.0; getitem_64 = None 2025-03-14T05:14:25.5004223Z 2025-03-14T05:14:25.5004517Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.5004684Z getitem_65: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.5004801Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_65 / 1.0; getitem_65 = None 2025-03-14T05:14:25.5004865Z 2025-03-14T05:14:25.5005164Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.5005309Z getitem_66: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.5005450Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_66 / 1.0; getitem_66 = None 2025-03-14T05:14:25.5005515Z 2025-03-14T05:14:25.5005822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.5006004Z getitem_67: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:14:25.5006123Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_67 / 1.0; getitem_67 = None 2025-03-14T05:14:25.5006186Z 2025-03-14T05:14:25.5006525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.5006669Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:14:25.5006735Z 2025-03-14T05:14:25.5007066Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.5007197Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:14:25.5007269Z 2025-03-14T05:14:25.5007619Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.5007761Z getitem_68: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:14:25.5007883Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_68; dx_3 = getitem_68 = None 2025-03-14T05:14:25.5008061Z getitem_69: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:14:25.5008195Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_69; mul_32 = getitem_69 = None 2025-03-14T05:14:25.5008268Z 2025-03-14T05:14:25.5008601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.5008740Z getitem_70: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:14:25.5008859Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_70; dy_3 = getitem_70 = None 2025-03-14T05:14:25.5009016Z getitem_71: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:14:25.5009150Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_71; mul_33 = getitem_71 = None 2025-03-14T05:14:25.5009222Z 2025-03-14T05:14:25.5009538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.5009660Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:14:25.5009813Z getitem_72: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:14:25.5009955Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_72; exp_6 = getitem_72 = None 2025-03-14T05:14:25.5010019Z 2025-03-14T05:14:25.5010350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.5010481Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:14:25.5010649Z getitem_73: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:14:25.5010786Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_73; exp_7 = getitem_73 = None 2025-03-14T05:14:25.5010869Z 2025-03-14T05:14:25.5011187Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.5011291Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:14:25.5011406Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:14:25.5011478Z 2025-03-14T05:14:25.5011781Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.5011887Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:14:25.5012001Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:14:25.5012077Z 2025-03-14T05:14:25.5012379Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.5012506Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:14:25.5012650Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:14:25.5012725Z 2025-03-14T05:14:25.5013019Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.5013168Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:14:25.5013297Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:14:25.5013371Z 2025-03-14T05:14:25.5013723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.5013918Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:14:25.5013982Z 2025-03-14T05:14:25.5014314Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.5014480Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:14:25.5014546Z 2025-03-14T05:14:25.5014922Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.5015089Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:14:25.5015164Z 2025-03-14T05:14:25.5015549Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:25.5015755Z pred_anchor_deltas_i_9: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_8.reshape(-1, 4); pred_anchor_deltas_i_8 = None 2025-03-14T05:14:25.5015818Z 2025-03-14T05:14:25.5016253Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:25.5016419Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = tensor_4.unsqueeze(0); tensor_4 = None 2025-03-14T05:14:25.5016576Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:14:25.5016713Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:14:25.5016786Z 2025-03-14T05:14:25.5017173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:25.5017346Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_9.float(); pred_anchor_deltas_i_9 = None 2025-03-14T05:14:25.5017411Z 2025-03-14T05:14:25.5017729Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:25.5017874Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:14:25.5017946Z 2025-03-14T05:14:25.5018256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:25.5018391Z getitem_74: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:14:25.5018513Z getitem_75: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:25.5018668Z widths_4: "f32[4332][1]cpu" = getitem_74 - getitem_75; getitem_74 = getitem_75 = None 2025-03-14T05:14:25.5018734Z 2025-03-14T05:14:25.5019059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:25.5019182Z getitem_76: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:14:25.5019325Z getitem_77: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:14:25.5019474Z heights_4: "f32[4332][1]cpu" = getitem_76 - getitem_77; getitem_76 = getitem_77 = None 2025-03-14T05:14:25.5019567Z 2025-03-14T05:14:25.5019878Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:25.5020008Z getitem_78: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:25.5020100Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:14:25.5020238Z ctr_x_4: "f32[4332][1]cpu" = getitem_78 + mul_40; getitem_78 = mul_40 = None 2025-03-14T05:14:25.5020303Z 2025-03-14T05:14:25.5020620Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:25.5020768Z getitem_79: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:14:25.5020869Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:14:25.5020999Z ctr_y_4: "f32[4332][1]cpu" = getitem_79 + mul_41; getitem_79 = mul_41 = None 2025-03-14T05:14:25.5021075Z 2025-03-14T05:14:25.5021377Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:25.5021539Z getitem_80: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:25.5021660Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_80 / 1.0; getitem_80 = None 2025-03-14T05:14:25.5021726Z 2025-03-14T05:14:25.5022031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:25.5022200Z getitem_81: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:25.5022317Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_81 / 1.0; getitem_81 = None 2025-03-14T05:14:25.5022385Z 2025-03-14T05:14:25.5022684Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:25.5022831Z getitem_82: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:25.5022992Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_82 / 1.0; getitem_82 = None 2025-03-14T05:14:25.5023059Z 2025-03-14T05:14:25.5023363Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:25.5023541Z getitem_83: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:14:25.5023661Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_83 / 1.0; getitem_83 = None 2025-03-14T05:14:25.5023726Z 2025-03-14T05:14:25.5024070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:25.5024281Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:14:25.5024364Z 2025-03-14T05:14:25.5025124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:25.5025342Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:14:25.5025419Z 2025-03-14T05:14:25.5025829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:25.5025973Z getitem_84: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:14:25.5026131Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_84; dx_4 = getitem_84 = None 2025-03-14T05:14:25.5026288Z getitem_85: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:14:25.5026442Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_85; mul_42 = getitem_85 = None 2025-03-14T05:14:25.5026512Z 2025-03-14T05:14:25.5026881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:25.5027015Z getitem_86: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:14:25.5027146Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_86; dy_4 = getitem_86 = None 2025-03-14T05:14:25.5027295Z getitem_87: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:14:25.5027440Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_87; mul_43 = getitem_87 = None 2025-03-14T05:14:25.5027509Z 2025-03-14T05:14:25.5027842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:25.5027959Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:14:25.5028127Z getitem_88: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:14:25.5028268Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_88; exp_8 = getitem_88 = None 2025-03-14T05:14:25.5028332Z 2025-03-14T05:14:25.5028690Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:25.5028804Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:14:25.5028979Z getitem_89: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:14:25.5029111Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_89; exp_9 = getitem_89 = None 2025-03-14T05:14:25.5029188Z 2025-03-14T05:14:25.5029514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:25.5029623Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:14:25.5029738Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:14:25.5029812Z 2025-03-14T05:14:25.5030114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:25.5030217Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:14:25.5030330Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:14:25.5030407Z 2025-03-14T05:14:25.5030706Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:25.5030829Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:14:25.5030958Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:14:25.5031033Z 2025-03-14T05:14:25.5031332Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:25.5031470Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:14:25.5031599Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:14:25.5031671Z 2025-03-14T05:14:25.5032030Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:25.5032224Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:14:25.5032290Z 2025-03-14T05:14:25.5032624Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:25.5032780Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:14:25.5032853Z 2025-03-14T05:14:25.5033233Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:25.5033411Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:14:25.5033476Z 2025-03-14T05:14:25.5033957Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:14:25.5034091Z arange_10: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:14:25.5034164Z 2025-03-14T05:14:25.5034458Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.5034628Z batch_idx: "i64[4][1]cpu" = arange_10.to(device(type='cpu')); arange_10 = None 2025-03-14T05:14:25.5034695Z 2025-03-14T05:14:25.5035132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.5035248Z topk = logits_i.topk(1000, dim = 1); logits_i = None 2025-03-14T05:14:25.5035360Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:14:25.5035500Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:14:25.5035575Z 2025-03-14T05:14:25.5036031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.5036175Z getitem_92: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.5036413Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_92, topk_idx)]; proposals_i_5 = getitem_92 = topk_idx = None 2025-03-14T05:14:25.5036480Z 2025-03-14T05:14:25.5036939Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.5037109Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.5037183Z 2025-03-14T05:14:25.5037476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.5037606Z to_21: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:14:25.5037674Z 2025-03-14T05:14:25.5038123Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.5038261Z topk_1 = logits_i_1.topk(1000, dim = 1); logits_i_1 = None 2025-03-14T05:14:25.5038379Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:14:25.5038499Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:14:25.5038576Z 2025-03-14T05:14:25.5039032Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.5039170Z getitem_96: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.5039403Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_96, topk_idx_1)]; proposals_i_6 = getitem_96 = topk_idx_1 = None 2025-03-14T05:14:25.5039476Z 2025-03-14T05:14:25.5039929Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.5040108Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.5040172Z 2025-03-14T05:14:25.5040476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.5040600Z to_22: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:14:25.5040674Z 2025-03-14T05:14:25.5041122Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.5041245Z topk_2 = logits_i_2.topk(1000, dim = 1); logits_i_2 = None 2025-03-14T05:14:25.5041354Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:14:25.5041481Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:14:25.5041546Z 2025-03-14T05:14:25.5042024Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.5042159Z getitem_100: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.5042404Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_100, topk_idx_2)]; proposals_i_7 = getitem_100 = topk_idx_2 = None 2025-03-14T05:14:25.5042486Z 2025-03-14T05:14:25.5042933Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.5043106Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.5043173Z 2025-03-14T05:14:25.5043469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.5043594Z to_23: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:14:25.5043667Z 2025-03-14T05:14:25.5044109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.5044234Z topk_3 = logits_i_3.topk(1000, dim = 1); logits_i_3 = None 2025-03-14T05:14:25.5044339Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:14:25.5044482Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:14:25.5044549Z 2025-03-14T05:14:25.5045005Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.5045139Z getitem_104: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:25.5045419Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_104, topk_idx_3)]; proposals_i_8 = getitem_104 = topk_idx_3 = None 2025-03-14T05:14:25.5045488Z 2025-03-14T05:14:25.5045945Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.5046108Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.5046185Z 2025-03-14T05:14:25.5046472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.5046605Z to_24: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:14:25.5046670Z 2025-03-14T05:14:25.5047103Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:25.5047244Z topk_4 = logits_i_4.topk(1000, dim = 1); logits_i_4 = None 2025-03-14T05:14:25.5047356Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:14:25.5047473Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:14:25.5047549Z 2025-03-14T05:14:25.5048011Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:25.5048188Z getitem_108: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:14:25.5048416Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_108, topk_idx_4)]; proposals_i_9 = getitem_108 = topk_idx_4 = None 2025-03-14T05:14:25.5048495Z 2025-03-14T05:14:25.5048944Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:25.5049107Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:25.5049189Z 2025-03-14T05:14:25.5049474Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:25.5049604Z to_25: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:14:25.5049669Z 2025-03-14T05:14:25.5049950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:25.5050334Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:14:25.5050410Z 2025-03-14T05:14:25.5050687Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:25.5051171Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:14:25.5051236Z 2025-03-14T05:14:25.5051514Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:25.5051713Z level_ids: "i64[5000][1]cpu" = torch.cat([to_21, to_22, to_23, to_24, to_25], 0); to_21 = to_22 = to_23 = to_24 = to_25 = level_ids = None 2025-03-14T05:14:25.5051790Z 2025-03-14T05:14:25.5052177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:14:25.5052329Z getitem_110: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:14:25.5052394Z 2025-03-14T05:14:25.5052699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:25.5052848Z tensor_5: "f32[5000, 4][4, 1]cpu" = getitem_110.to(torch.float32); getitem_110 = None 2025-03-14T05:14:25.5052922Z 2025-03-14T05:14:25.5053299Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:14:25.5053464Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:14:25.5053529Z 2025-03-14T05:14:25.5054018Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:14:25.5054166Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor_5); tensor_5 = None 2025-03-14T05:14:25.5054308Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:25.5054474Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:14:25.5054605Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:14:25.5054678Z 2025-03-14T05:14:25.5055045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:14:25.5055172Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:14:25.5055238Z 2025-03-14T05:14:27.3322106Z 2025-03-14T05:14:27.3322671Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:27.3324703Z def forward(self, L_pred_anchor_deltas_0_: "f32[4, 269952, 4][1079808, 4, 1]cpu", L_anchors_0_tensor: "f32[269952, 4][4, 1]cpu", L_pred_anchor_deltas_1_: "f32[4, 67488, 4][269952, 4, 1]cpu", L_anchors_1_tensor: "f32[67488, 4][4, 1]cpu", L_pred_anchor_deltas_2_: "f32[4, 16872, 4][67488, 4, 1]cpu", L_anchors_2_tensor: "f32[16872, 4][4, 1]cpu", L_pred_anchor_deltas_3_: "f32[4, 4218, 4][16872, 4, 1]cpu", L_anchors_3_tensor: "f32[4218, 4][4, 1]cpu", L_pred_anchor_deltas_4_: "f32[4, 1083, 4][4332, 4, 1]cpu", L_anchors_4_tensor: "f32[1083, 4][4, 1]cpu", L_pred_objectness_logits_0_: "f32[4, 269952][269952, 1]cpu", L_pred_objectness_logits_1_: "f32[4, 67488][67488, 1]cpu", L_pred_objectness_logits_2_: "f32[4, 16872][16872, 1]cpu", L_pred_objectness_logits_3_: "f32[4, 4218][4218, 1]cpu", L_pred_objectness_logits_4_: "f32[4, 1083][1083, 1]cpu"): 2025-03-14T05:14:27.3326311Z l_pred_anchor_deltas_0_ = L_pred_anchor_deltas_0_ 2025-03-14T05:14:27.3326672Z l_anchors_0_tensor = L_anchors_0_tensor 2025-03-14T05:14:27.3326945Z l_pred_anchor_deltas_1_ = L_pred_anchor_deltas_1_ 2025-03-14T05:14:27.3327205Z l_anchors_1_tensor = L_anchors_1_tensor 2025-03-14T05:14:27.3327462Z l_pred_anchor_deltas_2_ = L_pred_anchor_deltas_2_ 2025-03-14T05:14:27.3327711Z l_anchors_2_tensor = L_anchors_2_tensor 2025-03-14T05:14:27.3327962Z l_pred_anchor_deltas_3_ = L_pred_anchor_deltas_3_ 2025-03-14T05:14:27.3328217Z l_anchors_3_tensor = L_anchors_3_tensor 2025-03-14T05:14:27.3328467Z l_pred_anchor_deltas_4_ = L_pred_anchor_deltas_4_ 2025-03-14T05:14:27.3328721Z l_anchors_4_tensor = L_anchors_4_tensor 2025-03-14T05:14:27.3329001Z l_pred_objectness_logits_0_ = L_pred_objectness_logits_0_ 2025-03-14T05:14:27.3329307Z l_pred_objectness_logits_1_ = L_pred_objectness_logits_1_ 2025-03-14T05:14:27.3329621Z l_pred_objectness_logits_2_ = L_pred_objectness_logits_2_ 2025-03-14T05:14:27.3329934Z l_pred_objectness_logits_3_ = L_pred_objectness_logits_3_ 2025-03-14T05:14:27.3330234Z l_pred_objectness_logits_4_ = L_pred_objectness_logits_4_ 2025-03-14T05:14:27.3330500Z 2025-03-14T05:14:27.3331119Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:27.3331873Z pred_anchor_deltas_i: "f32[1079808, 4][4, 1]cpu" = l_pred_anchor_deltas_0_.reshape(-1, 4); l_pred_anchor_deltas_0_ = None 2025-03-14T05:14:27.3332250Z 2025-03-14T05:14:27.3332934Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:27.3333681Z unsqueeze: "f32[1, 269952, 4][1079808, 4, 1]cpu" = l_anchors_0_tensor.unsqueeze(0); l_anchors_0_tensor = None 2025-03-14T05:14:27.3334120Z expand: "f32[4, 269952, 4][0, 4, 1]cpu" = unsqueeze.expand(4, -1, -1); unsqueeze = None 2025-03-14T05:14:27.3334487Z anchors_i: "f32[1079808, 4][4, 1]cpu" = expand.reshape(-1, 4); expand = None 2025-03-14T05:14:27.3334827Z 2025-03-14T05:14:27.3335317Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:27.3335913Z deltas: "f32[1079808, 4][4, 1]cpu" = pred_anchor_deltas_i.float(); pred_anchor_deltas_i = None 2025-03-14T05:14:27.3336206Z 2025-03-14T05:14:27.3336609Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:27.3337124Z boxes: "f32[1079808, 4][4, 1]cpu" = anchors_i.to(torch.float32); anchors_i = None 2025-03-14T05:14:27.3337394Z 2025-03-14T05:14:27.3337799Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:27.3338300Z getitem: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:27.3338615Z getitem_1: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3338941Z widths: "f32[1079808][1]cpu" = getitem - getitem_1; getitem = getitem_1 = None 2025-03-14T05:14:27.3339206Z 2025-03-14T05:14:27.3339694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:27.3340202Z getitem_2: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:27.3340515Z getitem_3: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:27.3340864Z heights: "f32[1079808][1]cpu" = getitem_2 - getitem_3; getitem_2 = getitem_3 = None 2025-03-14T05:14:27.3341140Z 2025-03-14T05:14:27.3341555Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:27.3342068Z getitem_4: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3342355Z mul: "f32[1079808][1]cpu" = 0.5 * widths 2025-03-14T05:14:27.3342631Z ctr_x: "f32[1079808][1]cpu" = getitem_4 + mul; getitem_4 = mul = None 2025-03-14T05:14:27.3342953Z 2025-03-14T05:14:27.3343372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:27.3343902Z getitem_5: "f32[1079808][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:27.3344276Z mul_1: "f32[1079808][1]cpu" = 0.5 * heights 2025-03-14T05:14:27.3344576Z ctr_y: "f32[1079808][1]cpu" = getitem_5 + mul_1; getitem_5 = mul_1 = None 2025-03-14T05:14:27.3344838Z 2025-03-14T05:14:27.3345286Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:27.3345830Z getitem_6: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:27.3346175Z dx: "f32[1079808, 1][1, 1]cpu" = getitem_6 / 1.0; getitem_6 = None 2025-03-14T05:14:27.3346420Z 2025-03-14T05:14:27.3346853Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:27.3347382Z getitem_7: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:27.3347712Z dy: "f32[1079808, 1][1, 1]cpu" = getitem_7 / 1.0; getitem_7 = None 2025-03-14T05:14:27.3347948Z 2025-03-14T05:14:27.3348340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:27.3348872Z getitem_8: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:27.3349198Z dw: "f32[1079808, 1][1, 1]cpu" = getitem_8 / 1.0; getitem_8 = None 2025-03-14T05:14:27.3349434Z 2025-03-14T05:14:27.3349824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:27.3350368Z getitem_9: "f32[1079808, 1][4, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:27.3350715Z dh: "f32[1079808, 1][1, 1]cpu" = getitem_9 / 1.0; getitem_9 = None 2025-03-14T05:14:27.3350952Z 2025-03-14T05:14:27.3351382Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:27.3351922Z dw_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:27.3352186Z 2025-03-14T05:14:27.3352606Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:27.3353137Z dh_1: "f32[1079808, 1][1, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:27.3353402Z 2025-03-14T05:14:27.3353854Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:27.3354427Z getitem_10: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:27.3354753Z mul_2: "f32[1079808, 1][1, 1]cpu" = dx * getitem_10; dx = getitem_10 = None 2025-03-14T05:14:27.3355095Z getitem_11: "f32[1079808, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:27.3355453Z pred_ctr_x: "f32[1079808, 1][1, 1]cpu" = mul_2 + getitem_11; mul_2 = getitem_11 = None 2025-03-14T05:14:27.3355716Z 2025-03-14T05:14:27.3356150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:27.3356698Z getitem_12: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:27.3357023Z mul_3: "f32[1079808, 1][1, 1]cpu" = dy * getitem_12; dy = getitem_12 = None 2025-03-14T05:14:27.3357360Z getitem_13: "f32[1079808, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:27.3357711Z pred_ctr_y: "f32[1079808, 1][1, 1]cpu" = mul_3 + getitem_13; mul_3 = getitem_13 = None 2025-03-14T05:14:27.3357976Z 2025-03-14T05:14:27.3358399Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:27.3358905Z exp: "f32[1079808, 1][1, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:27.3359244Z getitem_14: "f32[1079808, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:27.3359598Z pred_w: "f32[1079808, 1][1, 1]cpu" = exp * getitem_14; exp = getitem_14 = None 2025-03-14T05:14:27.3359878Z 2025-03-14T05:14:27.3360315Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:27.3360839Z exp_1: "f32[1079808, 1][1, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:27.3361188Z getitem_15: "f32[1079808, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:27.3361577Z pred_h: "f32[1079808, 1][1, 1]cpu" = exp_1 * getitem_15; exp_1 = getitem_15 = None 2025-03-14T05:14:27.3361839Z 2025-03-14T05:14:27.3362234Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:27.3362701Z mul_6: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:27.3362972Z x1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:27.3363222Z 2025-03-14T05:14:27.3363631Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:27.3364103Z mul_7: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:27.3364388Z y1: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:27.3364623Z 2025-03-14T05:14:27.3365021Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:27.3365510Z mul_8: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:27.3365818Z x2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:27.3366077Z 2025-03-14T05:14:27.3366493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:27.3366982Z mul_9: "f32[1079808, 1][1, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:27.3367283Z y2: "f32[1079808, 1][1, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:27.3367592Z 2025-03-14T05:14:27.3368043Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:27.3368644Z pred_boxes: "f32[1079808, 1, 4][4, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:27.3368948Z 2025-03-14T05:14:27.3369387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:27.3369963Z proposals_i: "f32[1079808, 4][4, 1]cpu" = pred_boxes.reshape((1079808, 4)); pred_boxes = None 2025-03-14T05:14:27.3370261Z 2025-03-14T05:14:27.3370757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:27.3371394Z proposals_i_5: "f32[4, 269952, 4][1079808, 4, 1]cpu" = proposals_i.view(4, -1, 4); proposals_i = None 2025-03-14T05:14:27.3371704Z 2025-03-14T05:14:27.3372207Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:27.3372903Z pred_anchor_deltas_i_1: "f32[269952, 4][4, 1]cpu" = l_pred_anchor_deltas_1_.reshape(-1, 4); l_pred_anchor_deltas_1_ = None 2025-03-14T05:14:27.3373240Z 2025-03-14T05:14:27.3373777Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:27.3374483Z unsqueeze_1: "f32[1, 67488, 4][269952, 4, 1]cpu" = l_anchors_1_tensor.unsqueeze(0); l_anchors_1_tensor = None 2025-03-14T05:14:27.3374897Z expand_1: "f32[4, 67488, 4][0, 4, 1]cpu" = unsqueeze_1.expand(4, -1, -1); unsqueeze_1 = None 2025-03-14T05:14:27.3375258Z anchors_i_1: "f32[269952, 4][4, 1]cpu" = expand_1.reshape(-1, 4); expand_1 = None 2025-03-14T05:14:27.3375533Z 2025-03-14T05:14:27.3376027Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:27.3376647Z deltas_1: "f32[269952, 4][4, 1]cpu" = pred_anchor_deltas_i_1.float(); pred_anchor_deltas_i_1 = None 2025-03-14T05:14:27.3376940Z 2025-03-14T05:14:27.3377338Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:27.3377848Z boxes_1: "f32[269952, 4][4, 1]cpu" = anchors_i_1.to(torch.float32); anchors_i_1 = None 2025-03-14T05:14:27.3378119Z 2025-03-14T05:14:27.3378530Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:27.3379034Z getitem_16: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 2)] 2025-03-14T05:14:27.3379355Z getitem_17: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3379695Z widths_1: "f32[269952][1]cpu" = getitem_16 - getitem_17; getitem_16 = getitem_17 = None 2025-03-14T05:14:27.3379973Z 2025-03-14T05:14:27.3380394Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:27.3380897Z getitem_18: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 3)] 2025-03-14T05:14:27.3381208Z getitem_19: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)] 2025-03-14T05:14:27.3382050Z heights_1: "f32[269952][1]cpu" = getitem_18 - getitem_19; getitem_18 = getitem_19 = None 2025-03-14T05:14:27.3382336Z 2025-03-14T05:14:27.3382746Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:27.3383238Z getitem_20: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3383515Z mul_10: "f32[269952][1]cpu" = 0.5 * widths_1 2025-03-14T05:14:27.3383805Z ctr_x_1: "f32[269952][1]cpu" = getitem_20 + mul_10; getitem_20 = mul_10 = None 2025-03-14T05:14:27.3384068Z 2025-03-14T05:14:27.3384544Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:27.3385084Z getitem_21: "f32[269952][4]cpu" = boxes_1[(slice(None, None, None), 1)]; boxes_1 = None 2025-03-14T05:14:27.3385384Z mul_11: "f32[269952][1]cpu" = 0.5 * heights_1 2025-03-14T05:14:27.3385668Z ctr_y_1: "f32[269952][1]cpu" = getitem_21 + mul_11; getitem_21 = mul_11 = None 2025-03-14T05:14:27.3385926Z 2025-03-14T05:14:27.3386337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:27.3386868Z getitem_22: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:27.3387204Z dx_1: "f32[269952, 1][1, 1]cpu" = getitem_22 / 1.0; getitem_22 = None 2025-03-14T05:14:27.3387523Z 2025-03-14T05:14:27.3387930Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:27.3388461Z getitem_23: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:27.3388803Z dy_1: "f32[269952, 1][1, 1]cpu" = getitem_23 / 1.0; getitem_23 = None 2025-03-14T05:14:27.3389053Z 2025-03-14T05:14:27.3389501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:27.3390033Z getitem_24: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:27.3390370Z dw_2: "f32[269952, 1][1, 1]cpu" = getitem_24 / 1.0; getitem_24 = None 2025-03-14T05:14:27.3390607Z 2025-03-14T05:14:27.3391000Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:27.3391552Z getitem_25: "f32[269952, 1][4, 4]cpu" = deltas_1[(slice(None, None, None), slice(3, None, 4))]; deltas_1 = None 2025-03-14T05:14:27.3391916Z dh_2: "f32[269952, 1][1, 1]cpu" = getitem_25 / 1.0; getitem_25 = None 2025-03-14T05:14:27.3392165Z 2025-03-14T05:14:27.3392605Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:27.3393157Z dw_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dw_2, max = 4.135166556742356); dw_2 = None 2025-03-14T05:14:27.3393434Z 2025-03-14T05:14:27.3393857Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:27.3394400Z dh_3: "f32[269952, 1][1, 1]cpu" = torch.clamp(dh_2, max = 4.135166556742356); dh_2 = None 2025-03-14T05:14:27.3394705Z 2025-03-14T05:14:27.3395154Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:27.3395736Z getitem_26: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)] 2025-03-14T05:14:27.3396072Z mul_12: "f32[269952, 1][1, 1]cpu" = dx_1 * getitem_26; dx_1 = getitem_26 = None 2025-03-14T05:14:27.3396424Z getitem_27: "f32[269952, 1][1, 1]cpu" = ctr_x_1[(slice(None, None, None), None)]; ctr_x_1 = None 2025-03-14T05:14:27.3396795Z pred_ctr_x_1: "f32[269952, 1][1, 1]cpu" = mul_12 + getitem_27; mul_12 = getitem_27 = None 2025-03-14T05:14:27.3397069Z 2025-03-14T05:14:27.3397512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:27.3398071Z getitem_28: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)] 2025-03-14T05:14:27.3398403Z mul_13: "f32[269952, 1][1, 1]cpu" = dy_1 * getitem_28; dy_1 = getitem_28 = None 2025-03-14T05:14:27.3398750Z getitem_29: "f32[269952, 1][1, 1]cpu" = ctr_y_1[(slice(None, None, None), None)]; ctr_y_1 = None 2025-03-14T05:14:27.3399112Z pred_ctr_y_1: "f32[269952, 1][1, 1]cpu" = mul_13 + getitem_29; mul_13 = getitem_29 = None 2025-03-14T05:14:27.3399389Z 2025-03-14T05:14:27.3399819Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:27.3400331Z exp_2: "f32[269952, 1][1, 1]cpu" = torch.exp(dw_3); dw_3 = None 2025-03-14T05:14:27.3400675Z getitem_30: "f32[269952, 1][1, 1]cpu" = widths_1[(slice(None, None, None), None)]; widths_1 = None 2025-03-14T05:14:27.3401076Z pred_w_1: "f32[269952, 1][1, 1]cpu" = exp_2 * getitem_30; exp_2 = getitem_30 = None 2025-03-14T05:14:27.3401343Z 2025-03-14T05:14:27.3401772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:27.3402293Z exp_3: "f32[269952, 1][1, 1]cpu" = torch.exp(dh_3); dh_3 = None 2025-03-14T05:14:27.3402641Z getitem_31: "f32[269952, 1][1, 1]cpu" = heights_1[(slice(None, None, None), None)]; heights_1 = None 2025-03-14T05:14:27.3403027Z pred_h_1: "f32[269952, 1][1, 1]cpu" = exp_3 * getitem_31; exp_3 = getitem_31 = None 2025-03-14T05:14:27.3403292Z 2025-03-14T05:14:27.3403703Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:27.3404180Z mul_16: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1 2025-03-14T05:14:27.3404463Z x1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 - mul_16; mul_16 = None 2025-03-14T05:14:27.3404711Z 2025-03-14T05:14:27.3405116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:27.3405602Z mul_17: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1 2025-03-14T05:14:27.3405860Z y1_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 - mul_17; mul_17 = None 2025-03-14T05:14:27.3406100Z 2025-03-14T05:14:27.3406520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:27.3407006Z mul_18: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_w_1; pred_w_1 = None 2025-03-14T05:14:27.3407316Z x2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_x_1 + mul_18; pred_ctr_x_1 = mul_18 = None 2025-03-14T05:14:27.3407574Z 2025-03-14T05:14:27.3407984Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:27.3408459Z mul_19: "f32[269952, 1][1, 1]cpu" = 0.5 * pred_h_1; pred_h_1 = None 2025-03-14T05:14:27.3408788Z y2_1: "f32[269952, 1][1, 1]cpu" = pred_ctr_y_1 + mul_19; pred_ctr_y_1 = mul_19 = None 2025-03-14T05:14:27.3409048Z 2025-03-14T05:14:27.3409483Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:27.3410078Z pred_boxes_1: "f32[269952, 1, 4][4, 4, 1]cpu" = torch.stack((x1_1, y1_1, x2_1, y2_1), dim = -1); x1_1 = y1_1 = x2_1 = y2_1 = None 2025-03-14T05:14:27.3410382Z 2025-03-14T05:14:27.3410810Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:27.3411361Z proposals_i_1: "f32[269952, 4][4, 1]cpu" = pred_boxes_1.reshape((269952, 4)); pred_boxes_1 = None 2025-03-14T05:14:27.3411653Z 2025-03-14T05:14:27.3412124Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:27.3412736Z proposals_i_6: "f32[4, 67488, 4][269952, 4, 1]cpu" = proposals_i_1.view(4, -1, 4); proposals_i_1 = None 2025-03-14T05:14:27.3413031Z 2025-03-14T05:14:27.3413512Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:27.3414171Z pred_anchor_deltas_i_2: "f32[67488, 4][4, 1]cpu" = l_pred_anchor_deltas_2_.reshape(-1, 4); l_pred_anchor_deltas_2_ = None 2025-03-14T05:14:27.3414531Z 2025-03-14T05:14:27.3415054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:27.3415731Z unsqueeze_2: "f32[1, 16872, 4][67488, 4, 1]cpu" = l_anchors_2_tensor.unsqueeze(0); l_anchors_2_tensor = None 2025-03-14T05:14:27.3416128Z expand_2: "f32[4, 16872, 4][0, 4, 1]cpu" = unsqueeze_2.expand(4, -1, -1); unsqueeze_2 = None 2025-03-14T05:14:27.3416497Z anchors_i_2: "f32[67488, 4][4, 1]cpu" = expand_2.reshape(-1, 4); expand_2 = None 2025-03-14T05:14:27.3416765Z 2025-03-14T05:14:27.3417222Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:27.3417812Z deltas_2: "f32[67488, 4][4, 1]cpu" = pred_anchor_deltas_i_2.float(); pred_anchor_deltas_i_2 = None 2025-03-14T05:14:27.3418105Z 2025-03-14T05:14:27.3418503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:27.3419011Z boxes_2: "f32[67488, 4][4, 1]cpu" = anchors_i_2.to(torch.float32); anchors_i_2 = None 2025-03-14T05:14:27.3419280Z 2025-03-14T05:14:27.3419683Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:27.3420181Z getitem_32: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 2)] 2025-03-14T05:14:27.3420490Z getitem_33: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3420823Z widths_2: "f32[67488][1]cpu" = getitem_32 - getitem_33; getitem_32 = getitem_33 = None 2025-03-14T05:14:27.3421096Z 2025-03-14T05:14:27.3421520Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:27.3422019Z getitem_34: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 3)] 2025-03-14T05:14:27.3422352Z getitem_35: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)] 2025-03-14T05:14:27.3422693Z heights_2: "f32[67488][1]cpu" = getitem_34 - getitem_35; getitem_34 = getitem_35 = None 2025-03-14T05:14:27.3422973Z 2025-03-14T05:14:27.3423385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:27.3423892Z getitem_36: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3424256Z mul_20: "f32[67488][1]cpu" = 0.5 * widths_2 2025-03-14T05:14:27.3424564Z ctr_x_2: "f32[67488][1]cpu" = getitem_36 + mul_20; getitem_36 = mul_20 = None 2025-03-14T05:14:27.3424824Z 2025-03-14T05:14:27.3425240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:27.3425776Z getitem_37: "f32[67488][4]cpu" = boxes_2[(slice(None, None, None), 1)]; boxes_2 = None 2025-03-14T05:14:27.3426085Z mul_21: "f32[67488][1]cpu" = 0.5 * heights_2 2025-03-14T05:14:27.3426364Z ctr_y_2: "f32[67488][1]cpu" = getitem_37 + mul_21; getitem_37 = mul_21 = None 2025-03-14T05:14:27.3426623Z 2025-03-14T05:14:27.3427029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:27.3427560Z getitem_38: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:27.3428618Z dx_2: "f32[67488, 1][1, 1]cpu" = getitem_38 / 1.0; getitem_38 = None 2025-03-14T05:14:27.3428865Z 2025-03-14T05:14:27.3429265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:27.3429786Z getitem_39: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:27.3430119Z dy_2: "f32[67488, 1][1, 1]cpu" = getitem_39 / 1.0; getitem_39 = None 2025-03-14T05:14:27.3430361Z 2025-03-14T05:14:27.3430788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:27.3431309Z getitem_40: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:27.3431642Z dw_4: "f32[67488, 1][1, 1]cpu" = getitem_40 / 1.0; getitem_40 = None 2025-03-14T05:14:27.3431888Z 2025-03-14T05:14:27.3432290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:27.3432851Z getitem_41: "f32[67488, 1][4, 4]cpu" = deltas_2[(slice(None, None, None), slice(3, None, 4))]; deltas_2 = None 2025-03-14T05:14:27.3433213Z dh_4: "f32[67488, 1][1, 1]cpu" = getitem_41 / 1.0; getitem_41 = None 2025-03-14T05:14:27.3433460Z 2025-03-14T05:14:27.3433897Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:27.3434448Z dw_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dw_4, max = 4.135166556742356); dw_4 = None 2025-03-14T05:14:27.3434720Z 2025-03-14T05:14:27.3435151Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:27.3435729Z dh_5: "f32[67488, 1][1, 1]cpu" = torch.clamp(dh_4, max = 4.135166556742356); dh_4 = None 2025-03-14T05:14:27.3436000Z 2025-03-14T05:14:27.3436453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:27.3437003Z getitem_42: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)] 2025-03-14T05:14:27.3437353Z mul_22: "f32[67488, 1][1, 1]cpu" = dx_2 * getitem_42; dx_2 = getitem_42 = None 2025-03-14T05:14:27.3437690Z getitem_43: "f32[67488, 1][1, 1]cpu" = ctr_x_2[(slice(None, None, None), None)]; ctr_x_2 = None 2025-03-14T05:14:27.3438041Z pred_ctr_x_2: "f32[67488, 1][1, 1]cpu" = mul_22 + getitem_43; mul_22 = getitem_43 = None 2025-03-14T05:14:27.3438304Z 2025-03-14T05:14:27.3438739Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:27.3439276Z getitem_44: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)] 2025-03-14T05:14:27.3439594Z mul_23: "f32[67488, 1][1, 1]cpu" = dy_2 * getitem_44; dy_2 = getitem_44 = None 2025-03-14T05:14:27.3439927Z getitem_45: "f32[67488, 1][1, 1]cpu" = ctr_y_2[(slice(None, None, None), None)]; ctr_y_2 = None 2025-03-14T05:14:27.3440282Z pred_ctr_y_2: "f32[67488, 1][1, 1]cpu" = mul_23 + getitem_45; mul_23 = getitem_45 = None 2025-03-14T05:14:27.3440550Z 2025-03-14T05:14:27.3440974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:27.3441475Z exp_4: "f32[67488, 1][1, 1]cpu" = torch.exp(dw_5); dw_5 = None 2025-03-14T05:14:27.3441856Z getitem_46: "f32[67488, 1][1, 1]cpu" = widths_2[(slice(None, None, None), None)]; widths_2 = None 2025-03-14T05:14:27.3442213Z pred_w_2: "f32[67488, 1][1, 1]cpu" = exp_4 * getitem_46; exp_4 = getitem_46 = None 2025-03-14T05:14:27.3442472Z 2025-03-14T05:14:27.3442893Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:27.3443389Z exp_5: "f32[67488, 1][1, 1]cpu" = torch.exp(dh_5); dh_5 = None 2025-03-14T05:14:27.3443746Z getitem_47: "f32[67488, 1][1, 1]cpu" = heights_2[(slice(None, None, None), None)]; heights_2 = None 2025-03-14T05:14:27.3444105Z pred_h_2: "f32[67488, 1][1, 1]cpu" = exp_5 * getitem_47; exp_5 = getitem_47 = None 2025-03-14T05:14:27.3444364Z 2025-03-14T05:14:27.3444765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:27.3445234Z mul_26: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2 2025-03-14T05:14:27.3445504Z x1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 - mul_26; mul_26 = None 2025-03-14T05:14:27.3445743Z 2025-03-14T05:14:27.3446141Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:27.3446602Z mul_27: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2 2025-03-14T05:14:27.3446862Z y1_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 - mul_27; mul_27 = None 2025-03-14T05:14:27.3447098Z 2025-03-14T05:14:27.3447493Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:27.3447978Z mul_28: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_w_2; pred_w_2 = None 2025-03-14T05:14:27.3448315Z x2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_x_2 + mul_28; pred_ctr_x_2 = mul_28 = None 2025-03-14T05:14:27.3448577Z 2025-03-14T05:14:27.3448971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:27.3449474Z mul_29: "f32[67488, 1][1, 1]cpu" = 0.5 * pred_h_2; pred_h_2 = None 2025-03-14T05:14:27.3449777Z y2_2: "f32[67488, 1][1, 1]cpu" = pred_ctr_y_2 + mul_29; pred_ctr_y_2 = mul_29 = None 2025-03-14T05:14:27.3450032Z 2025-03-14T05:14:27.3450470Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:27.3451061Z pred_boxes_2: "f32[67488, 1, 4][4, 4, 1]cpu" = torch.stack((x1_2, y1_2, x2_2, y2_2), dim = -1); x1_2 = y1_2 = x2_2 = y2_2 = None 2025-03-14T05:14:27.3451364Z 2025-03-14T05:14:27.3451788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:27.3452338Z proposals_i_2: "f32[67488, 4][4, 1]cpu" = pred_boxes_2.reshape((67488, 4)); pred_boxes_2 = None 2025-03-14T05:14:27.3452625Z 2025-03-14T05:14:27.3453084Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:27.3453686Z proposals_i_7: "f32[4, 16872, 4][67488, 4, 1]cpu" = proposals_i_2.view(4, -1, 4); proposals_i_2 = None 2025-03-14T05:14:27.3453982Z 2025-03-14T05:14:27.3454459Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:27.3455141Z pred_anchor_deltas_i_3: "f32[16872, 4][4, 1]cpu" = l_pred_anchor_deltas_3_.reshape(-1, 4); l_pred_anchor_deltas_3_ = None 2025-03-14T05:14:27.3455468Z 2025-03-14T05:14:27.3455986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:27.3456650Z unsqueeze_3: "f32[1, 4218, 4][16872, 4, 1]cpu" = l_anchors_3_tensor.unsqueeze(0); l_anchors_3_tensor = None 2025-03-14T05:14:27.3457054Z expand_3: "f32[4, 4218, 4][0, 4, 1]cpu" = unsqueeze_3.expand(4, -1, -1); unsqueeze_3 = None 2025-03-14T05:14:27.3457401Z anchors_i_3: "f32[16872, 4][4, 1]cpu" = expand_3.reshape(-1, 4); expand_3 = None 2025-03-14T05:14:27.3457660Z 2025-03-14T05:14:27.3458116Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:27.3458703Z deltas_3: "f32[16872, 4][4, 1]cpu" = pred_anchor_deltas_i_3.float(); pred_anchor_deltas_i_3 = None 2025-03-14T05:14:27.3458993Z 2025-03-14T05:14:27.3459385Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:27.3459894Z boxes_3: "f32[16872, 4][4, 1]cpu" = anchors_i_3.to(torch.float32); anchors_i_3 = None 2025-03-14T05:14:27.3460160Z 2025-03-14T05:14:27.3460557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:27.3461053Z getitem_48: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 2)] 2025-03-14T05:14:27.3461366Z getitem_49: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3461719Z widths_3: "f32[16872][1]cpu" = getitem_48 - getitem_49; getitem_48 = getitem_49 = None 2025-03-14T05:14:27.3461993Z 2025-03-14T05:14:27.3462392Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:27.3462904Z getitem_50: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 3)] 2025-03-14T05:14:27.3463209Z getitem_51: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)] 2025-03-14T05:14:27.3463545Z heights_3: "f32[16872][1]cpu" = getitem_50 - getitem_51; getitem_50 = getitem_51 = None 2025-03-14T05:14:27.3463826Z 2025-03-14T05:14:27.3505230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:27.3506215Z getitem_52: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3506621Z mul_30: "f32[16872][1]cpu" = 0.5 * widths_3 2025-03-14T05:14:27.3506929Z ctr_x_3: "f32[16872][1]cpu" = getitem_52 + mul_30; getitem_52 = mul_30 = None 2025-03-14T05:14:27.3507260Z 2025-03-14T05:14:27.3507757Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:27.3508397Z getitem_53: "f32[16872][4]cpu" = boxes_3[(slice(None, None, None), 1)]; boxes_3 = None 2025-03-14T05:14:27.3508719Z mul_31: "f32[16872][1]cpu" = 0.5 * heights_3 2025-03-14T05:14:27.3509012Z ctr_y_3: "f32[16872][1]cpu" = getitem_53 + mul_31; getitem_53 = mul_31 = None 2025-03-14T05:14:27.3509292Z 2025-03-14T05:14:27.3509733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:27.3510598Z getitem_54: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:27.3510943Z dx_3: "f32[16872, 1][1, 1]cpu" = getitem_54 / 1.0; getitem_54 = None 2025-03-14T05:14:27.3511193Z 2025-03-14T05:14:27.3511594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:27.3512113Z getitem_55: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:27.3512497Z dy_3: "f32[16872, 1][1, 1]cpu" = getitem_55 / 1.0; getitem_55 = None 2025-03-14T05:14:27.3512739Z 2025-03-14T05:14:27.3513128Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:27.3513638Z getitem_56: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:27.3513960Z dw_6: "f32[16872, 1][1, 1]cpu" = getitem_56 / 1.0; getitem_56 = None 2025-03-14T05:14:27.3514198Z 2025-03-14T05:14:27.3514593Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:27.3515137Z getitem_57: "f32[16872, 1][4, 4]cpu" = deltas_3[(slice(None, None, None), slice(3, None, 4))]; deltas_3 = None 2025-03-14T05:14:27.3515489Z dh_6: "f32[16872, 1][1, 1]cpu" = getitem_57 / 1.0; getitem_57 = None 2025-03-14T05:14:27.3515727Z 2025-03-14T05:14:27.3516161Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:27.3516708Z dw_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dw_6, max = 4.135166556742356); dw_6 = None 2025-03-14T05:14:27.3516976Z 2025-03-14T05:14:27.3517448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:27.3517990Z dh_7: "f32[16872, 1][1, 1]cpu" = torch.clamp(dh_6, max = 4.135166556742356); dh_6 = None 2025-03-14T05:14:27.3518299Z 2025-03-14T05:14:27.3518734Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:27.3519277Z getitem_58: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)] 2025-03-14T05:14:27.3519601Z mul_32: "f32[16872, 1][1, 1]cpu" = dx_3 * getitem_58; dx_3 = getitem_58 = None 2025-03-14T05:14:27.3519937Z getitem_59: "f32[16872, 1][1, 1]cpu" = ctr_x_3[(slice(None, None, None), None)]; ctr_x_3 = None 2025-03-14T05:14:27.3520289Z pred_ctr_x_3: "f32[16872, 1][1, 1]cpu" = mul_32 + getitem_59; mul_32 = getitem_59 = None 2025-03-14T05:14:27.3520557Z 2025-03-14T05:14:27.3520993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:27.3521532Z getitem_60: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)] 2025-03-14T05:14:27.3521851Z mul_33: "f32[16872, 1][1, 1]cpu" = dy_3 * getitem_60; dy_3 = getitem_60 = None 2025-03-14T05:14:27.3522183Z getitem_61: "f32[16872, 1][1, 1]cpu" = ctr_y_3[(slice(None, None, None), None)]; ctr_y_3 = None 2025-03-14T05:14:27.3522534Z pred_ctr_y_3: "f32[16872, 1][1, 1]cpu" = mul_33 + getitem_61; mul_33 = getitem_61 = None 2025-03-14T05:14:27.3522801Z 2025-03-14T05:14:27.3523220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:27.3523740Z exp_6: "f32[16872, 1][1, 1]cpu" = torch.exp(dw_7); dw_7 = None 2025-03-14T05:14:27.3524077Z getitem_62: "f32[16872, 1][1, 1]cpu" = widths_3[(slice(None, None, None), None)]; widths_3 = None 2025-03-14T05:14:27.3524440Z pred_w_3: "f32[16872, 1][1, 1]cpu" = exp_6 * getitem_62; exp_6 = getitem_62 = None 2025-03-14T05:14:27.3524707Z 2025-03-14T05:14:27.3525134Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:27.3525659Z exp_7: "f32[16872, 1][1, 1]cpu" = torch.exp(dh_7); dh_7 = None 2025-03-14T05:14:27.3525998Z getitem_63: "f32[16872, 1][1, 1]cpu" = heights_3[(slice(None, None, None), None)]; heights_3 = None 2025-03-14T05:14:27.3526358Z pred_h_3: "f32[16872, 1][1, 1]cpu" = exp_7 * getitem_63; exp_7 = getitem_63 = None 2025-03-14T05:14:27.3526625Z 2025-03-14T05:14:27.3527049Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:27.3527525Z mul_36: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3 2025-03-14T05:14:27.3527806Z x1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 - mul_36; mul_36 = None 2025-03-14T05:14:27.3528059Z 2025-03-14T05:14:27.3528454Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:27.3528926Z mul_37: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3 2025-03-14T05:14:27.3529198Z y1_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 - mul_37; mul_37 = None 2025-03-14T05:14:27.3529443Z 2025-03-14T05:14:27.3529842Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:27.3530333Z mul_38: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_w_3; pred_w_3 = None 2025-03-14T05:14:27.3530663Z x2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_x_3 + mul_38; pred_ctr_x_3 = mul_38 = None 2025-03-14T05:14:27.3530921Z 2025-03-14T05:14:27.3531312Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:27.3531831Z mul_39: "f32[16872, 1][1, 1]cpu" = 0.5 * pred_h_3; pred_h_3 = None 2025-03-14T05:14:27.3532135Z y2_3: "f32[16872, 1][1, 1]cpu" = pred_ctr_y_3 + mul_39; pred_ctr_y_3 = mul_39 = None 2025-03-14T05:14:27.3532389Z 2025-03-14T05:14:27.3532829Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:27.3533426Z pred_boxes_3: "f32[16872, 1, 4][4, 4, 1]cpu" = torch.stack((x1_3, y1_3, x2_3, y2_3), dim = -1); x1_3 = y1_3 = x2_3 = y2_3 = None 2025-03-14T05:14:27.3533733Z 2025-03-14T05:14:27.3534156Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:27.3534714Z proposals_i_3: "f32[16872, 4][4, 1]cpu" = pred_boxes_3.reshape((16872, 4)); pred_boxes_3 = None 2025-03-14T05:14:27.3535005Z 2025-03-14T05:14:27.3535491Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:27.3536157Z proposals_i_8: "f32[4, 4218, 4][16872, 4, 1]cpu" = proposals_i_3.view(4, -1, 4); proposals_i_3 = None 2025-03-14T05:14:27.3536462Z 2025-03-14T05:14:27.3536943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:527 in _decode_proposals, code: pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) 2025-03-14T05:14:27.3537651Z pred_anchor_deltas_i_4: "f32[4332, 4][4, 1]cpu" = l_pred_anchor_deltas_4_.reshape(-1, 4); l_pred_anchor_deltas_4_ = None 2025-03-14T05:14:27.3537985Z 2025-03-14T05:14:27.3538518Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:529 in _decode_proposals, code: anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) 2025-03-14T05:14:27.3539225Z unsqueeze_4: "f32[1, 1083, 4][4332, 4, 1]cpu" = l_anchors_4_tensor.unsqueeze(0); l_anchors_4_tensor = None 2025-03-14T05:14:27.3539631Z expand_4: "f32[4, 1083, 4][0, 4, 1]cpu" = unsqueeze_4.expand(4, -1, -1); unsqueeze_4 = None 2025-03-14T05:14:27.3539981Z anchors_i_4: "f32[4332, 4][4, 1]cpu" = expand_4.reshape(-1, 4); expand_4 = None 2025-03-14T05:14:27.3540247Z 2025-03-14T05:14:27.3540723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:27.3541329Z deltas_4: "f32[4332, 4][4, 1]cpu" = pred_anchor_deltas_i_4.float(); pred_anchor_deltas_i_4 = None 2025-03-14T05:14:27.3541625Z 2025-03-14T05:14:27.3542041Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:27.3542685Z boxes_4: "f32[4332, 4][4, 1]cpu" = anchors_i_4.to(torch.float32); anchors_i_4 = None 2025-03-14T05:14:27.3542952Z 2025-03-14T05:14:27.3543364Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:27.3543883Z getitem_64: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 2)] 2025-03-14T05:14:27.3544293Z getitem_65: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3544671Z widths_4: "f32[4332][1]cpu" = getitem_64 - getitem_65; getitem_64 = getitem_65 = None 2025-03-14T05:14:27.3544954Z 2025-03-14T05:14:27.3545376Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:27.3545911Z getitem_66: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 3)] 2025-03-14T05:14:27.3546222Z getitem_67: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)] 2025-03-14T05:14:27.3546565Z heights_4: "f32[4332][1]cpu" = getitem_66 - getitem_67; getitem_66 = getitem_67 = None 2025-03-14T05:14:27.3546874Z 2025-03-14T05:14:27.3547283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:27.3547782Z getitem_68: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 0)] 2025-03-14T05:14:27.3548059Z mul_40: "f32[4332][1]cpu" = 0.5 * widths_4 2025-03-14T05:14:27.3548344Z ctr_x_4: "f32[4332][1]cpu" = getitem_68 + mul_40; getitem_68 = mul_40 = None 2025-03-14T05:14:27.3548603Z 2025-03-14T05:14:27.3549012Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:27.3549547Z getitem_69: "f32[4332][4]cpu" = boxes_4[(slice(None, None, None), 1)]; boxes_4 = None 2025-03-14T05:14:27.3549842Z mul_41: "f32[4332][1]cpu" = 0.5 * heights_4 2025-03-14T05:14:27.3550118Z ctr_y_4: "f32[4332][1]cpu" = getitem_69 + mul_41; getitem_69 = mul_41 = None 2025-03-14T05:14:27.3550370Z 2025-03-14T05:14:27.3550770Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:27.3551302Z getitem_70: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:27.3551624Z dx_4: "f32[4332, 1][1, 1]cpu" = getitem_70 / 1.0; getitem_70 = None 2025-03-14T05:14:27.3551862Z 2025-03-14T05:14:27.3552249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:27.3552756Z getitem_71: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:27.3553092Z dy_4: "f32[4332, 1][1, 1]cpu" = getitem_71 / 1.0; getitem_71 = None 2025-03-14T05:14:27.3553326Z 2025-03-14T05:14:27.3553711Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:27.3554212Z getitem_72: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:27.3554532Z dw_8: "f32[4332, 1][1, 1]cpu" = getitem_72 / 1.0; getitem_72 = None 2025-03-14T05:14:27.3554764Z 2025-03-14T05:14:27.3555150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:27.3555692Z getitem_73: "f32[4332, 1][4, 4]cpu" = deltas_4[(slice(None, None, None), slice(3, None, 4))]; deltas_4 = None 2025-03-14T05:14:27.3556034Z dh_8: "f32[4332, 1][1, 1]cpu" = getitem_73 / 1.0; getitem_73 = None 2025-03-14T05:14:27.3556269Z 2025-03-14T05:14:27.3556688Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:27.3557216Z dw_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dw_8, max = 4.135166556742356); dw_8 = None 2025-03-14T05:14:27.3557476Z 2025-03-14T05:14:27.3557912Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:27.3558439Z dh_9: "f32[4332, 1][1, 1]cpu" = torch.clamp(dh_8, max = 4.135166556742356); dh_8 = None 2025-03-14T05:14:27.3558716Z 2025-03-14T05:14:27.3559148Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:27.3559688Z getitem_74: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)] 2025-03-14T05:14:27.3560010Z mul_42: "f32[4332, 1][1, 1]cpu" = dx_4 * getitem_74; dx_4 = getitem_74 = None 2025-03-14T05:14:27.3560345Z getitem_75: "f32[4332, 1][1, 1]cpu" = ctr_x_4[(slice(None, None, None), None)]; ctr_x_4 = None 2025-03-14T05:14:27.3560698Z pred_ctr_x_4: "f32[4332, 1][1, 1]cpu" = mul_42 + getitem_75; mul_42 = getitem_75 = None 2025-03-14T05:14:27.3560952Z 2025-03-14T05:14:27.3561386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:27.3561923Z getitem_76: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)] 2025-03-14T05:14:27.3562238Z mul_43: "f32[4332, 1][1, 1]cpu" = dy_4 * getitem_76; dy_4 = getitem_76 = None 2025-03-14T05:14:27.3562569Z getitem_77: "f32[4332, 1][1, 1]cpu" = ctr_y_4[(slice(None, None, None), None)]; ctr_y_4 = None 2025-03-14T05:14:27.3562909Z pred_ctr_y_4: "f32[4332, 1][1, 1]cpu" = mul_43 + getitem_77; mul_43 = getitem_77 = None 2025-03-14T05:14:27.3563170Z 2025-03-14T05:14:27.3563592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:27.3564117Z exp_8: "f32[4332, 1][1, 1]cpu" = torch.exp(dw_9); dw_9 = None 2025-03-14T05:14:27.3564455Z getitem_78: "f32[4332, 1][1, 1]cpu" = widths_4[(slice(None, None, None), None)]; widths_4 = None 2025-03-14T05:14:27.3564822Z pred_w_4: "f32[4332, 1][1, 1]cpu" = exp_8 * getitem_78; exp_8 = getitem_78 = None 2025-03-14T05:14:27.3565078Z 2025-03-14T05:14:27.3565515Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:27.3566026Z exp_9: "f32[4332, 1][1, 1]cpu" = torch.exp(dh_9); dh_9 = None 2025-03-14T05:14:27.3566370Z getitem_79: "f32[4332, 1][1, 1]cpu" = heights_4[(slice(None, None, None), None)]; heights_4 = None 2025-03-14T05:14:27.3566732Z pred_h_4: "f32[4332, 1][1, 1]cpu" = exp_9 * getitem_79; exp_9 = getitem_79 = None 2025-03-14T05:14:27.3566996Z 2025-03-14T05:14:27.3567411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:27.3567890Z mul_46: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4 2025-03-14T05:14:27.3568168Z x1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 - mul_46; mul_46 = None 2025-03-14T05:14:27.3568413Z 2025-03-14T05:14:27.3568812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:27.3569285Z mul_47: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4 2025-03-14T05:14:27.3569553Z y1_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 - mul_47; mul_47 = None 2025-03-14T05:14:27.3569797Z 2025-03-14T05:14:27.3570200Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:27.3570710Z mul_48: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_w_4; pred_w_4 = None 2025-03-14T05:14:27.3571027Z x2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_x_4 + mul_48; pred_ctr_x_4 = mul_48 = None 2025-03-14T05:14:27.3571286Z 2025-03-14T05:14:27.3571765Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:27.3572257Z mul_49: "f32[4332, 1][1, 1]cpu" = 0.5 * pred_h_4; pred_h_4 = None 2025-03-14T05:14:27.3572563Z y2_4: "f32[4332, 1][1, 1]cpu" = pred_ctr_y_4 + mul_49; pred_ctr_y_4 = mul_49 = None 2025-03-14T05:14:27.3572820Z 2025-03-14T05:14:27.3573263Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:27.3573862Z pred_boxes_4: "f32[4332, 1, 4][4, 4, 1]cpu" = torch.stack((x1_4, y1_4, x2_4, y2_4), dim = -1); x1_4 = y1_4 = x2_4 = y2_4 = None 2025-03-14T05:14:27.3574170Z 2025-03-14T05:14:27.3574596Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:27.3575155Z proposals_i_4: "f32[4332, 4][4, 1]cpu" = pred_boxes_4.reshape((4332, 4)); pred_boxes_4 = None 2025-03-14T05:14:27.3575445Z 2025-03-14T05:14:27.3575924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/rpn.py:532 in _decode_proposals, code: proposals.append(proposals_i.view(N, -1, B)) 2025-03-14T05:14:27.3576534Z proposals_i_9: "f32[4, 1083, 4][4332, 4, 1]cpu" = proposals_i_4.view(4, -1, 4); proposals_i_4 = None 2025-03-14T05:14:27.3576830Z 2025-03-14T05:14:27.3577409Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:71 in find_top_rpn_proposals, code: batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0]) 2025-03-14T05:14:27.3578149Z arange: "i64[4][1]cpu" = torch.arange(4, device = device(type='cpu')) 2025-03-14T05:14:27.3578406Z 2025-03-14T05:14:27.3578802Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:27.3579301Z batch_idx: "i64[4][1]cpu" = arange.to(device(type='cpu')); arange = None 2025-03-14T05:14:27.3579573Z 2025-03-14T05:14:27.3580114Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:27.3580793Z topk = l_pred_objectness_logits_0_.topk(1000, dim = 1); l_pred_objectness_logits_0_ = None 2025-03-14T05:14:27.3581143Z topk_scores_i: "f32[4, 1000][1000, 1]cpu" = topk[0] 2025-03-14T05:14:27.3581645Z topk_idx: "i64[4, 1000][1000, 1]cpu" = topk[1]; topk = None 2025-03-14T05:14:27.3581894Z 2025-03-14T05:14:27.3582441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:27.3583090Z getitem_82: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:27.3583526Z topk_proposals_i: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_5[(getitem_82, topk_idx)]; proposals_i_5 = getitem_82 = topk_idx = None 2025-03-14T05:14:27.3583883Z 2025-03-14T05:14:27.3584513Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:27.3585313Z full: "i64[1000][1]cpu" = torch.full((1000,), 0, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:27.3585611Z 2025-03-14T05:14:27.3586009Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:27.3586521Z to_6: "i64[1000][1]cpu" = full.to(device(type='cpu')); full = None 2025-03-14T05:14:27.3586770Z 2025-03-14T05:14:27.3587296Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:27.3587962Z topk_1 = l_pred_objectness_logits_1_.topk(1000, dim = 1); l_pred_objectness_logits_1_ = None 2025-03-14T05:14:27.3588307Z topk_scores_i_1: "f32[4, 1000][1000, 1]cpu" = topk_1[0] 2025-03-14T05:14:27.3588600Z topk_idx_1: "i64[4, 1000][1000, 1]cpu" = topk_1[1]; topk_1 = None 2025-03-14T05:14:27.3588844Z 2025-03-14T05:14:27.3589393Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:27.3590041Z getitem_86: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:27.3590476Z topk_proposals_i_1: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_6[(getitem_86, topk_idx_1)]; proposals_i_6 = getitem_86 = topk_idx_1 = None 2025-03-14T05:14:27.3590820Z 2025-03-14T05:14:27.3591350Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:27.3592046Z full_1: "i64[1000][1]cpu" = torch.full((1000,), 1, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:27.3592336Z 2025-03-14T05:14:27.3592717Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:27.3593186Z to_7: "i64[1000][1]cpu" = full_1.to(device(type='cpu')); full_1 = None 2025-03-14T05:14:27.3593434Z 2025-03-14T05:14:27.3593980Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:27.3594632Z topk_2 = l_pred_objectness_logits_2_.topk(1000, dim = 1); l_pred_objectness_logits_2_ = None 2025-03-14T05:14:27.3594971Z topk_scores_i_2: "f32[4, 1000][1000, 1]cpu" = topk_2[0] 2025-03-14T05:14:27.3595257Z topk_idx_2: "i64[4, 1000][1000, 1]cpu" = topk_2[1]; topk_2 = None 2025-03-14T05:14:27.3595499Z 2025-03-14T05:14:27.3596037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:27.3596675Z getitem_90: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:27.3597101Z topk_proposals_i_2: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_7[(getitem_90, topk_idx_2)]; proposals_i_7 = getitem_90 = topk_idx_2 = None 2025-03-14T05:14:27.3597450Z 2025-03-14T05:14:27.3597985Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:27.3598652Z full_2: "i64[1000][1]cpu" = torch.full((1000,), 2, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:27.3598959Z 2025-03-14T05:14:27.3599336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:27.3599822Z to_8: "i64[1000][1]cpu" = full_2.to(device(type='cpu')); full_2 = None 2025-03-14T05:14:27.3600064Z 2025-03-14T05:14:27.3600577Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:27.3601223Z topk_3 = l_pred_objectness_logits_3_.topk(1000, dim = 1); l_pred_objectness_logits_3_ = None 2025-03-14T05:14:27.3601558Z topk_scores_i_3: "f32[4, 1000][1000, 1]cpu" = topk_3[0] 2025-03-14T05:14:27.3601834Z topk_idx_3: "i64[4, 1000][1000, 1]cpu" = topk_3[1]; topk_3 = None 2025-03-14T05:14:27.3602077Z 2025-03-14T05:14:27.3602617Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:27.3603250Z getitem_94: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)] 2025-03-14T05:14:27.3603668Z topk_proposals_i_3: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_8[(getitem_94, topk_idx_3)]; proposals_i_8 = getitem_94 = topk_idx_3 = None 2025-03-14T05:14:27.3604017Z 2025-03-14T05:14:27.3604550Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:27.3605214Z full_3: "i64[1000][1]cpu" = torch.full((1000,), 3, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:27.3605518Z 2025-03-14T05:14:27.3605903Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:27.3606375Z to_9: "i64[1000][1]cpu" = full_3.to(device(type='cpu')); full_3 = None 2025-03-14T05:14:27.3606625Z 2025-03-14T05:14:27.3607158Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:79 in find_top_rpn_proposals, code: topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) 2025-03-14T05:14:27.3607805Z topk_4 = l_pred_objectness_logits_4_.topk(1000, dim = 1); l_pred_objectness_logits_4_ = None 2025-03-14T05:14:27.3608136Z topk_scores_i_4: "f32[4, 1000][1000, 1]cpu" = topk_4[0] 2025-03-14T05:14:27.3608413Z topk_idx_4: "i64[4, 1000][1000, 1]cpu" = topk_4[1]; topk_4 = None 2025-03-14T05:14:27.3608654Z 2025-03-14T05:14:27.3609191Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:82 in find_top_rpn_proposals, code: topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 2025-03-14T05:14:27.3609852Z getitem_98: "i64[4, 1][1, 1]cpu" = batch_idx[(slice(None, None, None), None)]; batch_idx = None 2025-03-14T05:14:27.3610298Z topk_proposals_i_4: "f32[4, 1000, 4][4000, 4, 1]cpu" = proposals_i_9[(getitem_98, topk_idx_4)]; proposals_i_9 = getitem_98 = topk_idx_4 = None 2025-03-14T05:14:27.3610645Z 2025-03-14T05:14:27.3611179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:88 in find_top_rpn_proposals, code: torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device), 2025-03-14T05:14:27.3611844Z full_4: "i64[1000][1]cpu" = torch.full((1000,), 4, dtype = torch.int64, device = device(type='cpu')) 2025-03-14T05:14:27.3612130Z 2025-03-14T05:14:27.3612529Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:177 in move_device_like, code: return src.to(dst.device) 2025-03-14T05:14:27.3613013Z to_10: "i64[1000][1]cpu" = full_4.to(device(type='cpu')); full_4 = None 2025-03-14T05:14:27.3613279Z 2025-03-14T05:14:27.3613646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:27.3614355Z topk_scores: "f32[4, 5000][5000, 1]cpu" = torch.cat([topk_scores_i, topk_scores_i_1, topk_scores_i_2, topk_scores_i_3, topk_scores_i_4], 1); topk_scores_i = topk_scores_i_1 = topk_scores_i_2 = topk_scores_i_3 = topk_scores_i_4 = None 2025-03-14T05:14:27.3614840Z 2025-03-14T05:14:27.3615203Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:27.3615993Z topk_proposals: "f32[4, 5000, 4][20000, 4, 1]cpu" = torch.cat([topk_proposals_i, topk_proposals_i_1, topk_proposals_i_2, topk_proposals_i_3, topk_proposals_i_4], 1); topk_proposals_i = topk_proposals_i_1 = topk_proposals_i_2 = topk_proposals_i_3 = topk_proposals_i_4 = None 2025-03-14T05:14:27.3616564Z 2025-03-14T05:14:27.3616924Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:27.3617444Z level_ids: "i64[5000][1]cpu" = torch.cat([to_6, to_7, to_8, to_9, to_10], 0); to_6 = to_7 = to_8 = to_9 = to_10 = level_ids = None 2025-03-14T05:14:27.3617747Z 2025-03-14T05:14:27.3618241Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:101 in find_top_rpn_proposals, code: boxes = Boxes(topk_proposals[n]) 2025-03-14T05:14:27.3618817Z getitem_100: "f32[5000, 4][4, 1]cpu" = topk_proposals[0]; topk_proposals = None 2025-03-14T05:14:27.3619100Z 2025-03-14T05:14:27.3619490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:150 in __init__, code: tensor = tensor.to(torch.float32) 2025-03-14T05:14:27.3619996Z tensor: "f32[5000, 4][4, 1]cpu" = getitem_100.to(torch.float32); getitem_100 = None 2025-03-14T05:14:27.3620255Z 2025-03-14T05:14:27.3620735Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:102 in find_top_rpn_proposals, code: scores_per_img = topk_scores[n] 2025-03-14T05:14:27.3621304Z scores_per_img: "f32[5000][1]cpu" = topk_scores[0]; topk_scores = None 2025-03-14T05:14:27.3621562Z 2025-03-14T05:14:27.3622132Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:105 in find_top_rpn_proposals, code: valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) 2025-03-14T05:14:27.3622812Z isfinite: "b8[5000, 4][4, 1]cpu" = torch.isfinite(tensor); tensor = None 2025-03-14T05:14:27.3623127Z all_1: "b8[5000][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:27.3623461Z isfinite_1: "b8[5000][1]cpu" = torch.isfinite(scores_per_img); scores_per_img = None 2025-03-14T05:14:27.3623808Z valid_mask: "b8[5000][1]cpu" = all_1 & isfinite_1; all_1 = isfinite_1 = None 2025-03-14T05:14:27.3624066Z 2025-03-14T05:14:27.3624614Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/proposal_generator/proposal_utils.py:106 in find_top_rpn_proposals, code: if not valid_mask.all(): 2025-03-14T05:14:27.3625171Z all_2: "b8[][]cpu" = valid_mask.all(); valid_mask = all_2 = None 2025-03-14T05:14:27.3625416Z 2025-03-14T05:14:34.0173119Z 2025-03-14T05:14:34.0173826Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.0176442Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.0178610Z l_stack0_ = L_stack0_ 2025-03-14T05:14:34.0178973Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:14:34.0179461Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:14:34.0179940Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:14:34.0180470Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:14:34.0180997Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:14:34.0182118Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:14:34.0183028Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:14:34.0183611Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:14:34.0184120Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0184873Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0185451Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0185872Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0186173Z 2025-03-14T05:14:34.0186580Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:14:34.0187085Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:14:34.0187806Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:14:34.0188552Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:14:34.0189283Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:14:34.0190010Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:14:34.0190360Z 2025-03-14T05:14:34.0190785Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:14:34.0191769Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:14:34.0192532Z 2025-03-14T05:14:34.0192971Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:14:34.0194086Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:14:34.0194884Z 2025-03-14T05:14:34.0195277Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0195760Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0196025Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.0196269Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.0196555Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0196815Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.0197057Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.0197366Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0197623Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.0197865Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.0198142Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0198399Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.0198638Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.0198863Z 2025-03-14T05:14:34.0199267Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.0200064Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.0200624Z 2025-03-14T05:14:34.0201099Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.0201691Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:14:34.0201976Z 2025-03-14T05:14:34.0202387Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.0202927Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.0203220Z 2025-03-14T05:14:34.0203630Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.0204149Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.0204499Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0204838Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.0205123Z 2025-03-14T05:14:34.0205526Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.0206029Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.0206343Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.0206680Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.0206956Z 2025-03-14T05:14:34.0207345Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.0207850Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0208129Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.0208412Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.0208662Z 2025-03-14T05:14:34.0209061Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.0209576Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.0209883Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.0210173Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.0210448Z 2025-03-14T05:14:34.0210879Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.0211393Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.0211729Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.0211973Z 2025-03-14T05:14:34.0212386Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.0212893Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.0213219Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.0213455Z 2025-03-14T05:14:34.0213848Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.0214358Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.0214679Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.0214917Z 2025-03-14T05:14:34.0215311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.0215853Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.0216203Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.0216435Z 2025-03-14T05:14:34.0216867Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.0217419Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.0217683Z 2025-03-14T05:14:34.0218104Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.0218643Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.0218898Z 2025-03-14T05:14:34.0219336Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.0219882Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.0220206Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.0220542Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.0220898Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.0221160Z 2025-03-14T05:14:34.0221595Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.0222142Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.0222462Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.0222796Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.0223140Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.0223456Z 2025-03-14T05:14:34.0223885Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.0224518Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.0224883Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.0225251Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.0225527Z 2025-03-14T05:14:34.0225950Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.0226455Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.0226798Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.0227158Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.0227415Z 2025-03-14T05:14:34.0227816Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.0228295Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.0228556Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.0228800Z 2025-03-14T05:14:34.0229285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.0229755Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.0230016Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.0230255Z 2025-03-14T05:14:34.0230675Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.0231152Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.0231468Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.0231720Z 2025-03-14T05:14:34.0232150Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.0232621Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.0232904Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.0233146Z 2025-03-14T05:14:34.0233584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.0234167Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.0234461Z 2025-03-14T05:14:34.0234881Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.0235435Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.0235725Z 2025-03-14T05:14:34.0236173Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.0236846Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.0237293Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.0237581Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.0237875Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.0238181Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.0238430Z 2025-03-14T05:14:34.0238822Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0239384Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0239738Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.0239988Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.0240362Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0240735Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.0240975Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.0241342Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0241688Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.0241929Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.0242300Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0242651Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.0242924Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.0243152Z 2025-03-14T05:14:34.0243601Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.0244158Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:14:34.0244446Z 2025-03-14T05:14:34.0244920Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.0245593Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.0246013Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.0246301Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.0246595Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.0246906Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.0247164Z 2025-03-14T05:14:34.0247723Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.0248430Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.0248766Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.0249102Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.0249439Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.0249728Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.0249971Z 2025-03-14T05:14:34.0250441Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.0250967Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.0251207Z 2025-03-14T05:14:34.0256586Z 2025-03-14T05:14:34.0257049Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.0259219Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.0261422Z l_stack0_ = L_stack0_ 2025-03-14T05:14:34.0261795Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:14:34.0262297Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:14:34.0262792Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:14:34.0263322Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:14:34.0263863Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:14:34.0264618Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:14:34.0265218Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:14:34.0265811Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:14:34.0266307Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0266723Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0267133Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0267532Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0267839Z 2025-03-14T05:14:34.0268249Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:14:34.0268745Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:14:34.0269467Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:14:34.0270207Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:14:34.0270979Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:14:34.0271709Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:14:34.0271995Z 2025-03-14T05:14:34.0272422Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:14:34.0273397Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:14:34.0274110Z 2025-03-14T05:14:34.0274533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:14:34.0275547Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:14:34.0276281Z 2025-03-14T05:14:34.0276660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0277134Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0277390Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.0277646Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.0277929Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0278186Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.0278474Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.0278751Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0279007Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.0279243Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.0279516Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0279766Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.0280003Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.0280221Z 2025-03-14T05:14:34.0280594Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.0281380Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.0282479Z 2025-03-14T05:14:34.0282958Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.0283536Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:14:34.0283812Z 2025-03-14T05:14:34.0284213Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.0284876Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.0285164Z 2025-03-14T05:14:34.0285583Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.0286118Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.0286439Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0286814Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.0287086Z 2025-03-14T05:14:34.0287492Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.0287999Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.0288322Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.0288657Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.0288937Z 2025-03-14T05:14:34.0289340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.0289836Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0290122Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.0290402Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.0290651Z 2025-03-14T05:14:34.0291054Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.0291603Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.0291917Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.0292223Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.0292474Z 2025-03-14T05:14:34.0292890Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.0293406Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.0293735Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.0293976Z 2025-03-14T05:14:34.0294367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.0294870Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.0295195Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.0295430Z 2025-03-14T05:14:34.0295830Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.0296359Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.0296678Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.0296910Z 2025-03-14T05:14:34.0297300Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.0297888Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.0298252Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.0298497Z 2025-03-14T05:14:34.0298956Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.0299521Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.0299810Z 2025-03-14T05:14:34.0300251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.0300798Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.0301061Z 2025-03-14T05:14:34.0301516Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.0302086Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.0302429Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.0302780Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.0303148Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.0303416Z 2025-03-14T05:14:34.0303883Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.0304536Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.0304909Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.0305260Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.0305649Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.0305926Z 2025-03-14T05:14:34.0306372Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.0306905Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.0307257Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.0307625Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.0307897Z 2025-03-14T05:14:34.0308342Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.0308873Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.0309230Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.0309595Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.0309865Z 2025-03-14T05:14:34.0310285Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.0310816Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.0311094Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.0311375Z 2025-03-14T05:14:34.0311772Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.0312242Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.0312499Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.0312733Z 2025-03-14T05:14:34.0313144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.0313623Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.0313916Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.0314171Z 2025-03-14T05:14:34.0314567Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.0315062Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.0315351Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.0315600Z 2025-03-14T05:14:34.0316037Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.0316617Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.0316911Z 2025-03-14T05:14:34.0317334Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.0317887Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.0318195Z 2025-03-14T05:14:34.0318646Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.0319334Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.0319759Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.0320048Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.0320343Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.0320647Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.0320894Z 2025-03-14T05:14:34.0321276Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0321834Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0322187Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.0322436Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.0322801Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0323145Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.0323387Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.0323751Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0324093Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.0324326Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.0324708Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0325051Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.0325285Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.0325508Z 2025-03-14T05:14:34.0325923Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.0326509Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:14:34.0326800Z 2025-03-14T05:14:34.0338826Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.0339571Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.0340017Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.0340338Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.0340661Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.0340983Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.0341249Z 2025-03-14T05:14:34.0341843Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.0342561Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.0342915Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.0343337Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.0343688Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.0344015Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.0344354Z 2025-03-14T05:14:34.0344824Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.0345374Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.0345624Z 2025-03-14T05:14:34.0345782Z 2025-03-14T05:14:34.0345881Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.0347813Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.0349873Z l_stack0_ = L_stack0_ 2025-03-14T05:14:34.0350268Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:14:34.0350774Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:14:34.0351277Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:14:34.0351776Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:14:34.0352344Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:14:34.0352939Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:14:34.0353540Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:14:34.0354127Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:14:34.0354630Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0355037Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0355432Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0355826Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0356119Z 2025-03-14T05:14:34.0356499Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:14:34.0356975Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:14:34.0357695Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:14:34.0358424Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:14:34.0359142Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:14:34.0359851Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:14:34.0360139Z 2025-03-14T05:14:34.0360547Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:14:34.0361500Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:14:34.0362201Z 2025-03-14T05:14:34.0362623Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:14:34.0363626Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:14:34.0364379Z 2025-03-14T05:14:34.0364763Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0365231Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0365493Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.0365735Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.0366033Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0366291Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.0366536Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.0366816Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0367071Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.0367312Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.0367585Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0367826Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.0368063Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.0368292Z 2025-03-14T05:14:34.0368673Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.0369444Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.0369997Z 2025-03-14T05:14:34.0370464Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.0371060Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:14:34.0371342Z 2025-03-14T05:14:34.0371742Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.0372293Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.0372578Z 2025-03-14T05:14:34.0372974Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.0373483Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.0373803Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0374140Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.0374410Z 2025-03-14T05:14:34.0374812Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.0375315Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.0375624Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.0375963Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.0376237Z 2025-03-14T05:14:34.0376636Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.0377151Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0377436Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.0377716Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.0377971Z 2025-03-14T05:14:34.0378367Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.0378901Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.0379211Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.0379501Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.0379755Z 2025-03-14T05:14:34.0380166Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.0380681Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.0381022Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.0381279Z 2025-03-14T05:14:34.0382182Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.0382839Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.0383177Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.0383426Z 2025-03-14T05:14:34.0383839Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.0384534Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.0384899Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.0385169Z 2025-03-14T05:14:34.0385586Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.0386193Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.0386559Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.0386804Z 2025-03-14T05:14:34.0387256Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.0387827Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.0388104Z 2025-03-14T05:14:34.0388557Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.0389113Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.0389381Z 2025-03-14T05:14:34.0389846Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.0390423Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.0390765Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.0391123Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.0391545Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.0391818Z 2025-03-14T05:14:34.0392288Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.0392867Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.0393205Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.0393574Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.0393949Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.0394207Z 2025-03-14T05:14:34.0394632Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.0395138Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.0395472Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.0395822Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.0396077Z 2025-03-14T05:14:34.0396501Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.0397003Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.0397345Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.0397700Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.0397968Z 2025-03-14T05:14:34.0398413Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.0398920Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.0399206Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.0399463Z 2025-03-14T05:14:34.0399888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.0400368Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.0400634Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.0400871Z 2025-03-14T05:14:34.0401283Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.0401789Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.0402102Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.0402372Z 2025-03-14T05:14:34.0402788Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.0403292Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.0403585Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.0403845Z 2025-03-14T05:14:34.0404281Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.0404878Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.0405171Z 2025-03-14T05:14:34.0405589Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.0406139Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.0406422Z 2025-03-14T05:14:34.0406895Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.0407576Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.0407997Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.0408291Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.0408590Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.0408899Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.0409156Z 2025-03-14T05:14:34.0409533Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0410092Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0410437Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.0410678Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.0411033Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0411375Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.0411632Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.0411995Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0412378Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.0412626Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.0413005Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0413344Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.0413578Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.0413796Z 2025-03-14T05:14:34.0414220Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.0414785Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:14:34.0415078Z 2025-03-14T05:14:34.0415522Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.0416187Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.0416610Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.0416899Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.0417194Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.0417501Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.0417754Z 2025-03-14T05:14:34.0418337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.0419033Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.0419372Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.0419705Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.0420065Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.0420359Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.0420601Z 2025-03-14T05:14:34.0421045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.0421568Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.0421957Z 2025-03-14T05:14:34.0440167Z 2025-03-14T05:14:34.0506507Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.0537143Z def forward(self, L_stack0_: "f32[4000, 256, 7, 7][12544, 49, 7, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_weight_: "f32[1024, 12544][12544, 1]cpu", L_self_modules_box_head_modules_fc1_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_head_modules_fc2_parameters_weight_: "f32[1024, 1024][1024, 1]cpu", L_self_modules_box_head_modules_fc2_parameters_bias_: "f32[1024][1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_weight_: "f32[81, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_cls_score_parameters_bias_: "f32[81][1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_: "f32[320, 1024][1024, 1]cpu", L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_: "f32[320][1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.0539308Z l_stack0_ = L_stack0_ 2025-03-14T05:14:34.0585862Z l_self_modules_box_head_modules_fc1_parameters_weight_ = L_self_modules_box_head_modules_fc1_parameters_weight_ 2025-03-14T05:14:34.0586519Z l_self_modules_box_head_modules_fc1_parameters_bias_ = L_self_modules_box_head_modules_fc1_parameters_bias_ 2025-03-14T05:14:34.0587268Z l_self_modules_box_head_modules_fc2_parameters_weight_ = L_self_modules_box_head_modules_fc2_parameters_weight_ 2025-03-14T05:14:34.0587974Z l_self_modules_box_head_modules_fc2_parameters_bias_ = L_self_modules_box_head_modules_fc2_parameters_bias_ 2025-03-14T05:14:34.0588611Z l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = L_self_modules_box_predictor_modules_cls_score_parameters_weight_ 2025-03-14T05:14:34.0589192Z l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = L_self_modules_box_predictor_modules_cls_score_parameters_bias_ 2025-03-14T05:14:34.0589817Z l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ 2025-03-14T05:14:34.0590379Z l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = L_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ 2025-03-14T05:14:34.0590862Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0591265Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0591660Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0592345Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.0592652Z 2025-03-14T05:14:34.0593070Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/box_head.py:96 in forward, code: x = layer(x) 2025-03-14T05:14:34.0593586Z x: "f32[4000, 12544][12544, 1]cpu" = l_stack0_.flatten(1, -1); l_stack0_ = None 2025-03-14T05:14:34.0594443Z x_1: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x, l_self_modules_box_head_modules_fc1_parameters_weight_, l_self_modules_box_head_modules_fc1_parameters_bias_); x = l_self_modules_box_head_modules_fc1_parameters_weight_ = l_self_modules_box_head_modules_fc1_parameters_bias_ = None 2025-03-14T05:14:34.0595193Z x_2: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_1, inplace = False); x_1 = None 2025-03-14T05:14:34.0595919Z x_3: "f32[4000, 1024][1024, 1]cpu" = torch._C._nn.linear(x_2, l_self_modules_box_head_modules_fc2_parameters_weight_, l_self_modules_box_head_modules_fc2_parameters_bias_); x_2 = l_self_modules_box_head_modules_fc2_parameters_weight_ = l_self_modules_box_head_modules_fc2_parameters_bias_ = None 2025-03-14T05:14:34.0596635Z x_4: "f32[4000, 1024][1024, 1]cpu" = torch.nn.functional.relu(x_3, inplace = False); x_3 = None 2025-03-14T05:14:34.0596924Z 2025-03-14T05:14:34.0597340Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:303 in forward, code: scores = self.cls_score(x) 2025-03-14T05:14:34.0598309Z scores: "f32[4000, 81][81, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_cls_score_parameters_weight_, l_self_modules_box_predictor_modules_cls_score_parameters_bias_); l_self_modules_box_predictor_modules_cls_score_parameters_weight_ = l_self_modules_box_predictor_modules_cls_score_parameters_bias_ = None 2025-03-14T05:14:34.0599020Z 2025-03-14T05:14:34.0599476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:304 in forward, code: proposal_deltas = self.bbox_pred(x) 2025-03-14T05:14:34.0600476Z proposal_deltas: "f32[4000, 320][320, 1]cpu" = torch._C._nn.linear(x_4, l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_, l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_); x_4 = l_self_modules_box_predictor_modules_bbox_pred_parameters_weight_ = l_self_modules_box_predictor_modules_bbox_pred_parameters_bias_ = None 2025-03-14T05:14:34.0601255Z 2025-03-14T05:14:34.0601640Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0602109Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0602367Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.0602598Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.0602879Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0603127Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.0603362Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.0603631Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0603870Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.0604101Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.0604360Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.0604602Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.0604833Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.0605051Z 2025-03-14T05:14:34.0605420Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.0606209Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.0606749Z 2025-03-14T05:14:34.0607209Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.0607808Z deltas: "f32[4000, 320][320, 1]cpu" = proposal_deltas.float(); proposal_deltas = None 2025-03-14T05:14:34.0608085Z 2025-03-14T05:14:34.0608490Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.0609033Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.0609312Z 2025-03-14T05:14:34.0609716Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.0610225Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.0610542Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0610880Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.0611142Z 2025-03-14T05:14:34.0611543Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.0612039Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.0612341Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.0612691Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.0612965Z 2025-03-14T05:14:34.0613353Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.0613860Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.0614139Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.0614414Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.0614659Z 2025-03-14T05:14:34.0615058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.0615567Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.0615875Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.0616156Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.0616404Z 2025-03-14T05:14:34.0616814Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.0617320Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.0617640Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.0617873Z 2025-03-14T05:14:34.0618258Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.0618760Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.0619101Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.0619336Z 2025-03-14T05:14:34.0619721Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.0620228Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.0620562Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.0620795Z 2025-03-14T05:14:34.0621188Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.0621720Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.0622066Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.0622298Z 2025-03-14T05:14:34.0622722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.0623256Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.0623504Z 2025-03-14T05:14:34.0623926Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.0624598Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.0624860Z 2025-03-14T05:14:34.0625309Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.0625880Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.0626208Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.0626566Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.0626910Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.0627170Z 2025-03-14T05:14:34.0627604Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.0628141Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.0628458Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.0628787Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.0629126Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.0629387Z 2025-03-14T05:14:34.0629804Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.0630308Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.0630641Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.0630984Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.0631235Z 2025-03-14T05:14:34.0631658Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.0632179Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.0632516Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.0632868Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.0633122Z 2025-03-14T05:14:34.0633538Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.0634006Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.0634271Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.0634542Z 2025-03-14T05:14:34.0634943Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.0635404Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.0635664Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.0635901Z 2025-03-14T05:14:34.0636295Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.0636769Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.0637064Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.0637315Z 2025-03-14T05:14:34.0637707Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.0638183Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.0638491Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.0638739Z 2025-03-14T05:14:34.0639177Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.0639755Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.0640041Z 2025-03-14T05:14:34.0640442Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.0640986Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.0641260Z 2025-03-14T05:14:34.0641699Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.0642352Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.0642762Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.0643042Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.0643332Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.0643628Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.0643874Z 2025-03-14T05:14:34.0644251Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.0644829Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0645174Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.0645415Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.0645775Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0646111Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.0646350Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.0646727Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0647062Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.0647485Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.0647855Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.0648193Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.0648424Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.0648642Z 2025-03-14T05:14:34.0649056Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.0649602Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(scores, dim = -1); scores = None 2025-03-14T05:14:34.0649891Z 2025-03-14T05:14:34.0650326Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.0650967Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.0651372Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.0651670Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.0651961Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.0652272Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.0652517Z 2025-03-14T05:14:34.0653058Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.0653728Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.0654058Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.0654381Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.0654713Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.0654995Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.0655228Z 2025-03-14T05:14:34.0655660Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.0656174Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.0656399Z 2025-03-14T05:14:34.5369676Z 2025-03-14T05:14:34.5370356Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.5371441Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.5373420Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:14:34.5373672Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:14:34.5374109Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5380165Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5382874Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5383404Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5383708Z 2025-03-14T05:14:34.5384144Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.5384734Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5385012Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.5385260Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.5385553Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5385826Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.5386080Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.5386368Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5386636Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.5386875Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.5387144Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5387394Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.5387628Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.5387854Z 2025-03-14T05:14:34.5388311Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.5389126Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.5389765Z 2025-03-14T05:14:34.5390240Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.5390818Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:14:34.5391097Z 2025-03-14T05:14:34.5391500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.5392035Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.5392325Z 2025-03-14T05:14:34.5392736Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.5393246Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.5393570Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.5393907Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.5394182Z 2025-03-14T05:14:34.5394592Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.5395133Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.5395453Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.5395802Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.5396083Z 2025-03-14T05:14:34.5396503Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.5397001Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.5397288Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.5397569Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.5397825Z 2025-03-14T05:14:34.5398230Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.5398752Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.5399066Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.5399361Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.5399613Z 2025-03-14T05:14:34.5400031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.5400547Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.5400880Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.5401120Z 2025-03-14T05:14:34.5401534Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.5402050Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.5402398Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.5402633Z 2025-03-14T05:14:34.5403020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.5403526Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.5403845Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.5404076Z 2025-03-14T05:14:34.5404469Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.5405008Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.5405351Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.5405598Z 2025-03-14T05:14:34.5406020Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.5406560Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.5406821Z 2025-03-14T05:14:34.5407239Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.5407769Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.5408045Z 2025-03-14T05:14:34.5408477Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.5409015Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.5409342Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.5409701Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.5410063Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.5410335Z 2025-03-14T05:14:34.5410782Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.5411344Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.5411670Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.5412011Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.5412361Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.5412623Z 2025-03-14T05:14:34.5413045Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.5413550Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.5413881Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.5414245Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.5414504Z 2025-03-14T05:14:34.5414931Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.5415492Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.5415841Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.5416202Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.5416463Z 2025-03-14T05:14:34.5416864Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.5417327Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.5417600Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.5417837Z 2025-03-14T05:14:34.5418226Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.5418692Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.5418953Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.5419190Z 2025-03-14T05:14:34.5419584Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.5420068Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.5420365Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.5420634Z 2025-03-14T05:14:34.5421031Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.5421506Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.5421797Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.5422046Z 2025-03-14T05:14:34.5422525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.5423110Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.5423408Z 2025-03-14T05:14:34.5423831Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.5424492Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.5424805Z 2025-03-14T05:14:34.5425271Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.5425977Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.5426409Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.5426701Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.5427003Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.5427314Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.5427574Z 2025-03-14T05:14:34.5427975Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.5428544Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5428934Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.5429182Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.5429558Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5429908Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.5430159Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.5430528Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5430893Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.5431134Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.5431545Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5431895Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.5432129Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.5432347Z 2025-03-14T05:14:34.5432786Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.5433390Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:14:34.5433726Z 2025-03-14T05:14:34.5434179Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.5434867Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.5435280Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.5435575Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.5435875Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.5436195Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.5436451Z 2025-03-14T05:14:34.5437003Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.5437696Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.5438042Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.5438389Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.5438727Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.5439017Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.5439259Z 2025-03-14T05:14:34.5439696Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.5440220Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.5440454Z 2025-03-14T05:14:34.5466400Z 2025-03-14T05:14:34.5468905Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.5470002Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.5471129Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:14:34.5471374Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:14:34.5471712Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5472164Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5472656Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5473130Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5473508Z 2025-03-14T05:14:34.5473995Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.5474545Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5474834Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.5475090Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.5475427Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5475710Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.5475970Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.5476281Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5476580Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.5476819Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.5477187Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5477481Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.5477723Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.5477939Z 2025-03-14T05:14:34.5478316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.5479111Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.5479640Z 2025-03-14T05:14:34.5480093Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.5480654Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:14:34.5480923Z 2025-03-14T05:14:34.5481316Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.5482097Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.5482388Z 2025-03-14T05:14:34.5482801Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.5483316Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.5483640Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.5483971Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.5484318Z 2025-03-14T05:14:34.5484728Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.5485264Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.5485579Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.5485921Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.5486196Z 2025-03-14T05:14:34.5486588Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.5487083Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.5487370Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.5487646Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.5487892Z 2025-03-14T05:14:34.5488290Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.5488803Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.5489224Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.5489581Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.5489835Z 2025-03-14T05:14:34.5490254Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.5490800Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.5491135Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.5491377Z 2025-03-14T05:14:34.5491771Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.5492276Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.5492632Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.5492864Z 2025-03-14T05:14:34.5493265Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.5493786Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.5494172Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.5494487Z 2025-03-14T05:14:34.5494886Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.5495440Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.5495794Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.5496036Z 2025-03-14T05:14:34.5496472Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.5497016Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.5497282Z 2025-03-14T05:14:34.5497733Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.5498269Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.5498550Z 2025-03-14T05:14:34.5498993Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.5499549Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.5499971Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.5500454Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.5500811Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.5501078Z 2025-03-14T05:14:34.5501525Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.5502079Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.5502406Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.5502743Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.5503090Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.5503350Z 2025-03-14T05:14:34.5503776Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.5504461Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.5504818Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.5505194Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.5505453Z 2025-03-14T05:14:34.5505888Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.5506422Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.5506778Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.5507147Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.5507409Z 2025-03-14T05:14:34.5507827Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.5508308Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.5508584Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.5508833Z 2025-03-14T05:14:34.5509232Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.5509688Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.5509970Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.5510204Z 2025-03-14T05:14:34.5510598Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.5511088Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.5511381Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.5511631Z 2025-03-14T05:14:34.5512029Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.5512510Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.5512801Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.5513050Z 2025-03-14T05:14:34.5513487Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.5514068Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.5514364Z 2025-03-14T05:14:34.5514787Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.5515343Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.5515633Z 2025-03-14T05:14:34.5516078Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.5516752Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.5517171Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.5517457Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.5517775Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.5518078Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.5518331Z 2025-03-14T05:14:34.5518712Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.5519265Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5519628Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.5519878Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.5520244Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5520585Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.5520826Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.5521186Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5521531Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.5521770Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.5522166Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5522499Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.5522730Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.5522945Z 2025-03-14T05:14:34.5523358Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.5523943Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:14:34.5524263Z 2025-03-14T05:14:34.5524722Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.5525381Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.5525785Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.5526061Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.5526342Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.5526634Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.5526875Z 2025-03-14T05:14:34.5527411Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.5528083Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.5528410Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.5528730Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.5529050Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.5529330Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.5529562Z 2025-03-14T05:14:34.5529986Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.5530508Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.5530742Z 2025-03-14T05:14:34.5550810Z 2025-03-14T05:14:34.5556009Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.5557075Z def forward(self, L_predictions_0_: "f32[4000, 81][81, 1]cpu", L_predictions_1_: "f32[4000, 320][320, 1]cpu", s0: "Sym(s0)", L_proposals_0_fields_proposal_boxes_tensor: "f32[s0, 4][4, 1]cpu", s1: "Sym(s1)", L_proposals_1_fields_proposal_boxes_tensor: "f32[s1, 4][4, 1]cpu", s2: "Sym(s2)", L_proposals_2_fields_proposal_boxes_tensor: "f32[s2, 4][4, 1]cpu", s3: "Sym(s3)", L_proposals_3_fields_proposal_boxes_tensor: "f32[s3, 4][4, 1]cpu"): 2025-03-14T05:14:34.5557921Z l_predictions_0_ = L_predictions_0_ 2025-03-14T05:14:34.5558160Z l_predictions_1_ = L_predictions_1_ 2025-03-14T05:14:34.5558481Z l_proposals_0_fields_proposal_boxes_tensor = L_proposals_0_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5558892Z l_proposals_1_fields_proposal_boxes_tensor = L_proposals_1_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5559304Z l_proposals_2_fields_proposal_boxes_tensor = L_proposals_2_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5559709Z l_proposals_3_fields_proposal_boxes_tensor = L_proposals_3_fields_proposal_boxes_tensor 2025-03-14T05:14:34.5560012Z 2025-03-14T05:14:34.5560448Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.5560939Z size = l_proposals_0_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5561203Z getitem: "Sym(s0)" = size[0] 2025-03-14T05:14:34.5561448Z getitem_1 = size[1]; size = getitem_1 = None 2025-03-14T05:14:34.5561742Z size_1 = l_proposals_1_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5562098Z getitem_2: "Sym(s1)" = size_1[0] 2025-03-14T05:14:34.5562381Z getitem_3 = size_1[1]; size_1 = getitem_3 = None 2025-03-14T05:14:34.5562712Z size_2 = l_proposals_2_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5562975Z getitem_4: "Sym(s2)" = size_2[0] 2025-03-14T05:14:34.5563215Z getitem_5 = size_2[1]; size_2 = getitem_5 = None 2025-03-14T05:14:34.5563495Z size_3 = l_proposals_3_fields_proposal_boxes_tensor.size() 2025-03-14T05:14:34.5563784Z getitem_6: "Sym(s3)" = size_3[0] 2025-03-14T05:14:34.5564023Z getitem_7 = size_3[1]; size_3 = getitem_7 = None 2025-03-14T05:14:34.5564250Z 2025-03-14T05:14:34.5564645Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/layers/wrappers.py:72 in cat, code: return torch.cat(tensors, dim) 2025-03-14T05:14:34.5565455Z proposal_boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = torch.cat([l_proposals_0_fields_proposal_boxes_tensor, l_proposals_1_fields_proposal_boxes_tensor, l_proposals_2_fields_proposal_boxes_tensor, l_proposals_3_fields_proposal_boxes_tensor], 0) 2025-03-14T05:14:34.5566020Z 2025-03-14T05:14:34.5566500Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:88 in apply_deltas, code: deltas = deltas.float() # ensure fp32 for decoding precision 2025-03-14T05:14:34.5567086Z deltas: "f32[4000, 320][320, 1]cpu" = l_predictions_1_.float(); l_predictions_1_ = None 2025-03-14T05:14:34.5567372Z 2025-03-14T05:14:34.5567780Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:89 in apply_deltas, code: boxes = boxes.to(deltas.dtype) 2025-03-14T05:14:34.5568356Z boxes: "f32[s0 + s1 + s2 + s3, 4][4, 1]cpu" = proposal_boxes.to(torch.float32); proposal_boxes = None 2025-03-14T05:14:34.5568651Z 2025-03-14T05:14:34.5569059Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:91 in apply_deltas, code: widths = boxes[:, 2] - boxes[:, 0] 2025-03-14T05:14:34.5569600Z getitem_8: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 2)] 2025-03-14T05:14:34.5569923Z getitem_9: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.5570255Z widths: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_8 - getitem_9; getitem_8 = getitem_9 = None 2025-03-14T05:14:34.5570526Z 2025-03-14T05:14:34.5570935Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:92 in apply_deltas, code: heights = boxes[:, 3] - boxes[:, 1] 2025-03-14T05:14:34.5571457Z getitem_10: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 3)] 2025-03-14T05:14:34.5571773Z getitem_11: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)] 2025-03-14T05:14:34.5572109Z heights: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_10 - getitem_11; getitem_10 = getitem_11 = None 2025-03-14T05:14:34.5572379Z 2025-03-14T05:14:34.5572778Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:93 in apply_deltas, code: ctr_x = boxes[:, 0] + 0.5 * widths 2025-03-14T05:14:34.5573268Z getitem_12: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 0)] 2025-03-14T05:14:34.5573551Z mul: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * widths 2025-03-14T05:14:34.5573827Z ctr_x: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_12 + mul; getitem_12 = mul = None 2025-03-14T05:14:34.5574076Z 2025-03-14T05:14:34.5574476Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:94 in apply_deltas, code: ctr_y = boxes[:, 1] + 0.5 * heights 2025-03-14T05:14:34.5574987Z getitem_13: "f32[s0 + s1 + s2 + s3][4]cpu" = boxes[(slice(None, None, None), 1)]; boxes = None 2025-03-14T05:14:34.5575295Z mul_1: "f32[s0 + s1 + s2 + s3][1]cpu" = 0.5 * heights 2025-03-14T05:14:34.5575578Z ctr_y: "f32[s0 + s1 + s2 + s3][1]cpu" = getitem_13 + mul_1; getitem_13 = mul_1 = None 2025-03-14T05:14:34.5575830Z 2025-03-14T05:14:34.5576257Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:97 in apply_deltas, code: dx = deltas[:, 0::4] / wx 2025-03-14T05:14:34.5576773Z getitem_14: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(0, None, 4))] 2025-03-14T05:14:34.5577120Z dx: "f32[4000, 80][80, 1]cpu" = getitem_14 / 10.0; getitem_14 = None 2025-03-14T05:14:34.5577358Z 2025-03-14T05:14:34.5577748Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:98 in apply_deltas, code: dy = deltas[:, 1::4] / wy 2025-03-14T05:14:34.5578258Z getitem_15: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(1, None, 4))] 2025-03-14T05:14:34.5578581Z dy: "f32[4000, 80][80, 1]cpu" = getitem_15 / 10.0; getitem_15 = None 2025-03-14T05:14:34.5578820Z 2025-03-14T05:14:34.5579216Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:99 in apply_deltas, code: dw = deltas[:, 2::4] / ww 2025-03-14T05:14:34.5579722Z getitem_16: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(2, None, 4))] 2025-03-14T05:14:34.5580051Z dw: "f32[4000, 80][80, 1]cpu" = getitem_16 / 5.0; getitem_16 = None 2025-03-14T05:14:34.5580280Z 2025-03-14T05:14:34.5580670Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:100 in apply_deltas, code: dh = deltas[:, 3::4] / wh 2025-03-14T05:14:34.5581206Z getitem_17: "f32[4000, 80][320, 4]cpu" = deltas[(slice(None, None, None), slice(3, None, 4))]; deltas = None 2025-03-14T05:14:34.5581766Z dh: "f32[4000, 80][80, 1]cpu" = getitem_17 / 5.0; getitem_17 = None 2025-03-14T05:14:34.5582004Z 2025-03-14T05:14:34.5582429Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:103 in apply_deltas, code: dw = torch.clamp(dw, max=self.scale_clamp) 2025-03-14T05:14:34.5583054Z dw_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dw, max = 4.135166556742356); dw = None 2025-03-14T05:14:34.5583305Z 2025-03-14T05:14:34.5583725Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:104 in apply_deltas, code: dh = torch.clamp(dh, max=self.scale_clamp) 2025-03-14T05:14:34.5584351Z dh_1: "f32[4000, 80][80, 1]cpu" = torch.clamp(dh, max = 4.135166556742356); dh = None 2025-03-14T05:14:34.5584621Z 2025-03-14T05:14:34.5585109Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:106 in apply_deltas, code: pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] 2025-03-14T05:14:34.5585668Z getitem_18: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)] 2025-03-14T05:14:34.5585989Z mul_2: "f32[4000, 80][80, 1]cpu" = dx * getitem_18; dx = getitem_18 = None 2025-03-14T05:14:34.5586329Z getitem_19: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_x[(slice(None, None, None), None)]; ctr_x = None 2025-03-14T05:14:34.5586686Z pred_ctr_x: "f32[4000, 80][80, 1]cpu" = mul_2 + getitem_19; mul_2 = getitem_19 = None 2025-03-14T05:14:34.5586941Z 2025-03-14T05:14:34.5587374Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:107 in apply_deltas, code: pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] 2025-03-14T05:14:34.5587909Z getitem_20: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)] 2025-03-14T05:14:34.5588229Z mul_3: "f32[4000, 80][80, 1]cpu" = dy * getitem_20; dy = getitem_20 = None 2025-03-14T05:14:34.5588557Z getitem_21: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = ctr_y[(slice(None, None, None), None)]; ctr_y = None 2025-03-14T05:14:34.5588898Z pred_ctr_y: "f32[4000, 80][80, 1]cpu" = mul_3 + getitem_21; mul_3 = getitem_21 = None 2025-03-14T05:14:34.5589155Z 2025-03-14T05:14:34.5589603Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:108 in apply_deltas, code: pred_w = torch.exp(dw) * widths[:, None] 2025-03-14T05:14:34.5590135Z exp: "f32[4000, 80][80, 1]cpu" = torch.exp(dw_1); dw_1 = None 2025-03-14T05:14:34.5590473Z getitem_22: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = widths[(slice(None, None, None), None)]; widths = None 2025-03-14T05:14:34.5590822Z pred_w: "f32[4000, 80][80, 1]cpu" = exp * getitem_22; exp = getitem_22 = None 2025-03-14T05:14:34.5591074Z 2025-03-14T05:14:34.5591494Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:109 in apply_deltas, code: pred_h = torch.exp(dh) * heights[:, None] 2025-03-14T05:14:34.5591996Z exp_1: "f32[4000, 80][80, 1]cpu" = torch.exp(dh_1); dh_1 = None 2025-03-14T05:14:34.5592336Z getitem_23: "f32[s0 + s1 + s2 + s3, 1][1, 1]cpu" = heights[(slice(None, None, None), None)]; heights = None 2025-03-14T05:14:34.5592682Z pred_h: "f32[4000, 80][80, 1]cpu" = exp_1 * getitem_23; exp_1 = getitem_23 = None 2025-03-14T05:14:34.5592935Z 2025-03-14T05:14:34.5593337Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:111 in apply_deltas, code: x1 = pred_ctr_x - 0.5 * pred_w 2025-03-14T05:14:34.5593801Z mul_6: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w 2025-03-14T05:14:34.5594068Z x1: "f32[4000, 80][80, 1]cpu" = pred_ctr_x - mul_6; mul_6 = None 2025-03-14T05:14:34.5594300Z 2025-03-14T05:14:34.5594708Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:112 in apply_deltas, code: y1 = pred_ctr_y - 0.5 * pred_h 2025-03-14T05:14:34.5595312Z mul_7: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h 2025-03-14T05:14:34.5595578Z y1: "f32[4000, 80][80, 1]cpu" = pred_ctr_y - mul_7; mul_7 = None 2025-03-14T05:14:34.5595835Z 2025-03-14T05:14:34.5596237Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:113 in apply_deltas, code: x2 = pred_ctr_x + 0.5 * pred_w 2025-03-14T05:14:34.5596718Z mul_8: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_w; pred_w = None 2025-03-14T05:14:34.5597021Z x2: "f32[4000, 80][80, 1]cpu" = pred_ctr_x + mul_8; pred_ctr_x = mul_8 = None 2025-03-14T05:14:34.5597264Z 2025-03-14T05:14:34.5597694Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:114 in apply_deltas, code: y2 = pred_ctr_y + 0.5 * pred_h 2025-03-14T05:14:34.5598169Z mul_9: "f32[4000, 80][80, 1]cpu" = 0.5 * pred_h; pred_h = None 2025-03-14T05:14:34.5598457Z y2: "f32[4000, 80][80, 1]cpu" = pred_ctr_y + mul_9; pred_ctr_y = mul_9 = None 2025-03-14T05:14:34.5598703Z 2025-03-14T05:14:34.5599162Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:115 in apply_deltas, code: pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1) 2025-03-14T05:14:34.5599740Z pred_boxes: "f32[4000, 80, 4][320, 4, 1]cpu" = torch.stack((x1, y1, x2, y2), dim = -1); x1 = y1 = x2 = y2 = None 2025-03-14T05:14:34.5600031Z 2025-03-14T05:14:34.5600453Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/box_regression.py:116 in apply_deltas, code: return pred_boxes.reshape(deltas.shape) 2025-03-14T05:14:34.5601008Z predict_boxes: "f32[4000, 320][320, 1]cpu" = pred_boxes.reshape((4000, 320)); pred_boxes = None 2025-03-14T05:14:34.5601296Z 2025-03-14T05:14:34.5601737Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:547 in predict_boxes, code: return predict_boxes.split(num_prop_per_image) 2025-03-14T05:14:34.5603457Z split = predict_boxes.split([getitem, getitem_2, getitem_4, getitem_6]); predict_boxes = getitem = getitem_2 = getitem_4 = getitem_6 = None 2025-03-14T05:14:34.5603901Z boxes_per_image: "f32[s0, 320][320, 1]cpu" = split[0] 2025-03-14T05:14:34.5604187Z getitem_25: "f32[s1, 320][320, 1]cpu" = split[1]; getitem_25 = None 2025-03-14T05:14:34.5604508Z getitem_26: "f32[s2, 320][320, 1]cpu" = split[2]; getitem_26 = None 2025-03-14T05:14:34.5604816Z getitem_27: "f32[s3, 320][320, 1]cpu" = split[3]; split = getitem_27 = None 2025-03-14T05:14:34.5605074Z 2025-03-14T05:14:34.5605460Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/structures/boxes.py:240 in __len__, code: return self.tensor.shape[0] 2025-03-14T05:14:34.5606026Z size_4 = l_proposals_0_fields_proposal_boxes_tensor.size(); l_proposals_0_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5606379Z getitem_28: "Sym(s0)" = size_4[0] 2025-03-14T05:14:34.5606625Z getitem_29 = size_4[1]; size_4 = getitem_29 = None 2025-03-14T05:14:34.5606993Z size_5 = l_proposals_1_fields_proposal_boxes_tensor.size(); l_proposals_1_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5607341Z getitem_30: "Sym(s1)" = size_5[0] 2025-03-14T05:14:34.5607580Z getitem_31 = size_5[1]; size_5 = getitem_31 = None 2025-03-14T05:14:34.5607945Z size_6 = l_proposals_2_fields_proposal_boxes_tensor.size(); l_proposals_2_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5608281Z getitem_32: "Sym(s2)" = size_6[0] 2025-03-14T05:14:34.5608512Z getitem_33 = size_6[1]; size_6 = getitem_33 = None 2025-03-14T05:14:34.5608866Z size_7 = l_proposals_3_fields_proposal_boxes_tensor.size(); l_proposals_3_fields_proposal_boxes_tensor = None 2025-03-14T05:14:34.5609203Z getitem_34: "Sym(s3)" = size_7[0] 2025-03-14T05:14:34.5609437Z getitem_35 = size_7[1]; size_7 = getitem_35 = None 2025-03-14T05:14:34.5609654Z 2025-03-14T05:14:34.5610097Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:568 in predict_probs, code: probs = F.softmax(scores, dim=-1) 2025-03-14T05:14:34.5610698Z probs: "f32[4000, 81][81, 1]cpu" = torch.nn.functional.softmax(l_predictions_0_, dim = -1); l_predictions_0_ = None 2025-03-14T05:14:34.5611031Z 2025-03-14T05:14:34.5611475Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:569 in predict_probs, code: return probs.split(num_inst_per_image, dim=0) 2025-03-14T05:14:34.5612159Z split_1 = probs.split([getitem_28, getitem_30, getitem_32, getitem_34], dim = 0); probs = getitem_28 = getitem_30 = getitem_32 = getitem_34 = None 2025-03-14T05:14:34.5612578Z scores_per_image: "f32[s0, 81][81, 1]cpu" = split_1[0] 2025-03-14T05:14:34.5612870Z getitem_37: "f32[s1, 81][81, 1]cpu" = split_1[1]; getitem_37 = None 2025-03-14T05:14:34.5613165Z getitem_38: "f32[s2, 81][81, 1]cpu" = split_1[2]; getitem_38 = None 2025-03-14T05:14:34.5613474Z getitem_39: "f32[s3, 81][81, 1]cpu" = split_1[3]; split_1 = getitem_39 = None 2025-03-14T05:14:34.5613733Z 2025-03-14T05:14:34.5614287Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.5614975Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(boxes_per_image); boxes_per_image = None 2025-03-14T05:14:34.5615309Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.5615639Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(scores_per_image); scores_per_image = None 2025-03-14T05:14:34.5615974Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.5616265Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.5616505Z 2025-03-14T05:14:34.5616960Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.5617478Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.5617734Z 2025-03-14T05:14:34.9515986Z 2025-03-14T05:14:34.9521586Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.9526078Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:14:34.9530589Z l_scores_0_ = L_scores_0_ 2025-03-14T05:14:34.9534876Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:14:34.9537001Z 2025-03-14T05:14:34.9542628Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.9543656Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:14:34.9544011Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.9544476Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:14:34.9544816Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.9545128Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.9545402Z 2025-03-14T05:14:34.9545874Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.9546410Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.9546656Z 2025-03-14T05:14:34.9547134Z 2025-03-14T05:14:34.9547233Z class GraphModule(torch.nn.Module): 2025-03-14T05:14:34.9547587Z def forward(self, s0: "Sym(s0)", L_scores_0_: "f32[s0, 81][81, 1]cpu", s1: "Sym(s0)", L_boxes_0_: "f32[s0, 320][320, 1]cpu"): 2025-03-14T05:14:34.9547922Z l_scores_0_ = L_scores_0_ 2025-03-14T05:14:34.9548139Z l_boxes_0_ = L_boxes_0_ 2025-03-14T05:14:34.9548338Z 2025-03-14T05:14:34.9548994Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:137 in fast_rcnn_inference_single_image, code: valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) 2025-03-14T05:14:34.9549689Z isfinite: "b8[s0, 320][320, 1]cpu" = torch.isfinite(l_boxes_0_); l_boxes_0_ = None 2025-03-14T05:14:34.9550017Z all_1: "b8[s0][1]cpu" = isfinite.all(dim = 1); isfinite = None 2025-03-14T05:14:34.9550353Z isfinite_1: "b8[s0, 81][81, 1]cpu" = torch.isfinite(l_scores_0_); l_scores_0_ = None 2025-03-14T05:14:34.9550670Z all_2: "b8[s0][1]cpu" = isfinite_1.all(dim = 1); isfinite_1 = None 2025-03-14T05:14:34.9550966Z valid_mask: "b8[s0][1]cpu" = all_1 & all_2; all_1 = all_2 = None 2025-03-14T05:14:34.9551209Z 2025-03-14T05:14:34.9551654Z # File: /opt/conda/envs/py_3.9/lib/python3.9/site-packages/detectron2/modeling/roi_heads/fast_rcnn.py:138 in fast_rcnn_inference_single_image, code: if not valid_mask.all(): 2025-03-14T05:14:34.9552178Z all_3: "b8[][]cpu" = valid_mask.all(); valid_mask = all_3 = None 2025-03-14T05:14:34.9552415Z 2025-03-14T05:14:57.9798363Z Compilation time (from dynamo_timed): 38.632892926 2025-03-14T05:14:57.9799582Z pass 2025-03-14T05:14:57.9800056Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:14:57.9801185Z TIMING: entire_frame_compile:38.63289 gc:0.05461 _recursive_pre_grad_passes:0.04171 async_compile.wait:6.15733 backend_compile:18.64965 _recursive_joint_graph_passes:0.16058 inductor_compile:7.62573 _recursive_post_grad_passes:0.02977 code_gen:7.23456 total_wall_time:38.63289 2025-03-14T05:14:57.9802406Z STATS: call_* op count: 1138 | FakeTensorMode.__torch_dispatch__:16538 | FakeTensor.__torch_dispatch__:437 | ProxyTorchDispatchMode.__torch_dispatch__:1369 | attempt fast:182 | slow no contiguity match:40 | fast is_contiguous:138 | slow both tensors nontrivially broadcast:4 2025-03-14T05:14:57.9807192Z Dynamo produced 78 graphs covering 1138 ops with 62 graph breaks (8 unique) 2025-03-14T05:15:04.1307960Z 2025-03-14T05:15:10.0863052Z loading model: 0it [00:00, ?it/s] 2025-03-14T05:15:10.0866010Z loading model: 0it [00:05, ?it/s] 2025-03-14T05:15:10.0866435Z cpu eval dlrm 2025-03-14T05:15:10.7452093Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:15:10.9820395Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:15:11.1848402Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:15:22.0405861Z Compilation time (from dynamo_timed): 9.499951252 2025-03-14T05:15:22.0406225Z pass 2025-03-14T05:15:22.0406525Z WARNING:common:Trying to call the empty_gpu_cache for device: cpu, which is not in list [cuda, xpu] 2025-03-14T05:15:22.0407415Z TIMING: _recursive_pre_grad_passes:0.00416 _recursive_joint_graph_passes:0.10331 _recursive_post_grad_passes:0.01635 async_compile.wait:1.37773 code_gen:8.20009 inductor_compile:8.33759 backend_compile:9.12453 entire_frame_compile:9.49995 gc:0.0014 total_wall_time:9.49995 2025-03-14T05:15:22.0408462Z STATS: call_* op count: 36 | FakeTensorMode.__torch_dispatch__:1716 | ProxyTorchDispatchMode.__torch_dispatch__:504 | FakeTensor.__torch_dispatch__:81 2025-03-14T05:15:22.0409037Z Dynamo produced 1 graphs covering 36 ops with 0 graph breaks (0 unique) 2025-03-14T05:15:26.5206476Z 2025-03-14T05:15:27.5757344Z loading model: 0it [00:00, ?it/s]Downloading https://doctr-static.mindee.com/models?id=v0.7.0/db_resnet50-79bd7d70.pt&src=0 to /var/lib/jenkins/.cache/doctr/models/db_resnet50-79bd7d70.pt 2025-03-14T05:15:27.9446166Z 2025-03-14T05:15:27.9448295Z 2025-03-14T05:15:28.0446370Z 0% 0/102021912 [00:00=0.7.1 in /usr/lib/python3.9/site-packages (from boto3==1.35.33) (0.10.0) 2025-03-14T05:30:41.1648420Z Requirement already satisfied: s3transfer<0.11.0,>=0.10.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.33) (0.10.4) 2025-03-14T05:30:41.1653185Z Requirement already satisfied: botocore<1.36.0,>=1.35.33 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.33) (1.35.99) 2025-03-14T05:30:41.1692586Z Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /home/ec2-user/.local/lib/python3.9/site-packages (from botocore<1.36.0,>=1.35.33->boto3==1.35.33) (2.8.2) 2025-03-14T05:30:41.1697809Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/lib/python3.9/site-packages (from botocore<1.36.0,>=1.35.33->boto3==1.35.33) (1.25.10) 2025-03-14T05:30:41.1727704Z Requirement already satisfied: six>=1.5 in /usr/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.36.0,>=1.35.33->boto3==1.35.33) (1.15.0) 2025-03-14T05:30:41.2919122Z Installing collected packages: boto3 2025-03-14T05:30:41.2924648Z Attempting uninstall: boto3 2025-03-14T05:30:41.2928701Z Found existing installation: boto3 1.35.42 2025-03-14T05:30:41.2983244Z Uninstalling boto3-1.35.42: 2025-03-14T05:30:41.2991188Z Successfully uninstalled boto3-1.35.42 2025-03-14T05:30:41.3430741Z Successfully installed boto3-1.35.33 2025-03-14T05:30:41.4214381Z ##[group]Run set -eux 2025-03-14T05:30:41.4214608Z set -eux 2025-03-14T05:30:41.4214778Z  2025-03-14T05:30:41.4214980Z if [[ -z "${GITHUB_TOKEN}" ]]; then 2025-03-14T05:30:41.4215221Z  echo "Missing github-token input" 2025-03-14T05:30:41.4215498Z  exit 1 2025-03-14T05:30:41.4215653Z fi 2025-03-14T05:30:41.4220036Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:41.4220289Z env: 2025-03-14T05:30:41.4220466Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:41.4220758Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:41.4221300Z GITHUB_TOKEN: *** 2025-03-14T05:30:41.4221475Z ##[endgroup] 2025-03-14T05:30:41.4244013Z + [[ -z *** ]] 2025-03-14T05:30:41.4286388Z ##[group]Run pytorch/test-infra/.github/actions/get-workflow-job-id@main 2025-03-14T05:30:41.4286678Z with: 2025-03-14T05:30:41.4286977Z github-token: *** 2025-03-14T05:30:41.4287148Z env: 2025-03-14T05:30:41.4287304Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:41.4287743Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:41.4288101Z ##[endgroup] 2025-03-14T05:30:41.4310791Z ##[group]Run set -eux 2025-03-14T05:30:41.4311011Z set -eux 2025-03-14T05:30:41.4311181Z  2025-03-14T05:30:41.4311486Z python3 "${GITHUB_ACTION_PATH}/../../scripts/get_workflow_job_id.py" "${GITHUB_RUN_ID}" "${RUNNER_NAME}" 2025-03-14T05:30:41.4333590Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:41.4333865Z env: 2025-03-14T05:30:41.4334036Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:41.4334343Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:41.4334877Z GITHUB_TOKEN: *** 2025-03-14T05:30:41.4335064Z ##[endgroup] 2025-03-14T05:30:41.4358222Z + python3 /home/ec2-user/actions-runner/_work/_actions/pytorch/test-infra/main/.github/actions/get-workflow-job-id/../../scripts/get_workflow_job_id.py 13849515380 i-047a1559c2de50868 2025-03-14T05:30:42.2790647Z setting job-id=38754841598 2025-03-14T05:30:42.2794870Z setting job-name=linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:30:42.2900630Z ##[group]Run set -eux 2025-03-14T05:30:42.2900939Z set -eux 2025-03-14T05:30:42.2901124Z  2025-03-14T05:30:42.2901388Z python3 "${GITHUB_ACTION_PATH}/../../scripts/benchmarks/gather_metadata.py" \ 2025-03-14T05:30:42.2901708Z  --schema-version "${SCHEMA_VERSION}" \ 2025-03-14T05:30:42.2902058Z  --repo "${REPO}" \ 2025-03-14T05:30:42.2902278Z  --head-branch "${HEAD_BRANCH}" \ 2025-03-14T05:30:42.2902520Z  --head-sha "${HEAD_SHA}" \ 2025-03-14T05:30:42.2902749Z  --workflow-id "${WORKFLOW_RUN_ID}" \ 2025-03-14T05:30:42.2902983Z  --run-attempt "${RUN_ATTEMPT}" \ 2025-03-14T05:30:42.2903196Z  --job-id "${JOB_ID}" \ 2025-03-14T05:30:42.2903406Z  --job-name "${JOB_NAME}" 2025-03-14T05:30:42.2907817Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:42.2908076Z env: 2025-03-14T05:30:42.2908255Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:42.2908570Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:42.2908887Z SCHEMA_VERSION: v3 2025-03-14T05:30:42.2909077Z REPO: pytorch/pytorch 2025-03-14T05:30:42.2909317Z HEAD_BRANCH: refs/heads/main 2025-03-14T05:30:42.2909551Z HEAD_SHA: aed0b7a742a2d7b7901790622829cbd2135049a4 2025-03-14T05:30:42.2909778Z WORKFLOW_RUN_ID: 13849515380 2025-03-14T05:30:42.2909976Z RUN_ATTEMPT: 1 2025-03-14T05:30:42.2910153Z JOB_ID: 38754841598 2025-03-14T05:30:42.2910486Z JOB_NAME: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:30:42.2910842Z ##[endgroup] 2025-03-14T05:30:42.2934127Z + python3 /home/ec2-user/actions-runner/_work/_actions/pytorch/test-infra/main/.github/actions/upload-benchmark-results/../../scripts/benchmarks/gather_metadata.py --schema-version v3 --repo pytorch/pytorch --head-branch refs/heads/main --head-sha aed0b7a742a2d7b7901790622829cbd2135049a4 --workflow-id 13849515380 --run-attempt 1 --job-id 38754841598 --job-name 'linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)' 2025-03-14T05:30:42.3194262Z ##[group]Run set -eux 2025-03-14T05:30:42.3194485Z set -eux 2025-03-14T05:30:42.3194675Z  2025-03-14T05:30:42.3194884Z # TODO (huydhn): Implement this part 2025-03-14T05:30:42.3195137Z echo "runners=[]" >> "${GITHUB_OUTPUT}" 2025-03-14T05:30:42.3199613Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:42.3199869Z env: 2025-03-14T05:30:42.3200046Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:42.3200345Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:42.3200655Z ##[endgroup] 2025-03-14T05:30:42.3223479Z + echo 'runners=[]' 2025-03-14T05:30:42.3254724Z ##[group]Run set -eux 2025-03-14T05:30:42.3255066Z set -eux 2025-03-14T05:30:42.3255237Z  2025-03-14T05:30:42.3255429Z # TODO (huydhn): Implement this part 2025-03-14T05:30:42.3255695Z echo "dependencies={}" >> "${GITHUB_OUTPUT}" 2025-03-14T05:30:42.3259916Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:42.3260168Z env: 2025-03-14T05:30:42.3260338Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:42.3260643Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:42.3260955Z ##[endgroup] 2025-03-14T05:30:42.3280701Z + echo 'dependencies={}' 2025-03-14T05:30:42.3307834Z ##[group]Run set -eux 2025-03-14T05:30:42.3308053Z set -eux 2025-03-14T05:30:42.3308221Z  2025-03-14T05:30:42.3308416Z if [[ ! -d "${BENCHMARK_RESULTS_DIR}" ]]; then 2025-03-14T05:30:42.3308698Z  echo "${BENCHMARK_RESULTS_DIR} does not exist, skipping" 2025-03-14T05:30:42.3309015Z  # We don't want the job to fail if the directory doesn't exist 2025-03-14T05:30:42.3309263Z  exit 0 2025-03-14T05:30:42.3309429Z fi 2025-03-14T05:30:42.3309598Z  2025-03-14T05:30:42.3309773Z if [[ "${DRY_RUN}" == "true" ]]; then 2025-03-14T05:30:42.3310077Z  python3 "${GITHUB_ACTION_PATH}/../../scripts/upload_benchmark_results.py" \ 2025-03-14T05:30:42.3310419Z  --benchmark-results-dir "${BENCHMARK_RESULTS_DIR}" \ 2025-03-14T05:30:42.3310778Z  --metadata "${BENCHMARK_METADATA}" \ 2025-03-14T05:30:42.3311012Z  --runners "${RUNNER_INFO}" \ 2025-03-14T05:30:42.3311244Z  --dependencies "${DEPENDENCIES}" \ 2025-03-14T05:30:42.3311466Z  --dry-run 2025-03-14T05:30:42.3311649Z else 2025-03-14T05:30:42.3311890Z  python3 "${GITHUB_ACTION_PATH}/../../scripts/upload_benchmark_results.py" \ 2025-03-14T05:30:42.3312225Z  --benchmark-results-dir "${BENCHMARK_RESULTS_DIR}" \ 2025-03-14T05:30:42.3312496Z  --metadata "${BENCHMARK_METADATA}" \ 2025-03-14T05:30:42.3312725Z  --runners "${RUNNER_INFO}" \ 2025-03-14T05:30:42.3312952Z  --dependencies "${DEPENDENCIES}" 2025-03-14T05:30:42.3313163Z fi 2025-03-14T05:30:42.3316750Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:42.3316996Z env: 2025-03-14T05:30:42.3317161Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:42.3317463Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:42.3317791Z BENCHMARK_RESULTS_DIR: test/test-reports 2025-03-14T05:30:42.3318009Z DRY_RUN: false 2025-03-14T05:30:42.3318796Z BENCHMARK_METADATA: {"timestamp": 1741930242, "schema_version": "v3", "name": "linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)", "repo": "pytorch/pytorch", "head_branch": "refs/heads/main", "head_sha": "aed0b7a742a2d7b7901790622829cbd2135049a4", "workflow_id": 13849515380, "run_attempt": 1, "job_id": 38754841598} 2025-03-14T05:30:42.3319587Z RUNNER_INFO: [] 2025-03-14T05:30:42.3319765Z DEPENDENCIES: {} 2025-03-14T05:30:42.3319981Z ##[endgroup] 2025-03-14T05:30:42.3338395Z + [[ ! -d test/test-reports ]] 2025-03-14T05:30:42.3339458Z + [[ false == \t\r\u\e ]] 2025-03-14T05:30:42.3340833Z + python3 /home/ec2-user/actions-runner/_work/_actions/pytorch/test-infra/main/.github/actions/upload-benchmark-results/../../scripts/upload_benchmark_results.py --benchmark-results-dir test/test-reports --metadata '{"timestamp": 1741930242, "schema_version": "v3", "name": "linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)", "repo": "pytorch/pytorch", "head_branch": "refs/heads/main", "head_sha": "aed0b7a742a2d7b7901790622829cbd2135049a4", "workflow_id": 13849515380, "run_attempt": 1, "job_id": 38754841598}' --runners '[]' --dependencies '{}' 2025-03-14T05:30:42.4499427Z INFO:root:Upload test/test-reports/inference_torchbench.json to s3://ossci-benchmarks/v3/pytorch/pytorch/13849515380/38754841598/inference_torchbench.json 2025-03-14T05:30:42.4772855Z INFO:botocore.credentials:Found credentials from IAM Role: gh-ci-github-action-runners-runner-role 2025-03-14T05:30:42.6926635Z INFO:root:Upload test/test-reports/inference_torchbench_graph_breaks.json to s3://ossci-benchmarks/v3/pytorch/pytorch/13849515380/38754841598/inference_torchbench_graph_breaks.json 2025-03-14T05:30:42.9148637Z ##[group]Run cat test/**/*_toprint.log || true 2025-03-14T05:30:42.9148926Z cat test/**/*_toprint.log || true 2025-03-14T05:30:42.9153323Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:42.9153581Z env: 2025-03-14T05:30:42.9153754Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:42.9154053Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:42.9154358Z ##[endgroup] 2025-03-14T05:30:42.9250352Z cat: 'test/**/*_toprint.log': No such file or directory 2025-03-14T05:30:42.9284966Z ##[group]Run kill "$MONITOR_SCRIPT_PID" 2025-03-14T05:30:42.9285228Z kill "$MONITOR_SCRIPT_PID" 2025-03-14T05:30:42.9289540Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:42.9289803Z env: 2025-03-14T05:30:42.9289973Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:42.9290263Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:42.9290581Z MONITOR_SCRIPT_PID: 227980 2025-03-14T05:30:42.9290840Z ##[endgroup] 2025-03-14T05:30:42.9404837Z Prepare all required actions 2025-03-14T05:30:42.9405233Z Getting action download info 2025-03-14T05:30:43.0465707Z Download action repository 'actions/upload-artifact@v4' (SHA:4cec3d8aa04e39d1a68397de0c4cd6fb9dce8ec1) 2025-03-14T05:30:43.5230989Z ##[group]Run ./.github/actions/upload-test-artifacts 2025-03-14T05:30:43.5231263Z with: 2025-03-14T05:30:43.5231545Z file-suffix: test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T05:30:43.5231853Z s3-bucket: gha-artifacts 2025-03-14T05:30:43.5232057Z env: 2025-03-14T05:30:43.5232229Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:43.5232544Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:43.5232890Z ##[endgroup] 2025-03-14T05:30:43.5257142Z ##[group]Run # Remove any previous test jsons if they exist 2025-03-14T05:30:43.5257463Z # Remove any previous test jsons if they exist 2025-03-14T05:30:43.5257734Z rm -f test-jsons-*.zip 2025-03-14T05:30:43.5258058Z zip -r "test-jsons-${FILE_SUFFIX}.zip" test/test-reports -i '*.json' 2025-03-14T05:30:43.5262313Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:43.5262569Z env: 2025-03-14T05:30:43.5262751Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:43.5263063Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:43.5263466Z FILE_SUFFIX: test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T05:30:43.5263755Z ##[endgroup] 2025-03-14T05:30:43.5394775Z adding: test/test-reports/inference_torchbench.json (deflated 99%) 2025-03-14T05:30:43.5616449Z adding: test/test-reports/inference_torchbench_graph_breaks.json (deflated 99%) 2025-03-14T05:30:43.5647064Z ##[group]Run # Remove any previous test reports if they exist 2025-03-14T05:30:43.5647402Z # Remove any previous test reports if they exist 2025-03-14T05:30:43.5647667Z rm -f test-reports-*.zip 2025-03-14T05:30:43.5648004Z zip -r "test-reports-${FILE_SUFFIX}.zip" test/test-reports -i '*.xml' -i '*.csv' 2025-03-14T05:30:43.5652458Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:43.5652719Z env: 2025-03-14T05:30:43.5652891Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:43.5653192Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:43.5653590Z FILE_SUFFIX: test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T05:30:43.5653873Z ##[endgroup] 2025-03-14T05:30:43.5699449Z adding: test/test-reports/inference_torchbench.csv (deflated 63%) 2025-03-14T05:30:43.5724054Z adding: test/test-reports/inference_torchbench_graph_breaks.csv (deflated 97%) 2025-03-14T05:30:43.5728613Z adding: test/test-reports/inference_torchbench_graph_break_deduped.csv (deflated 80%) 2025-03-14T05:30:43.5756118Z ##[group]Run # Remove any previous usage logs if they exist 2025-03-14T05:30:43.5756479Z # Remove any previous usage logs if they exist 2025-03-14T05:30:43.5756735Z rm -f logs-*.zip 2025-03-14T05:30:43.5757039Z # this workflow is also run in bazel build test, but we dont generate usage reports for it 2025-03-14T05:30:43.5757371Z # so check to see if the file exists first 2025-03-14T05:30:43.5757617Z if [ -f 'usage_log.txt' ]; then 2025-03-14T05:30:43.5757872Z  zip "logs-${FILE_SUFFIX}.zip" 'usage_log.txt' 2025-03-14T05:30:43.5758110Z fi 2025-03-14T05:30:43.5758365Z if find "test/test-reports" -name "*.log" 2>/dev/null | grep -q .; then 2025-03-14T05:30:43.5758708Z  zip -r "logs-${FILE_SUFFIX}.zip" test/test-reports -i '*.log' 2025-03-14T05:30:43.5758963Z fi 2025-03-14T05:30:43.5763217Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:43.5763470Z env: 2025-03-14T05:30:43.5763645Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:43.5764079Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:43.5764533Z FILE_SUFFIX: test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T05:30:43.5764819Z ##[endgroup] 2025-03-14T05:30:43.5827648Z adding: usage_log.txt (deflated 96%) 2025-03-14T05:30:43.5872118Z ##[group]Run # Remove any previous debugging artifacts if they exist 2025-03-14T05:30:43.5872488Z # Remove any previous debugging artifacts if they exist 2025-03-14T05:30:43.5872765Z rm -f debug-*.zip 2025-03-14T05:30:43.5872982Z if [ -d 'test/debug' ]; then 2025-03-14T05:30:43.5873243Z  zip -r "debug-${FILE_SUFFIX}.zip" test/debug 2025-03-14T05:30:43.5873509Z fi 2025-03-14T05:30:43.5877755Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:43.5878018Z env: 2025-03-14T05:30:43.5878196Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:43.5878507Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:43.5878945Z FILE_SUFFIX: test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598 2025-03-14T05:30:43.5879236Z ##[endgroup] 2025-03-14T05:30:43.5971555Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:30:43.5971795Z with: 2025-03-14T05:30:43.5971974Z s3-bucket: gha-artifacts 2025-03-14T05:30:43.5972204Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:43.5972436Z retention-days: 14 2025-03-14T05:30:43.5972619Z if-no-files-found: warn 2025-03-14T05:30:43.5972813Z path: test-jsons-*.zip 2025-03-14T05:30:43.5972994Z name: artifact 2025-03-14T05:30:43.5973156Z region: us-east-1 2025-03-14T05:30:43.5973326Z env: 2025-03-14T05:30:43.5973559Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:43.5973856Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:43.5974155Z ##[endgroup] 2025-03-14T05:30:43.8752603Z NOTE: s3-prefix specified, ignoring name parameter 2025-03-14T05:30:43.8758927Z With the provided path, there will be 1 file uploaded 2025-03-14T05:30:43.8760948Z Uploading to s3 prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:43.8776740Z Starting upload of test-jsons-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:44.0486479Z Finished upload of test-jsons-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:44.0670241Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:30:44.0670487Z with: 2025-03-14T05:30:44.0670668Z s3-bucket: gha-artifacts 2025-03-14T05:30:44.0670901Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:44.0671131Z retention-days: 14 2025-03-14T05:30:44.0671333Z if-no-files-found: error 2025-03-14T05:30:44.0671529Z path: test-reports-*.zip 2025-03-14T05:30:44.0671712Z name: artifact 2025-03-14T05:30:44.0671876Z region: us-east-1 2025-03-14T05:30:44.0672045Z env: 2025-03-14T05:30:44.0672206Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:44.0672522Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:44.0672838Z ##[endgroup] 2025-03-14T05:30:44.3207449Z NOTE: s3-prefix specified, ignoring name parameter 2025-03-14T05:30:44.3207964Z With the provided path, there will be 1 file uploaded 2025-03-14T05:30:44.3208350Z Uploading to s3 prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:44.3232139Z Starting upload of test-reports-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:44.4664593Z Finished upload of test-reports-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:44.4836228Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:30:44.4836486Z with: 2025-03-14T05:30:44.4836662Z s3-bucket: gha-artifacts 2025-03-14T05:30:44.4836889Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:44.4837124Z retention-days: 14 2025-03-14T05:30:44.4837309Z if-no-files-found: ignore 2025-03-14T05:30:44.4837503Z path: logs-*.zip 2025-03-14T05:30:44.4837867Z name: artifact 2025-03-14T05:30:44.4838038Z region: us-east-1 2025-03-14T05:30:44.4838214Z env: 2025-03-14T05:30:44.4838386Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:44.4838697Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:44.4839004Z ##[endgroup] 2025-03-14T05:30:44.7443520Z NOTE: s3-prefix specified, ignoring name parameter 2025-03-14T05:30:44.7447891Z With the provided path, there will be 1 file uploaded 2025-03-14T05:30:44.7450176Z Uploading to s3 prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:44.7468513Z Starting upload of logs-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:44.8952496Z Finished upload of logs-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:44.9120533Z ##[group]Run seemethere/upload-artifact-s3@v5 2025-03-14T05:30:44.9120778Z with: 2025-03-14T05:30:44.9120958Z s3-bucket: gha-artifacts 2025-03-14T05:30:44.9121220Z s3-prefix: pytorch/pytorch/13849515380/1/artifact 2025-03-14T05:30:44.9121454Z retention-days: 14 2025-03-14T05:30:44.9121640Z if-no-files-found: ignore 2025-03-14T05:30:44.9121839Z path: debug-*.zip 2025-03-14T05:30:44.9122012Z name: artifact 2025-03-14T05:30:44.9122174Z region: us-east-1 2025-03-14T05:30:44.9122342Z env: 2025-03-14T05:30:44.9122508Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:44.9122803Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:44.9123105Z ##[endgroup] 2025-03-14T05:30:45.1570690Z No files were found with the provided path: debug-*.zip. No artifacts will be uploaded. 2025-03-14T05:30:45.1836092Z ##[group]Run # shellcheck disable=SC2156 2025-03-14T05:30:45.1836382Z # shellcheck disable=SC2156 2025-03-14T05:30:45.1836760Z find . -iname "core.[1-9]*" -exec docker exec "${DOCKER_CONTAINER_ID}" sh -c "gdb python {} -ex 'bt' -ex 'q'" \; 2025-03-14T05:30:45.1841169Z shell: /usr/bin/bash -e {0} 2025-03-14T05:30:45.1841396Z env: 2025-03-14T05:30:45.1841569Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:45.1841879Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:45.1842194Z ##[endgroup] 2025-03-14T05:30:45.3258116Z Prepare all required actions 2025-03-14T05:30:45.3258473Z Getting action download info 2025-03-14T05:30:45.4600886Z ##[group]Run ./.github/actions/upload-utilization-stats 2025-03-14T05:30:45.4601154Z with: 2025-03-14T05:30:45.4601334Z job_id: 38754841598 2025-03-14T05:30:45.4601666Z job_name: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:30:45.4602034Z workflow_name: inductor 2025-03-14T05:30:45.4602228Z workflow_run_id: 13849515380 2025-03-14T05:30:45.4602422Z workflow_attempt: 1 2025-03-14T05:30:45.4602594Z env: 2025-03-14T05:30:45.4602755Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:45.4603047Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:45.4603358Z ##[endgroup] 2025-03-14T05:30:45.4624688Z ##[group]Run echo "workflow_id: 13849515380" 2025-03-14T05:30:45.4624964Z echo "workflow_id: 13849515380" 2025-03-14T05:30:45.4625227Z echo "workflow_attempt: 1" 2025-03-14T05:30:45.4625449Z echo "workflow_Name: inductor" 2025-03-14T05:30:45.4625669Z echo "job_id: 38754841598" 2025-03-14T05:30:45.4626065Z echo "job_name: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)" 2025-03-14T05:30:45.4630574Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:45.4630833Z env: 2025-03-14T05:30:45.4631013Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:45.4631317Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:45.4631631Z ##[endgroup] 2025-03-14T05:30:45.4655500Z workflow_id: 13849515380 2025-03-14T05:30:45.4659945Z workflow_attempt: 1 2025-03-14T05:30:45.4660557Z workflow_Name: inductor 2025-03-14T05:30:45.4660842Z job_id: 38754841598 2025-03-14T05:30:45.4661911Z job_name: linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx) 2025-03-14T05:30:45.4694002Z ##[group]Run nick-fields/retry@v3.0.0 2025-03-14T05:30:45.4694236Z with: 2025-03-14T05:30:45.4694405Z shell: bash 2025-03-14T05:30:45.4694580Z timeout_minutes: 5 2025-03-14T05:30:45.4694765Z max_attempts: 5 2025-03-14T05:30:45.4694961Z retry_wait_seconds: 30 2025-03-14T05:30:45.4695264Z command: set -eu python3 -m pip install python-dateutil==2.8.2 boto3==1.35.42 pandas==2.1.3 2025-03-14T05:30:45.4695580Z polling_interval_seconds: 1 2025-03-14T05:30:45.4695780Z warning_on_retry: true 2025-03-14T05:30:45.4695974Z continue_on_error: false 2025-03-14T05:30:45.4696163Z env: 2025-03-14T05:30:45.4696324Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:45.4696617Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:45.4696925Z ##[endgroup] 2025-03-14T05:30:45.7303216Z Defaulting to user installation because normal site-packages is not writeable 2025-03-14T05:30:45.7462151Z Requirement already satisfied: python-dateutil==2.8.2 in /home/ec2-user/.local/lib/python3.9/site-packages (2.8.2) 2025-03-14T05:30:46.4114105Z Collecting boto3==1.35.42 2025-03-14T05:30:46.4139452Z Using cached boto3-1.35.42-py3-none-any.whl (139 kB) 2025-03-14T05:30:46.4155135Z Requirement already satisfied: pandas==2.1.3 in /home/ec2-user/.local/lib/python3.9/site-packages (2.1.3) 2025-03-14T05:30:46.4163350Z Requirement already satisfied: six>=1.5 in /usr/lib/python3.9/site-packages (from python-dateutil==2.8.2) (1.15.0) 2025-03-14T05:30:46.4212841Z Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /usr/lib/python3.9/site-packages (from boto3==1.35.42) (0.10.0) 2025-03-14T05:30:46.4214832Z Requirement already satisfied: s3transfer<0.11.0,>=0.10.0 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.42) (0.10.4) 2025-03-14T05:30:46.4215567Z Requirement already satisfied: botocore<1.36.0,>=1.35.42 in /home/ec2-user/.local/lib/python3.9/site-packages (from boto3==1.35.42) (1.35.99) 2025-03-14T05:30:46.4933470Z Requirement already satisfied: tzdata>=2022.1 in /home/ec2-user/.local/lib/python3.9/site-packages (from pandas==2.1.3) (2025.1) 2025-03-14T05:30:46.4934365Z Requirement already satisfied: pytz>=2020.1 in /usr/lib/python3.9/site-packages (from pandas==2.1.3) (2022.7.1) 2025-03-14T05:30:46.4941939Z Requirement already satisfied: numpy<2,>=1.22.4 in /home/ec2-user/.local/lib/python3.9/site-packages (from pandas==2.1.3) (1.26.4) 2025-03-14T05:30:46.4995626Z Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/lib/python3.9/site-packages (from botocore<1.36.0,>=1.35.42->boto3==1.35.42) (1.25.10) 2025-03-14T05:30:46.5584203Z Installing collected packages: boto3 2025-03-14T05:30:46.5584583Z Attempting uninstall: boto3 2025-03-14T05:30:46.5589627Z Found existing installation: boto3 1.35.33 2025-03-14T05:30:46.5651036Z Uninstalling boto3-1.35.33: 2025-03-14T05:30:46.5657562Z Successfully uninstalled boto3-1.35.33 2025-03-14T05:30:46.6105721Z Successfully installed boto3-1.35.42 2025-03-14T05:30:47.5355653Z Command completed after 1 attempt(s). 2025-03-14T05:30:47.5420524Z ##[group]Run python3 -m tools.stats.upload_utilization_stats.upload_utilization_stats \ 2025-03-14T05:30:47.5420976Z python3 -m tools.stats.upload_utilization_stats.upload_utilization_stats \ 2025-03-14T05:30:47.5421306Z  --workflow-run-id "13849515380" \ 2025-03-14T05:30:47.5421546Z  --workflow-name "inductor" \ 2025-03-14T05:30:47.5421779Z  --workflow-run-attempt "1" \ 2025-03-14T05:30:47.5442275Z  --job-id "38754841598" \ 2025-03-14T05:30:47.5442693Z  --job-name "linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)" 2025-03-14T05:30:47.5447470Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:47.5447839Z env: 2025-03-14T05:30:47.5448016Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:47.5448325Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:47.5448642Z ##[endgroup] 2025-03-14T05:30:48.5665686Z repo: pytorch/pytorch 2025-03-14T05:30:48.5668596Z Downloading logs-test-cpu_inductor_torchbench-1-2-linux.8xlarge.amx_38754841598.zip 2025-03-14T05:30:48.5668989Z Converted Log Model: UtilizationMetadata: 2025-03-14T05:30:48.5669831Z UtilizationMetadata(level='metadata', workflow_id='13849515380', job_id='38754841598', workflow_name='inductor', job_name='linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)', usage_collect_interval=1.0, data_model_version=1.0, start_at=1741925854, gpu_count=0, cpu_count=32, gpu_type='', error=None) 2025-03-14T05:30:48.5670708Z [Db Segments] detected pytest cmd: 14, generated segments: 14 2025-03-14T05:30:48.5670985Z [db model] Peek db timeseries 2025-03-14T05:30:48.5671198Z :{ 2025-03-14T05:30:48.5671365Z "created_at": 1741930248, 2025-03-14T05:30:48.5671572Z "type": "utilization", 2025-03-14T05:30:48.5671766Z "tags": [ 2025-03-14T05:30:48.5671933Z "record" 2025-03-14T05:30:48.5672094Z ], 2025-03-14T05:30:48.5672270Z "time_stamp": 1741925854, 2025-03-14T05:30:48.5672474Z "repo": "pytorch/pytorch", 2025-03-14T05:30:48.5672678Z "workflow_id": 13849515380, 2025-03-14T05:30:48.5672877Z "run_attempt": 1, 2025-03-14T05:30:48.5673061Z "job_id": 38754841598, 2025-03-14T05:30:48.5673257Z "workflow_name": "inductor", 2025-03-14T05:30:48.5673616Z "job_name": "linux-jammy-cpu-py3.9-gcc11-inductor / test (cpu_inductor_torchbench, 1, 2, linux.8xlarge.amx)", 2025-03-14T05:30:48.5674312Z "json_data": "{}" 2025-03-14T05:30:48.5674496Z } 2025-03-14T05:30:48.5674821Z Writing 1 documents to S3 ossci-utilization/util_metadata/v_1.0/pytorch/pytorch/13849515380/1/38754841598/metadata 2025-03-14T05:30:48.5675355Z Done! Finish writing document to S3 ossci-utilization/util_metadata/v_1.0/pytorch/pytorch/13849515380/1/38754841598/metadata 2025-03-14T05:30:48.5675903Z Writing 869 documents to S3 ossci-utilization/util_timeseries/v_1.0/pytorch/pytorch/13849515380/1/38754841598/time_series 2025-03-14T05:30:48.5676590Z Done! Finish writing document to S3 ossci-utilization/util_timeseries/v_1.0/pytorch/pytorch/13849515380/1/38754841598/time_series 2025-03-14T05:30:48.6876218Z ##[group]Run pytorch/test-infra/.github/actions/teardown-linux@main 2025-03-14T05:30:48.6876535Z with: 2025-03-14T05:30:48.6876715Z env: 2025-03-14T05:30:48.6876898Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:48.6877234Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:48.6877583Z ##[endgroup] 2025-03-14T05:30:48.6898265Z ##[group]Run set -eou pipefail 2025-03-14T05:30:48.6898554Z set -eou pipefail 2025-03-14T05:30:48.6898773Z  2025-03-14T05:30:48.6899055Z echo "Holding runner for 2 hours until all ssh sessions have logged out" 2025-03-14T05:30:48.6899407Z for _ in $(seq 1440); do 2025-03-14T05:30:48.6899658Z  # Break if no ssh session exists anymore 2025-03-14T05:30:48.6899913Z  if [ "$(who)" = "" ]; then 2025-03-14T05:30:48.6900138Z  break 2025-03-14T05:30:48.6900324Z  fi 2025-03-14T05:30:48.6900545Z  echo "." 2025-03-14T05:30:48.6900740Z  sleep 5 2025-03-14T05:30:48.6900927Z done 2025-03-14T05:30:48.6905785Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:48.6906048Z env: 2025-03-14T05:30:48.6906224Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:48.6906538Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:48.6906854Z ##[endgroup] 2025-03-14T05:30:48.6928870Z Holding runner for 2 hours until all ssh sessions have logged out 2025-03-14T05:30:48.6977175Z ##[group]Run # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T05:30:48.6977636Z # ignore expansion of "docker ps -q" since it could be empty 2025-03-14T05:30:48.6977923Z # shellcheck disable=SC2046 2025-03-14T05:30:48.6978161Z docker stop $(docker ps -q) || true 2025-03-14T05:30:48.6978405Z # Prune all of the docker images 2025-03-14T05:30:48.6978636Z docker system prune -af 2025-03-14T05:30:48.6983121Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:30:48.6983388Z env: 2025-03-14T05:30:48.6983570Z GIT_DEFAULT_BRANCH: main 2025-03-14T05:30:48.6983891Z DOCKER_CONTAINER_ID: 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:30:48.6984276Z ##[endgroup] 2025-03-14T05:30:59.4083472Z 2160b5b633d5 2025-03-14T05:31:00.5263234Z Deleted Containers: 2025-03-14T05:31:00.5263697Z 2160b5b633d5786e293fbd8f16e49757d0f31fc1403e3b489c8237accc15d231 2025-03-14T05:31:00.5263935Z 2025-03-14T05:31:04.2043340Z Deleted Images: 2025-03-14T05:31:04.2047702Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks:aa89d6e739080d90fa18625d57297c6734465849 2025-03-14T05:31:04.2053194Z untagged: 308535385114.dkr.ecr.us-east-1.amazonaws.com/pytorch/pytorch-linux-jammy-py3.9-gcc11-inductor-benchmarks@sha256:2f16eb7d476b5dc359eb789543b0cfc9aa5c04fe105d51acd219f91259bad5ab 2025-03-14T05:31:04.2054513Z deleted: sha256:1bab961b3bd90ec6714167a095e5437a0239700971887d1c663377ef708f8526 2025-03-14T05:31:04.2054970Z deleted: sha256:f1c70fafa21653c183da3a27b152e3132edfcc8f536568e599a8a7475a898486 2025-03-14T05:31:04.2055398Z deleted: sha256:257be7015a258302c070c7e2128106874db3320b42c0be587cde8a5c4668eb59 2025-03-14T05:31:04.2056095Z deleted: sha256:948eebb525eda26cfb174529301ea9c21fa30d7c38274102a4e84e8c5fbe8384 2025-03-14T05:31:04.2056520Z deleted: sha256:b9ac7767cf0b17526969b4b0803e8c07d3e794c502cfc420582474375cd9a813 2025-03-14T05:31:04.2056941Z deleted: sha256:80c0b71da98feea65ea51c56635d7acb37ad1eefb862adffe484b0a6ec73d382 2025-03-14T05:31:04.2057339Z deleted: sha256:9211eaf972d93a6b3e1157ed0733c6ef570902faf25a90ffcca263c3ecfe6a71 2025-03-14T05:31:04.2057721Z deleted: sha256:770a3a228550db1ce19da1d84c8ab8f7422a2d6b2177a744f04869331fdc011f 2025-03-14T05:31:04.2058101Z deleted: sha256:ca765c3fb3c14963c38334372443d928ed9dd142026ae5d3163a46c734f59f17 2025-03-14T05:31:04.2058654Z deleted: sha256:c693226c9ece102dfdf509e7a30f3389f47d01eb5736741dd7e5fa024b375eb6 2025-03-14T05:31:04.2059057Z deleted: sha256:d1f6e2d14a7b04693929aea0e661fb71482e5aa1b532a7125191965991fda143 2025-03-14T05:31:04.2059444Z deleted: sha256:07993bec321dd3bb3b1494aaa59c9394f9fcc3410757bd99f69589239a44725f 2025-03-14T05:31:04.2059922Z deleted: sha256:055322257b5cf41cb1a718868e89f759cdd0ff049e292ac7ef1d2a53ca86becd 2025-03-14T05:31:04.2060301Z deleted: sha256:252ed6634b114d7f66233d28c6ad76465b3644f087d340899c7e951999871bdc 2025-03-14T05:31:04.2060681Z deleted: sha256:1f4bc6481e6b53fcffa3231415bb421a166650c5c85cc8815fc631940944134d 2025-03-14T05:31:04.2061072Z deleted: sha256:757e553e71a5e40e7d79542c8fba96d32a5d5d2cc83dabe0a0873d2ae30a6760 2025-03-14T05:31:04.2061465Z deleted: sha256:c73d008283448cd7f9af3b7e93fa7224c699fb8bf57ea48bfa9bfa70b7d0899c 2025-03-14T05:31:04.2061850Z deleted: sha256:8f1f72b72763b40f294d9a61548ab4361197ad009b424337cbbab4b686e31b5e 2025-03-14T05:31:04.2062226Z deleted: sha256:457542c336f851527a24474a65464edf810bb01fc59d14a134de0966f2da22b5 2025-03-14T05:31:04.2062601Z deleted: sha256:0b068011d230ca630e8e88da9706397abab719e1e0f01458c050ab3dc266fb69 2025-03-14T05:31:04.2062986Z deleted: sha256:6b7611c1a0fe36fb64f6f38852ab7dd7128544ebd5b79fd1dae59588d01f1999 2025-03-14T05:31:04.2063373Z deleted: sha256:58418894fc257c7e5594b550bb7984c65bc6d459312f9a9ea6455c2a1ff7913f 2025-03-14T05:31:04.2063759Z deleted: sha256:9b8936eac0cf72c19f68e982a4114c32058b6f70c748a778848403779f2656a7 2025-03-14T05:31:04.2064309Z deleted: sha256:4f5c047819041836387aae08ee2b5f13239a3994f0ea2320ef272b2478dc8ef4 2025-03-14T05:31:04.2064747Z deleted: sha256:ed9af6f191cd384d7fe4ba6ff77a2314ce8f02d6eb65f4c22af24979dcab65f9 2025-03-14T05:31:04.2065264Z deleted: sha256:147d2ba7ff1f79138609e78e537e545abf74b6d35f8ce6e7631cd947cc97e4eb 2025-03-14T05:31:04.2065671Z deleted: sha256:c0383887a64b287af7ffb85f9e90ca26024838dee5135f0daa0f521e3c9f4700 2025-03-14T05:31:04.2066064Z deleted: sha256:d458cfd4d3050444c825537087bc07c1959e7fb8a3e339e109479a808f9aa3d7 2025-03-14T05:31:04.2066458Z deleted: sha256:185e72f4c05edf1cfb429debc32253ec9d900149e814f8109a0487b439c6499d 2025-03-14T05:31:04.2066849Z deleted: sha256:35a932e808caf02132ebe5708af4779e3a3bbb0d0f0d9dd768e042700dd6f1ac 2025-03-14T05:31:04.2067251Z deleted: sha256:b7ab9bb1ef36a3632cc73431e5f66d93a8a6b8606ceaac43a6530aef41d043be 2025-03-14T05:31:04.2067649Z deleted: sha256:98446da4367bce4c693b76a2c0dfe3e5d92337c68c3628411ed5a9d3e75e3001 2025-03-14T05:31:04.2068034Z deleted: sha256:2fa7934e407325f3915810fc60f7264a0e37d1fc3025dfe317ad47dfa736a596 2025-03-14T05:31:04.2068410Z deleted: sha256:5826059d955a5b42eb58fac9d3b728ea9b86c24950e455b575d0d675595fdb83 2025-03-14T05:31:04.2068796Z deleted: sha256:d0c120734162460fdbec1bc231b58beb664f44f28eb4faa45148425510538786 2025-03-14T05:31:04.2069184Z deleted: sha256:694a490b82d77b3cd2d35e952e32c6faad294ddc6437f5a3177f77b1e3c7617d 2025-03-14T05:31:04.2069579Z deleted: sha256:8098d7ec4fc850921ae016dac5183c08eac3cfdd64e5c4fb59f8bd4edf7db18b 2025-03-14T05:31:04.2069981Z deleted: sha256:e3ba634c3ec74783be198d136bf23bb929a7fb93e62ab20a1bcefd82c944dae3 2025-03-14T05:31:04.2070365Z deleted: sha256:6c787593e1088a677c18a8428fb718af38a8730c671b85e4ed3a15ad64cc655d 2025-03-14T05:31:04.2070750Z deleted: sha256:e513913d353704462a90df83aac640c6c5d894dd4dc2651954be291287b8c22b 2025-03-14T05:31:04.2071167Z deleted: sha256:a191277f29357fe043dd2122c9a4b78cd3ed9bfb92e7963cca9a9d101f575ba6 2025-03-14T05:31:04.2071563Z deleted: sha256:59f43ce6f7edc380dcc444b56e00f2dc9ef23196590e453e73e68295498f25b5 2025-03-14T05:31:04.2071949Z deleted: sha256:9e059d039c42b907d3b772990000dd155e0a8e82727705db50bd91a3fee87f72 2025-03-14T05:31:04.2072335Z deleted: sha256:369472d11d5b1bd72071cb5c2e5098082c7d7fc672aa13bd89d7102ef120fb14 2025-03-14T05:31:04.2072723Z deleted: sha256:2d910764023ddf5d12701abdd2fee664955fc097db5f24da2c109f3fc9ae07e8 2025-03-14T05:31:04.2073122Z deleted: sha256:e9b8a74eae78cdde6378061a2db467b6576d02ad41f9be215b0d9caca6e38aff 2025-03-14T05:31:04.2073594Z deleted: sha256:2dba6a95777543f0c4d7f5438367153b3d413e3fe0a67c67f5c616a48b52513a 2025-03-14T05:31:04.2073985Z deleted: sha256:f6342f36954b412d64fa5fcfeed36153e1864fb91a07d355a86421f24025fb26 2025-03-14T05:31:04.2074373Z deleted: sha256:2f42c8962a9681df48e3f6db2b6aebc67070be224ce48397934c362230e7b25a 2025-03-14T05:31:04.2074774Z deleted: sha256:7b16cb1a08ae455e502b2cc5eb9797f88ae1065ac3ef10d58b07cbc92320abed 2025-03-14T05:31:04.2075164Z deleted: sha256:53f49fe06b7e72120214392e1d0b5e349602569da8dd320124014e47170b1443 2025-03-14T05:31:04.2075551Z deleted: sha256:ab72286eb578c1e0ebb7f93a5033a70fa2987820d475ac58b94b9cda1d97d1f8 2025-03-14T05:31:04.2075943Z deleted: sha256:0f2284231d71ecf5b661c70c76f59235283ebea2109eeb9c930f28de80c25db7 2025-03-14T05:31:04.2076342Z deleted: sha256:c17a9c11f5fa0dd2fb6aa76c4d226ca4920a4814da35d11a23132c8cddea56de 2025-03-14T05:31:04.2076735Z deleted: sha256:5e7b289a68c88c68aaae9f774d75ef2c3560726dcb0bb68c40b83476f5279fc3 2025-03-14T05:31:04.2077126Z deleted: sha256:54383c657e0814e9df4dfeb9e439b4e9d961ea5567b5a8dd1fb8dcd274e6a542 2025-03-14T05:31:04.2077520Z deleted: sha256:23c598cb49f1778286c6dd9d3ad8fd6a5dda3723759aff290c57b9b4b33a5254 2025-03-14T05:31:04.2077907Z deleted: sha256:151e4be891c683a58b369e2a381d56d890726f130c1034198bafa486874d5f3c 2025-03-14T05:31:04.2078287Z deleted: sha256:67d27664ba27792cc2a3be862a7785db4b2e94e90cd475f1b4c3583420af54b2 2025-03-14T05:31:04.2078677Z deleted: sha256:444db72c2c6410fa918f5239d9f40f8d60bacc2a930c1d2e88e55ba7e90dd190 2025-03-14T05:31:04.2079066Z deleted: sha256:e5956c73e6ed7735c73c96aedb3facef946e7d8e8c7d575586f3984e2a088cd3 2025-03-14T05:31:04.2079456Z deleted: sha256:1161ba2320dc98f34e89e2b2cb247532b5b751d06388cef74c3d223d91c8a54f 2025-03-14T05:31:04.2079866Z deleted: sha256:636533db6e096cfee9d15fccffa860f852e36a17de826d1faa6437a8b4c2f07c 2025-03-14T05:31:04.2080254Z deleted: sha256:f17858d33b62b794fe3b08f18497295725959fce7165892d91022e21f4a58d35 2025-03-14T05:31:04.2080637Z deleted: sha256:f55340aa88fce044fd887201e56e51a56ca87457b6a9f6f9a9a62f80747cb592 2025-03-14T05:31:04.2081034Z deleted: sha256:c613727faed9b4df57f35fd72a70cc58fd88381934d9d791a2df9f7eb487949c 2025-03-14T05:31:04.2081663Z deleted: sha256:5202841bb151e8fbce051a8b8b8f4f5b7e85ecb6c850b69b598b89a274183357 2025-03-14T05:31:04.2082250Z deleted: sha256:d7be908f71f3b9bf7e4a187792e5bac7003dcd822e6cb7b37e8433357a424385 2025-03-14T05:31:04.2082654Z deleted: sha256:449c13d02298fc8bc6feed4fb489f32abb05d2b75276f53b3420f21ef4e5491b 2025-03-14T05:31:04.2083052Z deleted: sha256:f31347f63f35b34e452b270d28b824e9a4e2d0253c13f1dca0ddf8a215f44f00 2025-03-14T05:31:04.2083440Z deleted: sha256:807f08b2b423031a7d17dbbcd56df41066b0120a860db8bbb66d27623edc912d 2025-03-14T05:31:04.2083838Z deleted: sha256:9d014db3c35f5c903d5ec3aeedc2eb3f569b530ff55db80068e67279f389df4a 2025-03-14T05:31:04.2084232Z deleted: sha256:8ec9904b6ea8685f42923ea8255de513a06216a8d79d3e3ccda1a784f8bd87b3 2025-03-14T05:31:04.2084624Z deleted: sha256:d52c246bd07bfddac4b07ce20e1a71945bae916d4368fb5d428399401af72671 2025-03-14T05:31:04.2085027Z deleted: sha256:d3cc357f8bbe14bbbe61457d5b4f8965a24bb075da1e5587aac9ae3c795a8bcd 2025-03-14T05:31:04.2085430Z deleted: sha256:26b82bcc6a1cc00d5754a8546f1dcea0af13297161ad9c1ae9e69eb5ad77f45c 2025-03-14T05:31:04.2085856Z deleted: sha256:286d6fa3b60884a3f41e875ae31941ea7e573a833e6583fcc4322f6fe1f517a1 2025-03-14T05:31:04.2086261Z deleted: sha256:ce07ff180683bb03ff3bc34cd53532e4e226c1c315e6098a00fe6cef4a27778c 2025-03-14T05:31:04.2086702Z deleted: sha256:53f0f725132031f901b12e35d8c9cf4acaa8e2a2fd0ef6d5cde2300b948c8d6c 2025-03-14T05:31:04.2087099Z deleted: sha256:c5bf6f7b5a9c3ea1474f8c18b9576ee713beedd36681d88737b27cf67b65b8ca 2025-03-14T05:31:04.2087568Z deleted: sha256:cea84c16acbc664f0623251d326133807364242d4aa71b4043453c1ed04e34ca 2025-03-14T05:31:04.2087975Z deleted: sha256:947031bb2881adeacf7b5f11cd5795a50586936496113c72e65c084e283c0a2e 2025-03-14T05:31:04.2088366Z deleted: sha256:22d6d8480d3a77305df9afb31c18b2dd268f4fbbf54fc12986f3845b8b1c7181 2025-03-14T05:31:04.2088768Z deleted: sha256:cd0e364d2e6c89b30a70b5d41f89e8a6c9f852c3a62a25a340d413054bfdd489 2025-03-14T05:31:04.2089198Z deleted: sha256:5bfe8c860d56369c402728193b8d376f8b0948c947641e07b0460f168551c79b 2025-03-14T05:31:04.2089579Z deleted: sha256:bc3fd16e729f1b8fba3e121a50a01a62da3545c16492a2e57b3643fe60fd3836 2025-03-14T05:31:04.2089962Z deleted: sha256:0f94ad47e1720472ec7bbb4402d3e432ae769355ffe2a2411547955af4dea876 2025-03-14T05:31:04.2090345Z deleted: sha256:70e1d9f64d002c2498c5c48a25a306eeb36b26f9ed6300be8e2ca7c79097b9b3 2025-03-14T05:31:04.2090725Z deleted: sha256:73809ebb8d79f0f0b155a8845fcea4dd4828ed8509691978b263210ee358a6a6 2025-03-14T05:31:04.2091112Z deleted: sha256:e5e7b86dfe19031f1ab2b7cb20da98206fba3b4ebdd974bfdd35d0b4b80d5377 2025-03-14T05:31:04.2091504Z deleted: sha256:c64c0c772aad31d1c419f82c9e7a5bfa822e4ca9676b669d4f1fe131ea63ec49 2025-03-14T05:31:04.2091883Z deleted: sha256:270a1170e7e398434ff1b31e17e233f7d7b71aa99a40473615860068e86720af 2025-03-14T05:31:04.2092113Z 2025-03-14T05:31:04.2092232Z Total reclaimed space: 41.73GB 2025-03-14T05:31:04.2165366Z Post job cleanup. 2025-03-14T05:31:04.2222925Z Post job cleanup. 2025-03-14T05:31:04.3450473Z [command]/usr/bin/git version 2025-03-14T05:31:04.3492236Z git version 2.47.1 2025-03-14T05:31:04.3525852Z Copying '/home/ec2-user/.gitconfig' to '/home/ec2-user/actions-runner/_work/_temp/29262fa7-eea9-41bb-8d84-a822ba88c0bf/.gitconfig' 2025-03-14T05:31:04.3553533Z Temporarily overriding HOME='/home/ec2-user/actions-runner/_work/_temp/29262fa7-eea9-41bb-8d84-a822ba88c0bf' before making global git config changes 2025-03-14T05:31:04.3557547Z Adding repository directory to the temporary git global config as a safe directory 2025-03-14T05:31:04.3560327Z [command]/usr/bin/git config --global --add safe.directory /home/ec2-user/actions-runner/_work/pytorch/pytorch 2025-03-14T05:31:04.3610419Z [command]/usr/bin/git config --local --name-only --get-regexp core\.sshCommand 2025-03-14T05:31:04.3653005Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'core\.sshCommand' && git config --local --unset-all 'core.sshCommand' || :" 2025-03-14T05:31:04.3954653Z Entering 'android/libs/fbjni' 2025-03-14T05:31:04.4003728Z Entering 'third_party/FP16' 2025-03-14T05:31:04.4053457Z Entering 'third_party/FXdiv' 2025-03-14T05:31:04.4101092Z Entering 'third_party/NNPACK' 2025-03-14T05:31:04.4149806Z Entering 'third_party/NVTX' 2025-03-14T05:31:04.4201348Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T05:31:04.4255207Z Entering 'third_party/XNNPACK' 2025-03-14T05:31:04.4314868Z Entering 'third_party/benchmark' 2025-03-14T05:31:04.4365208Z Entering 'third_party/composable_kernel' 2025-03-14T05:31:04.4423819Z Entering 'third_party/cpp-httplib' 2025-03-14T05:31:04.4473951Z Entering 'third_party/cpuinfo' 2025-03-14T05:31:04.4525778Z Entering 'third_party/cudnn_frontend' 2025-03-14T05:31:04.4576285Z Entering 'third_party/cutlass' 2025-03-14T05:31:04.4634616Z Entering 'third_party/eigen' 2025-03-14T05:31:04.4691258Z Entering 'third_party/fbgemm' 2025-03-14T05:31:04.4739510Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T05:31:04.4789470Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T05:31:04.4843898Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T05:31:04.4897478Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T05:31:04.4943802Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T05:31:04.4996005Z Entering 'third_party/flash-attention' 2025-03-14T05:31:04.5046675Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T05:31:04.5098915Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T05:31:04.5163249Z Entering 'third_party/flatbuffers' 2025-03-14T05:31:04.5216646Z Entering 'third_party/fmt' 2025-03-14T05:31:04.5265624Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T05:31:04.5315390Z Entering 'third_party/gloo' 2025-03-14T05:31:04.5370767Z Entering 'third_party/googletest' 2025-03-14T05:31:04.5422840Z Entering 'third_party/ideep' 2025-03-14T05:31:04.5498281Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T05:31:04.5593828Z Entering 'third_party/ittapi' 2025-03-14T05:31:04.5645800Z Entering 'third_party/kineto' 2025-03-14T05:31:04.5691169Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T05:31:04.5739790Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T05:31:04.5810323Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T05:31:04.5844683Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T05:31:04.5894224Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T05:31:04.5941140Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T05:31:04.6098303Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T05:31:04.6156370Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T05:31:04.6212579Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T05:31:04.6264543Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T05:31:04.6323637Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T05:31:04.6373859Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T05:31:04.6496069Z Entering 'third_party/kleidiai' 2025-03-14T05:31:04.6585413Z Entering 'third_party/mimalloc' 2025-03-14T05:31:04.6631967Z Entering 'third_party/nlohmann' 2025-03-14T05:31:04.6825649Z Entering 'third_party/onnx' 2025-03-14T05:31:04.6866621Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T05:31:04.6992657Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T05:31:04.7001640Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T05:31:04.7057219Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T05:31:04.7167461Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T05:31:04.7219183Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T05:31:04.7271539Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T05:31:04.7345169Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T05:31:04.7408154Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T05:31:04.7458140Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T05:31:04.7509501Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T05:31:04.7563886Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T05:31:04.7632568Z Entering 'third_party/pocketfft' 2025-03-14T05:31:04.7700361Z Entering 'third_party/protobuf' 2025-03-14T05:31:04.7751653Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T05:31:04.7808758Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T05:31:04.7858297Z Entering 'third_party/psimd' 2025-03-14T05:31:04.7908638Z Entering 'third_party/pthreadpool' 2025-03-14T05:31:04.7956555Z Entering 'third_party/pybind11' 2025-03-14T05:31:04.8007900Z Entering 'third_party/python-peachpy' 2025-03-14T05:31:04.8057227Z Entering 'third_party/sleef' 2025-03-14T05:31:04.8103516Z Entering 'third_party/tensorpipe' 2025-03-14T05:31:04.8151092Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T05:31:04.8208421Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T05:31:04.8250562Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T05:31:04.8302271Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T05:31:04.8347978Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T05:31:04.8420420Z [command]/usr/bin/git config --local --name-only --get-regexp http\.https\:\/\/github\.com\/\.extraheader 2025-03-14T05:31:04.8445364Z http.https://github.com/.extraheader 2025-03-14T05:31:04.8452714Z [command]/usr/bin/git config --local --unset-all http.https://github.com/.extraheader 2025-03-14T05:31:04.8486846Z [command]/usr/bin/git submodule foreach --recursive sh -c "git config --local --name-only --get-regexp 'http\.https\:\/\/github\.com\/\.extraheader' && git config --local --unset-all 'http.https://github.com/.extraheader' || :" 2025-03-14T05:31:04.8791006Z Entering 'android/libs/fbjni' 2025-03-14T05:31:04.8833850Z http.https://github.com/.extraheader 2025-03-14T05:31:04.8867959Z Entering 'third_party/FP16' 2025-03-14T05:31:04.8923719Z http.https://github.com/.extraheader 2025-03-14T05:31:04.8959547Z Entering 'third_party/FXdiv' 2025-03-14T05:31:04.8988622Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9019759Z Entering 'third_party/NNPACK' 2025-03-14T05:31:04.9053642Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9087180Z Entering 'third_party/NVTX' 2025-03-14T05:31:04.9115115Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9151638Z Entering 'third_party/VulkanMemoryAllocator' 2025-03-14T05:31:04.9180699Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9217829Z Entering 'third_party/XNNPACK' 2025-03-14T05:31:04.9250616Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9301816Z Entering 'third_party/benchmark' 2025-03-14T05:31:04.9333282Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9368419Z Entering 'third_party/composable_kernel' 2025-03-14T05:31:04.9400176Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9444813Z Entering 'third_party/cpp-httplib' 2025-03-14T05:31:04.9471934Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9502017Z Entering 'third_party/cpuinfo' 2025-03-14T05:31:04.9535228Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9571573Z Entering 'third_party/cudnn_frontend' 2025-03-14T05:31:04.9602474Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9639902Z Entering 'third_party/cutlass' 2025-03-14T05:31:04.9671455Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9717702Z Entering 'third_party/eigen' 2025-03-14T05:31:04.9746081Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9783895Z Entering 'third_party/fbgemm' 2025-03-14T05:31:04.9815619Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9847910Z Entering 'third_party/fbgemm/third_party/asmjit' 2025-03-14T05:31:04.9875521Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9915131Z Entering 'third_party/fbgemm/third_party/cpuinfo' 2025-03-14T05:31:04.9946214Z http.https://github.com/.extraheader 2025-03-14T05:31:04.9978657Z Entering 'third_party/fbgemm/third_party/cutlass' 2025-03-14T05:31:05.0009330Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0047410Z Entering 'third_party/fbgemm/third_party/googletest' 2025-03-14T05:31:05.0074081Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0116689Z Entering 'third_party/fbgemm/third_party/hipify_torch' 2025-03-14T05:31:05.0143761Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0178730Z Entering 'third_party/flash-attention' 2025-03-14T05:31:05.0213251Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0242421Z Entering 'third_party/flash-attention/csrc/composable_kernel' 2025-03-14T05:31:05.0273132Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0315955Z Entering 'third_party/flash-attention/csrc/cutlass' 2025-03-14T05:31:05.0356440Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0413588Z Entering 'third_party/flatbuffers' 2025-03-14T05:31:05.0441889Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0478872Z Entering 'third_party/fmt' 2025-03-14T05:31:05.0511487Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0543929Z Entering 'third_party/gemmlowp/gemmlowp' 2025-03-14T05:31:05.0577247Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0612176Z Entering 'third_party/gloo' 2025-03-14T05:31:05.0641399Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0676246Z Entering 'third_party/googletest' 2025-03-14T05:31:05.0707820Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0740069Z Entering 'third_party/ideep' 2025-03-14T05:31:05.0773750Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0805980Z Entering 'third_party/ideep/mkl-dnn' 2025-03-14T05:31:05.0838285Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0879022Z Entering 'third_party/ittapi' 2025-03-14T05:31:05.0912648Z http.https://github.com/.extraheader 2025-03-14T05:31:05.0945987Z Entering 'third_party/kineto' 2025-03-14T05:31:05.0974393Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1006849Z Entering 'third_party/kineto/libkineto/third_party/dynolog' 2025-03-14T05:31:05.1036606Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1073966Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/DCGM' 2025-03-14T05:31:05.1103211Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1139020Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/cpr' 2025-03-14T05:31:05.1170541Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1205060Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/fmt' 2025-03-14T05:31:05.1236898Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1269440Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags' 2025-03-14T05:31:05.1295403Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1341214Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/gflags/doc' 2025-03-14T05:31:05.1379241Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1417451Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/glog' 2025-03-14T05:31:05.1448472Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1481084Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/googletest' 2025-03-14T05:31:05.1515805Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1550891Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/json' 2025-03-14T05:31:05.1581837Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1618778Z Entering 'third_party/kineto/libkineto/third_party/dynolog/third_party/pfs' 2025-03-14T05:31:05.1652189Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1688689Z Entering 'third_party/kineto/libkineto/third_party/fmt' 2025-03-14T05:31:05.1718758Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1749783Z Entering 'third_party/kineto/libkineto/third_party/googletest' 2025-03-14T05:31:05.1790475Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1826032Z Entering 'third_party/kleidiai' 2025-03-14T05:31:05.1859629Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1896546Z Entering 'third_party/mimalloc' 2025-03-14T05:31:05.1926170Z http.https://github.com/.extraheader 2025-03-14T05:31:05.1967132Z Entering 'third_party/nlohmann' 2025-03-14T05:31:05.2003365Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2033805Z Entering 'third_party/onnx' 2025-03-14T05:31:05.2065332Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2112982Z Entering 'third_party/onnx/third_party/pybind11' 2025-03-14T05:31:05.2139333Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2183728Z Entering 'third_party/opentelemetry-cpp' 2025-03-14T05:31:05.2211663Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2246899Z Entering 'third_party/opentelemetry-cpp/third_party/benchmark' 2025-03-14T05:31:05.2273329Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2308911Z Entering 'third_party/opentelemetry-cpp/third_party/googletest' 2025-03-14T05:31:05.2340222Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2372849Z Entering 'third_party/opentelemetry-cpp/third_party/ms-gsl' 2025-03-14T05:31:05.2405557Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2439520Z Entering 'third_party/opentelemetry-cpp/third_party/nlohmann-json' 2025-03-14T05:31:05.2470172Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2511988Z Entering 'third_party/opentelemetry-cpp/third_party/opentelemetry-proto' 2025-03-14T05:31:05.2540099Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2576048Z Entering 'third_party/opentelemetry-cpp/third_party/opentracing-cpp' 2025-03-14T05:31:05.2606093Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2640723Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp' 2025-03-14T05:31:05.2678753Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2716963Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/civetweb' 2025-03-14T05:31:05.2746076Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2784462Z Entering 'third_party/opentelemetry-cpp/third_party/prometheus-cpp/3rdparty/googletest' 2025-03-14T05:31:05.2811432Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2844980Z Entering 'third_party/opentelemetry-cpp/tools/vcpkg' 2025-03-14T05:31:05.2873524Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2927385Z Entering 'third_party/pocketfft' 2025-03-14T05:31:05.2959623Z http.https://github.com/.extraheader 2025-03-14T05:31:05.2994030Z Entering 'third_party/protobuf' 2025-03-14T05:31:05.3029515Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3063895Z Entering 'third_party/protobuf/third_party/benchmark' 2025-03-14T05:31:05.3095204Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3131803Z Entering 'third_party/protobuf/third_party/googletest' 2025-03-14T05:31:05.3161389Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3218036Z Entering 'third_party/psimd' 2025-03-14T05:31:05.3229056Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3263593Z Entering 'third_party/pthreadpool' 2025-03-14T05:31:05.3298780Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3333476Z Entering 'third_party/pybind11' 2025-03-14T05:31:05.3362490Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3409306Z Entering 'third_party/python-peachpy' 2025-03-14T05:31:05.3441177Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3471830Z Entering 'third_party/sleef' 2025-03-14T05:31:05.3505094Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3540320Z Entering 'third_party/tensorpipe' 2025-03-14T05:31:05.3576087Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3609522Z Entering 'third_party/tensorpipe/third_party/googletest' 2025-03-14T05:31:05.3639652Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3681257Z Entering 'third_party/tensorpipe/third_party/libnop' 2025-03-14T05:31:05.3716303Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3750888Z Entering 'third_party/tensorpipe/third_party/libuv' 2025-03-14T05:31:05.3782692Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3819070Z Entering 'third_party/tensorpipe/third_party/pybind11' 2025-03-14T05:31:05.3850425Z http.https://github.com/.extraheader 2025-03-14T05:31:05.3881827Z Entering 'third_party/tensorpipe/third_party/pybind11/tools/clang' 2025-03-14T05:31:05.3940627Z http.https://github.com/.extraheader 2025-03-14T05:31:05.4162117Z A job completed hook has been configured by the self-hosted runner administrator 2025-03-14T05:31:05.4186509Z ##[group]Run '/home/ec2-user/runner-scripts/after_job.sh' 2025-03-14T05:31:05.4190063Z shell: /usr/bin/bash --noprofile --norc -e -o pipefail {0} 2025-03-14T05:31:05.4190345Z ##[endgroup] 2025-03-14T05:31:05.4265258Z [!ALERT!] Swap in detected! [!ALERT!] 2025-03-14T05:31:14.5198661Z [!ALERT!] Swap out detected [!ALERT!] 2025-03-14T05:31:28.7306503Z Cleaning up orphan processes